MATH 8001 28 September 2012

Writing exams and quizzes

Assignment due Friday 5 October:

Write a 20-minute quiz covering current material from your current course, or (if you are not currently teaching) material of your choice.

We will make available a LAT_EX quiz template; put your name on the quiz and indicate what sections/material the quiz covers.

At the bottom of the quiz, write a short paragraph describing the values that your quiz is meant to reflect (or describe how the time constraint of a quiz makes it hard to fully represent your intended values. Any issues arising in your current teaching?

Writing exams and quizzes (let us call these tests generically)

Getting started: writing a test from scratch

- 1. Identify the central ideas and, then, the most important tasks.
- 2. Write/choose candidate problems.
- 3. Review materials and ask, what did I miss? Choose problems to reward full participation in the class.
- 4. Trim back, following fine-tuning tips on next page.

Fine-tuning tips

1. Work through the exam completely. Ask someone else to work through the test. (What is the golden ratio?)

- 2. Don't be redundant or overly comprehensive.
- 3. Check that details do not distract from the concept you want to test.
- 4. Vary the level of problems.
- 5. Avoid problems that require tricks or clever observations.
- 6. Consider breaking long problems into steps. (pros and cons?)

Examples and discussion

(Note: This is a previous test question; it was a great problem, but a pain to grade.) Consider the curve parametrized by

$$\mathbf{x}(t) = \left(\frac{t^2}{2}, \frac{t^4}{\sqrt{8}}, \frac{t^6}{6}\right), \qquad -\infty < t < \infty$$

1. Briefly describe (in words) the behavior of the curve near t = 0.

2. Evaluate $\lim_{t\to 0} \mathbf{x}'(t)$ and $\lim_{t\to\infty} \mathbf{x}'(t)$. If either does not exist, explain why not.

3. Evaluate $\lim_{t\to 0} \mathbf{T}(t)$ and $\lim_{t\to\infty} \mathbf{T}(t)$. If either does not exist, explain why not.

4. Find T(1) and N(1). You do not have to find a general expression for N(t).

5. Parametrize the osculating plane of the curve at the point $\mathbf{x}(1)$.

McCallum's essay "Will This Be on the Exam?"

Exams reflect the values of the course and the instructor.

One of McCallum's values: Ask students to reason from graphical and numerical data.

Other values?

Can you give examples of recent quizzes (or midterms?) that either reflect or do not reflect McCallum's values?

Assignment due Friday 5 October:

Write a 20-minute quiz covering current material from your current course, or (if you are not currently teaching) material of your choice.

We will make available a LAT_EX quiz template; put your name on the quiz and indicate what sections/material the quiz covers.

At the bottom of the quiz, write a short paragraph describing the values that your quiz is meant to reflect (or describe how the time constraint of a quiz makes it hard to fully represent your intended values.