These solutions aren't comprehensive, so please ask if you have questions or spot a typo.

- **7.2** #4 (a) Take any two points x, y in a metric space X. Let r = d(x, y)/2. Then $U = B_r(x)$ and $V = B_r(y)$ are disjoint open sets satisfying the Hausdorff Axiom.
 - (b) (Following the hint given in class and via email.) Let $X = \{x_1, x_2, \ldots, x_n\}$ be a finite topological space satisfying the Hausdorff Axiom. I claim first that each element x_i is a closed set by itself. I'll prove this for x_1 .

For each i = 2, ..., n apply the Hausdorff Axiom to get a set V_i which is open, contains x_i and does **not** contain x_1 . Then $V = \bigcup_{i=2}^n V_i$ is an open set whose complement is $\{x_1\}$. Hence, by definition, x_1 is closed.

A similar argument shows that each $\{x_i\}$ is a closed set. By the proposition I proved in class, if each single-element subset of a *finite* topological space is closed, then the space must have the discrete topology.

- 7.2 #10 \overline{A} is the closed unit disk; A° is the open unit disk; the boundary of A is the unit circle.
- 7.2 #11 (a) A topology must contain finite intersections of any sets in the topology, so we have to add the following sets:

$$\{a, b, c\} \cap \{c, d\} = \{c\}$$
$$\{a, b, c\} \cap \{a, c, d\} = \{a, c\}$$

Thus the list of open sets is :

 $\emptyset, X, \{a\}, \{a, b\}, \{a, b, c\}, \{a, b, c, d\}, \{a, c, d\}, \{c, d\}, \{c\}, \{a, c\}$

(b) Taking complements, we see that the list of *closed* sets is:

 $X, \emptyset, \{b, c, d, e\}, \{d, e\}, \{e\}, \{b, e\}, \{a, b, e\}, \{a, b, d, e\}, \{b, d, e\}$

The closure of $A = \{a, d, e\}$ is the intersection of all closed sets containing A. In this case only two closed sets contain A, so

$$\overline{A} = X \cap \{a, b, d, e\} = \{a, b, c, d, e\} \cap \{a, b, d, e\} = \{a, b, d, e\}$$

The interior of A is the union of all open sets contained inside A. In this case there's only one open set contained in A, so $A^{\circ} = \{a\}$.

We also have $bd(A) = \overline{A} - A^{\circ} = \{a, b, d, e\} - \{a\} = \{b, d, e\}$

7.2 #12 I won't write out a full solution to this problem, because most of the problems occured with the first or second operation. Note that

$$\overline{A} = [0,3] \cup \{4\}$$
$$A^{\circ} = (0,1) \cup (1,2)$$

In particular, the set $(2,3) \cap \mathbb{Q}$ is not closed in \mathbb{R} , and its closure is the entire closed interval [2,3], not just the rationals in that interval (i.e. $[2,3] \cap \mathbb{Q}$). This is because every irrational number in (2,3) is a boundary point (and also a limit point) of $(2,3) \cap \mathbb{Q}$ and therefore must be contained in its closure.

Why is this true? Let $A = (2,3) \cap \mathbb{Q}$ and x an irrational number between 2 and 3. Then every open set containing x will contain both rationals and irrationals. If you look at the definition of boundary point or limit point, you'll see that x satisfies both.

- 7.5 #2 As with the previous problem, I won't write out as many details as I possibly could here, but enough for you to understand the basic idea.
 - (a) Each interior point of the disc makes up its own equivalence class. There is one more equivalence class, which consists of all the points on the unit circle.
 - (b) This part is easier to explain in person and won't be necessary for the exam, so ask me in person.
 - (c) X/\sim is homeomorphic to the sphere S^2 .
- **A** We need to verify two conditions. First, it's clear that every $x \in \mathbb{R}$ is contained in at least one set in \mathcal{B} . (Every point is contained in infinitely many of these "half open" intervals, in fact.) Second, suppose $B_1 = [a_1, b_1), B_2 = [a_2, b_2) \in \mathcal{B}$ such that

$$x \in B_1 \cap B_2 = [a_1, b_1) \cap [a_2, b_2)$$

Among other things, this means x is larger than (or equal to) both a_1 and a_2 , and smaller than both b_1 and b_2 . Let $B_3 = [\max\{a_1, a_2\}, \min\{b_1, b_2\})$. Then

$$x \in B_3 \subset B_1 \cap B_2$$

as required. Hence \mathcal{B} is a basis.

K1 The proof isn't long, but requires keeping a number of sets straight. Ask me for help if you have trouble following this; often it helps to draw a few examples using the real number line, although that won't constitute a general proof.

First assume that B is closed in X. That means $U = B^C = X - B$ is an open set in X. By definition of the relative topology, $A \cap U$ is an open set in A. But note that B is closed in A if $A - B = A \cap U$ is open in A. Hence B is closed in A.

In the other direction, assume B is closed in A, so that A - B is open in A. By definition of the relative topology, $A - B = A \cap U$ for some open set U in X. The set X - U is closed in X, but X - U = B, so B is closed in X.

K2 Consider the open ball $B = B_1(0, -1)$. Because the point (0, -1) is "isolated" from the rest of the set, $B_1(0, -1) = \{(x, y) | \sqrt{x^2 + (y+1)^2} < 1\}$ only contains the point (0, -1) itself! But this is a closed set itself, so $\overline{B} = B$! On the other hand, the "closed disk" $B_1(0, -1) = \{(x, y) | \sqrt{x^2 + (y+1)^2} \le 1\}$ would also include the point (0, 0).

Jonathan Rogness <rogness@math.umn.edu>