Math 2374 Spring 2018 - Week 2

Quick Reivew from Last week

- Standard Basic vectors: in 3D,

$$
\begin{aligned}
\mathbf{i} & =\langle 1,0,0\rangle \\
\mathbf{j} & =\langle 0,1,0\rangle \\
\mathbf{k} & =\langle 0,0,1\rangle
\end{aligned}
$$

(Dot)

- (Inner product) Let $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle, \vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$.

$$
\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

Also, $\vec{a} \cdot \vec{b}=\|\vec{a}\|\|\vec{b}\| \cos (\theta)$, where θ is the angle between vectors \vec{a} and \vec{b}.

- (Cross product) Let $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle, \vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$.

$$
\|\vec{a} \times \vec{b}\|=\|\vec{a}\|\|\vec{b}\||\sin (\theta)|
$$

- (Parametric equations of a line) In 3D, a line through point $\left(x_{0}, y_{0}, z_{0}\right)$, in direction of $\langle a, b, c\rangle$

$$
\binom{\text { parametnz }}{\text { equation }} \quad \begin{aligned}
& x=x_{0}+a t \\
& y=y_{0}+b t \\
& z=z_{0}+c t
\end{aligned}
$$

 vector for the plane, then the equation of the plane is

$Q_{\text {quiz 1: }} 1.1,1.2,1.3,1.5$.
§Distance from a point to a plane
The distance from a point $P=\left(x_{1}, y_{1}, z_{1}\right)$ to the plane $a x+b y+c z+D=0$ is

$$
\text { dist }=\frac{\left|a x_{1}+b y_{1}+c z_{1}+D\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

NOE: $\langle a, b, c\rangle$ is normal vector.

Example 9:
Find the distance from the point $(1,1,-2)$ to the plane $12 x+y+2 z=-4$.

$$
\begin{aligned}
\operatorname{dist} & =\frac{112(1)+1+2(-2)+41}{\sqrt{12^{2}+1+2^{2}}} \\
& =\frac{112+1-4+4 \mid}{\sqrt{144+1+4}} \\
& =\frac{13}{\sqrt{149}}
\end{aligned}
$$

1.5 n-dimensional Euclidean Space

In section 1.1 and 1.2 , we have studied the space $\mathbb{R}^{1}, \mathbb{R}^{2}$, and \mathbb{R}^{3}. For example, we think of \mathbb{R}^{3} as a set of triples (vectors)

$$
\langle x, y, z\rangle
$$

where x, y and z are real numbers. We call \mathbb{R}^{3} is 3 -dimensional Euclidean space.
For generalization, we denote n-dimensional Euclidean space by \mathbb{R}^{n} whose elements are vectors written as

$$
x=\left\langle x_{1}, x_{2}, \cdots, x_{n}\right\rangle
$$

where x_{i} is a real number.
Example,

$$
\mathbf{a}=(1,6,-23,0.11, \pi)
$$

is a vector in \mathbb{R}^{5}.

Now we want to study some properties that are analogous to those introduced in previous sections for $\mathbb{R}^{1}, \mathbb{R}^{2}$, and \mathbb{R}^{3}.

In \mathbb{R}^{n}, we have

- (Addition)

$$
\left\langle x_{1}, x_{2}, \cdots, x_{n}\right\rangle+\left\langle y_{1}, y_{2}, \cdots, y_{n}\right\rangle=\left\langle x_{1}+y_{1}, x_{2}+y_{2}, \cdots, x_{n}+y_{n}\right\rangle
$$

- (Scalar multiplication) For any real number α,

$$
\alpha\left\langle x_{1}, x_{2}, \cdots, x_{n}\right\rangle=\left\langle\alpha x_{1}, \alpha x_{2}, \cdots, \alpha x_{n}\right\rangle
$$

