- 1. (a) Consider the surface given by $x^3y yz^2 + z^5 = 9$. Use a gradient to find the plane tangent to this surface at the point (3, -1, 2).
 - (b) Find the points on the surface $x^4 + y^4 + z^4 = 1$ where the tangent plane is parallel to the plane x + y + z = 1.
 - (c) Find the points at which the ellipsoid $x^2/4 + y^2 + z^2 = 1$ is tangent to one of the hyperboloids in the family $x^2 + y^2 (z+1)^2 = c^2$.
- 2. In the region given by $0 \le x \le pi$, $0 \le y \le pi$, find all the points on the curve $\sin(x) + \cos(y) = 0$ parallel to the line y = x.
- 3. The gradient of a function is given by (x, y^3, z) .
 - (a) Sketch the intersection of its level sets with the plane z = 1.
 - (b) Describe where the level sets are tangent to the plane x + 4y + z = 0.
- (a) Find an expression in terms of n for the points on the curves x²ⁿ + y²ⁿ = 1, which have tangents parallel to the line y = −2x.
 - (b) Sketch this sequence of points in the xy-plane indicating any limits of such sequences of points.
- 5. (a) Find all the points on the unit sphere, $\{(x, y, z) : x^2 + y^2 + z^2 = 1\}$ whose tangent planes contain the vector $\mathbf{j} + \mathbf{k}$.
 - (b) Find the linear transformation from the unit sphere to the surface S given by $x^2 + (y^2)/4 + z^2 = 9$.
 - (c) Use your answers to parts a and b to find the set of points on the surface S whose tangent planes contain the vector $(2\mathbf{j} + \mathbf{k})$. Be careful to explain why your method gives you the correct answer. Checking points in the set is not sufficient for full credit.
- 6. Any and all of Barr, p150 #6-10.

7. (Barr, p150 #21) Show that if a, b, and c are all nonzero and $A = \begin{bmatrix} 0 & a & b \\ a & 0 & c \\ b & c & 0 \end{bmatrix}$ then $p(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ is indefinite.

- 8. Any and all of Barr, p238 #15-18.
- 9. Let $f(x, y) = \cos x \cos y$. Find the second order Taylor polynomial for f at (a, b) = (0, 0).
- 10. To which entry in the matrix is the value of the determinant $A = \begin{bmatrix} 2 & 3 \\ -1 & 5 \end{bmatrix}$ most sensitive?

- 11. Find all critical points of the following functions, and classify the behavior at those points.
 - (a) $f(x,y) = x^2 + xy + y^2 + 2x 2y + 5$
 - (b) $g(x, y, z) = x^3 + xy^2 + x^2 + y^2 + 3z^2$
 - (c) $h(x,y) = 4 3x^2y^2$
 - (d) $i(x,y) = x^2 y^3 z^4$
 - (e) $j(x,y) = 2 x^4 y^4 z^4$
- 12. What point on the plane 3x 4y z = 24 is closest to the origin?
- 13. Find the extrema of $f(x, y) = x^2/4 + y^2$ subject to the condition that $x^2 + y^2 = 1$.

Jonathan Rogness <rogness@math.umn.edu>