Answers to UMTYMP Calc III S07 Exam 3 Review

Problem 1

This is a fairly straightforward triple integral problem; to evaluate the integral by hand you'll have to switch to cylindrical coordinates.

In[9]:=

F[x_, y_, z_] = {x, y, (4 - z^2) (x^2 + y^2)}

Out[9]=

{x, y, (x^2 + y^2) (4 - z^2)}

In[10]:=

Div[F[x, y, z]]

Out[10]=

2 - 2 (x^2 + y^2) z

In[11]:=

Integrate[2 - 2 (x^2 + y^2) z, {x, -3, 3}, {y, -Sqrt[9 - x^2], Sqrt[9 - x^2]}, {z, 0, 2}]

Out[11]=

-126 π

In Cylindrical coordinates, the integral becomes

In[12]:=

Integrate[(2 - 2 (r^2) z) r, {t, 0, 2Pi}, {z, 0, 2}, {r, 0, 3}]

Out[12]=

-126 π

Problem 2

This problem is tedious, but doable.  You have to compute three separate flux integrals because the surface is in three pieces: the top of the cylinder, the bottom, and the sides.

Top

You can actually set up and evaluate the flux across the bottom of the cylinder, but without any calculations I know it has to be 0; the outward pointing normal vector will point straight up, and on the top of the cylinder z=2, so the vectors in the vector field will look like this:

In[13]:=

F[x, y, 2]

Out[13]=

{x, y, 0}

In other words they won't move up or down at all; the movement is perpendicular to the normal vector (i.e. parallel to the surface) and hence there is no flux.

(* Flux across Top = 0 *)

Bottom

This one we actually have to compute.  Here's a parametrization; I'm using the letter f so that I can let r be a paremeter, namely the radius:

In[14]:=

f[r_, t_] = {r Cos[t], r Sin[t], 0}

Out[14]=

{r Cos[t], r Sin[t], 0}

In[17]:=

(* Partials and normal vector *)fr = D[f[r, t], r]

Out[17]=

{Cos[t], Sin[t], 0}

In[18]:=

ft = D[f[r, t], t]

Out[18]=

{-r Sin[t], r Cos[t], 0}

In[20]:=

normal = Cross[fr, ft]//Simplify

Out[20]=

{0, 0, r}

That points in the wrong direction, so we switch it:

In[21]:=

normal = -Cross[fr, ft]//Simplify

Out[21]=

{0, 0, -r}

In[22]:=

integrand = F[r Cos[t], r Sin[t], 0] . normal//Simplify

Out[22]=

-4 r^3

In[23]:=

Integrate[integrand, {r, 0, 3}, {t, 0, 2Pi}]

Out[23]=

-162 π

(* Flux across Bottom = -162π *)

Sides

Quickly, using similar commands as above:

f[t_, h_] = {3Cos[t], 3 Sin[t], h}

Out[24]=

{3 Cos[t], 3 Sin[t], h}

In[28]:=

(* Partials and normal vector *)ft = D[f[t, h], t]

Out[28]=

{-3 Sin[t], 3 Cos[t], 0}

In[29]:=

fh = D[f[r, h], h]

Out[29]=

{0, 0, 1}

In[30]:=

normal = Cross[ft, fh]

Out[30]=

{3 Cos[t], 3 Sin[t], 0}

That's the correct vector, since it points out; as expected, it's the same as the vector from the center (axis) of the cylinder out to the point on the cylinder.

In[32]:=

integrand = F[3 Cos[t], 3 Sin[t], h] . normal//Simplify

Out[32]=

9

In[33]:=

Integrate[9, {t, 0, 2Pi}, {h, 0, 2}]

Out[33]=

36 π

(* Flux across Side = 36π *)

Total Flux (Final Answer)

Adding the flux across the top, bottom and sides:

In[34]:=

0 - 162π + 36π

Out[34]=

-126 π

Problem 3

Look carefully at what you've computed in problems 1 and 2; they're the two sides of the Divergence Theorem!  According to the Divergence Theorem your answers should therefore be equal.

Problem 4

(a)

First find the shadow of the solid in the xy-plane; this is a circle, and we can find the radius by setting two equations equal.  For simplicity I'll replace x^2+y^2with r^2.

In[35]:=

Solve[Sqrt[16 - r^2] == r^2 / 6, r]

Out[35]=

{{r→ -2 3^(1/2)}, {r→2 3^(1/2)}}

We want the positive square root, of course.