\S Standard basis vectors of \mathbb{R}^{n} :

$$
\begin{aligned}
\mathbf{e}_{1} & =\langle 1,0, \cdots, 0\rangle \\
\mathbf{e}_{\mathbf{2}} & =\langle 0,1, \cdots, 0\rangle \\
\vdots & \\
\mathbf{e}_{\mathbf{n}} & =\langle 0,0, \cdots, 1\rangle
\end{aligned}
$$

Then we can write a vector x

$$
x=\left\langle x_{1}, x_{2}, \cdots, x_{n}\right\rangle=x_{1} \mathbf{e}_{\mathbf{1}}+x_{2} \mathbf{e}_{\mathbf{2}}+\cdots+x_{n} \mathbf{e}_{\mathbf{n}}
$$

EX: $\vec{a}=\langle 1,10,-10, \pi\rangle \mathbb{R}^{4}$.

$$
=1 e_{1}+10 e_{2}-10 e_{3}+\pi e_{4}
$$

\S Inner(Dot) product: Two vectors in \mathbb{R}^{n}

$$
\vec{u}=\left\langle u_{1}, \cdots, u_{n}\right\rangle, \quad \vec{v}=\left\langle v_{1}, \cdots, v_{n}\right\rangle
$$

The inner product of u and v is

$$
\begin{aligned}
& \vec{u} \cdot \vec{v}=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n} . \\
& \vec{a}=\langle 1,10,-10, \pi\rangle \cdot\|\vec{a}\|=\sqrt{1^{2}+10^{2}+(-10)^{2}+\pi^{2}}
\end{aligned}
$$

Fact. 1. Length of vector \vec{u} is

$$
\|\vec{u}\|=\sqrt{\vec{u} \cdot \vec{u}}=\sqrt{u_{1}^{2}+\cdots+u_{n}^{2}}
$$

2. $\vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos (\theta)$ where θ is the angle of vectors \vec{u} and \vec{v}.

§Introduction to general matrices

An $m \times n$ matrix is any array of $m n$ numbers with m rows and n columns:
$\bar{\downarrow}$
row column.

Notation: $A=\left[a_{i j}\right]$.

Example 1.

$$
B=\left[\begin{array}{ccc}
-1 & 1 & 3 \\
0 & 0 & 7
\end{array}\right]
$$

is 2×3 matrix.
row column.
§Matrix Algebra. Two matrices $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$. Let α be a constant.

- Sum : $A+B=\left[a_{i j}+b_{i j}\right]$
- Scalar multiple: $\alpha A=\left[\alpha a_{i j}\right]$

Example 2.

$$
2 \times 3 \text { matrix } \quad 2 \times 2 \text { matin x. }
$$

$$
A=\left[\begin{array}{lll}
2 \times 3 & 1 & 0 \\
3 & 4 & 1
\end{array}\right], \quad B=\left[\begin{array}{ccc}
\frac{-1}{0} & 1 & 3 \\
0 & 0 & 7
\end{array}\right], \quad C=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

1. $A+B=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 4 & 8\end{array}\right]$
2. $4 A=4\left[\begin{array}{lll}2 & 1 & 0 \\ 3 & 4 & 1\end{array}\right]=\left[\begin{array}{ccc}8 & 4 & 0 \\ 12 & 16 & 4\end{array}\right]$,
3. $A-C=$ not defined !

§Vectors as metrics.

We write an n-dimensional vector \mathbf{x} as a $n \times 1$ column matrix:

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

We call \mathbf{x} a $n \times 1$ column vector.
Example,

$$
\mathbf{x}=\left[\begin{array}{c}
3 \\
4 \\
0 \\
9 \pi
\end{array}\right] .
$$

a 4×1 column vector.

$$
\text { Ex: Vector } \begin{aligned}
\vec{X} & =\langle 1,2,10\rangle \\
& =\left[\begin{array}{c}
1 \\
2 \\
10
\end{array}\right], 3 \times 1 \text { column vector. }
\end{aligned}
$$