S[r_, t_, z_] = {r Cos[t], r Sin[t], z}

where

0 ≤ r ≤ 2 3^(1/2)
0 ≤ t ≤ 2π
r^2/6 ≤ z ≤ (16 - r^2)^(1/2)

(b)

In[36]:=

F[x_, y_, z_] = {x + y z, Sin[x^9 z^6], Cos[x^7 y^8]}

Out[36]=

{x + y z, Sin[x^9 z^6], Cos[x^7 y^8]}

In[37]:=

Div[F[x, y, z]]

Out[37]=

1

In[38]:=

Integrate[1 * r, {r, 0, 2Sqrt[3]}, {t, 0, 2Pi}, {z, r^2/6, Sqrt[16 - r^2]}]

Out[38]=

(76 π)/3

Problem 5

(a)

In[39]:=

r[t_] = {3Sin[t], 3Cos[t], 0}

Out[39]=

{3 Sin[t], 3 Cos[t], 0}

Here 0 ≤ t ≤ 2π.  Other answers are possible

(b)

In[40]:=

F[x_, y_, z_] = {-y, x, Sin[x^7 y^8 z^9]}

Out[40]=

{-y, x, Sin[x^7 y^8 z^9]}

In[41]:=

Curl[F[x, y, z]]

Out[41]=

{8 x^7 y^7 z^9 Cos[x^7 y^8 z^9], -7 x^6 y^8 z^9 Cos[x^7 y^8 z^9], 2}

Anything this ugly is a sign you shouldn't have to use curl F.

In the present problem we can use Stokes' Theorem to convert the surface integral to a line integral using the original vector field F.  F is ugly, but not as bad -- and on our curve it's even nicer:

In[42]:=

F[3Sin[t], 3Cos[t], 0]

Out[42]=

{-3 Cos[t], 3 Sin[t], 0}

Now let's do the line integral:

In[44]:=

F[3Sin[t], 3Cos[t], 0] . r '[t]//Simplify

Out[44]=

-9

In[45]:=

Integrate[-9, {t, 0, 2Pi}]

Out[45]=

-18 π

Problem 6

Here are two pictures of the region of integration, with one face left off and the other drawn as a wire mesh:

From In[93]:=

[Graphics:HTMLFiles/index_69.gif]

∫_1^2∫_0^( 5 - x^2) ∫_x^2^5f (x, y, z) yzx

Problem 7

There are, again, many different ways to do this.  The standard way is actually one of the longer ways, but probably the most familiar to all of you:

In[95]:=

F[x_, y_, z_] = {-y, x, 0}/(x^2 + y^2 + z^2)

Out[95]=

{-y/(x^2 + y^2 + z^2), x/(x^2 + y^2 + z^2), 0}

In[114]:=

G[x_, y_, z_] = Curl[F[x, y, z]]//Simplify

Out[114]=

{(2 x z)/(x^2 + y^2 + z^2)^2, (2 y z)/(x^2 + y^2 + z^2)^2, (2 z^2)/(x^2 + y^2 + z^2)^2}

In[115]:=

r[θ, φ] = {Sin[φ] Cos[θ], Sin[φ] Sin[θ], Cos[φ]}

Out[115]=

{Cos[θ] Sin[φ], Sin[θ] Sin[φ], Cos[φ]}

In[116]:=

normal = -Cross[D[r[θ, φ], θ], D[r[θ, φ], φ]]//Simplify

Out[116]=

{Cos[θ] Sin[φ]^2, Sin[θ] Sin[φ]^2, Cos[φ] Sin[φ]}

Remember that we computed G = Curl F above

In[117]:=

G[Sin[φ] Cos[θ], Sin[φ] Sin[θ], Cos[φ]]//Simplify

Out[117]=

{Cos[θ] Sin[2 φ], Sin[θ] Sin[2 φ], 2 Cos[φ]^2}

In[119]:=

G[Sin[φ] Cos[θ], Sin[φ] Sin[θ], Cos[φ]] . normal//Simplify

Out[119]=

Sin[2 φ]

For the first part of the problem I just need to set up te next integral (but I can have Mathematica evaluate it as long as I've typed it in):

In[120]:=

Integrate[Sin[2φ], {θ, 0, 2π}, {φ, 0, π/2}]

Out[120]=

2 π

Via Stokes Theorem this is equivalent to the integral of F along the standard unit circle:

In[121]:=

f[t_] = {r Cos[t], r Sin[t], 0}

Out[121]=

{r Cos[t], r Sin[t], 0}

In[123]:=

integrand = F[r Cos[t], r Sin[t], 0] . f '[t]//Simplify

Out[123]=

1

In[124]:=

Integrate[1, {t, 0, 2Pi}]

Out[124]=

2 π


Created by Mathematica  (May 8, 2007) Valid XHTML 1.1!