- Multiplication: multiplication between a matrix \mathbf{A} and a vector \mathbf{x}. We define this multiplication only for $m \times n$ matrix A and $n \times(1)$ column vector x .

$$
\begin{aligned}
& A \mathbf{x}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] \underbrace{\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]}_{\vec{x}}=\left[\begin{array}{ccc}
\left\langle a_{11}, \ldots, a_{1 n}\right\rangle & \cdot \vec{x} \\
\left\langle a_{21}, \ldots, a_{2 n}\right\rangle & \vec{x} \\
\vdots & & \\
\left\langle a_{m 1},-, a_{m n}\right\rangle & \vec{x}
\end{array}\right] \\
& \vec{x}=\left\langle x_{1}, \ldots, x_{n}\right\rangle . \\
&
\end{aligned}
$$

Example 3.

$$
A=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 1 & 2
\end{array}\right], \quad 2 \times 3 \text { matrix }
$$

and $\boldsymbol{x}=(1,0,2)$. Compute $A \boldsymbol{x}$.

$$
\begin{aligned}
\Delta x & =\left[\begin{array}{ll}
2 & 10 \\
1 & 12
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right], 2 \times 1 \text { matrix. } \\
& =\left[\begin{array}{l}
3 \\
5
\end{array}\right](2,1,0) \cdot(1,0,2)=2+0+0=2 \\
& =5
\end{aligned}
$$

Multiplication between a matrix \mathbf{A} and a matrix \mathbf{B}. $A=\left[a_{i k}\right] m \times n$ matrix; $B=\left[b_{k j}\right] n \times(p$ matrix.
We say $C=A B$, the product of A and B.
Then $C=\left[c_{i j}\right]$ is an $m \times P$ matrix

Example 4.

$$
A=\left[\begin{array}{lll}
2 \times 13 & 3 \times 3 \\
2 & 1 & 0 \\
1 & 1 & 2
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 2 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

$$
\left.B A=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 2 & 1 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
2 \\
1
\end{array}\right) 1 \begin{array}{ll}
1 & 0
\end{array}\right]
$$

$$
=\text { Mr defined! }
$$

Example 5.

$$
\begin{aligned}
& A=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \quad B=\left[\begin{array}{ll}
2 & 2
\end{array}\right] \\
& A B=\left[\begin{array}{c}
1 \\
2
\end{array}\right]\left[\begin{array}{ll}
(2) & 2
\end{array}\right]=\left[\begin{array}{ll}
2 & 2 \\
4 & 4
\end{array}\right]_{2 \times 2} . \\
& B A=\left[\begin{array}{ll}
2 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=[6] . \text { A }
\end{aligned}
$$

Properties of Matrices:

- In general $A B \neq B A$
- If $A B$ and $B C$ are defined, then $(A B) C, A(B C)$ are defined. In fact, $(A B) C=A(B C)$.

§Dot product in matrix notation.

We take the transpose of the $n \times 1$ column vector, turning it into a $1 \times n$ row matrix.

For example,

$$
\mathbf{x}=\left[\begin{array}{c}
3 \\
4 \\
0 \\
9 \pi
\end{array}\right] .
$$

a 4×1 column vector. The transpose of \mathbf{x} denoted by

$$
\mathbf{x}^{T}=\left[\begin{array}{llll}
3 & 4 & 0 & 9 \pi
\end{array}\right] .
$$

Then the inner product of two vectors

$$
\mathbf{u}=\left(u_{1}, \cdots, u_{n}\right), \quad \mathbf{v}=\left(v_{1}, \cdots, v_{n}\right)
$$

is equivalent to a matrix multiplication: $\quad \vec{u} \cdot \vec{v}=u_{1} v_{1}+u_{2} v_{2}+\ldots+u_{n} v_{n}$.

$$
\begin{aligned}
& L \\
& \text { multiplication of } 2 \text { matrices }
\end{aligned}
$$

