§Lnear Transformation. $\xrightarrow{\text { rows }}$ column

$$
B=m\left[\left[\begin{array}{l}
\cdots \\
\hdashline- \\
\hdashline
\end{array}\right]\right.
$$

In general, given any $m \times n$ matrix B, we can define â function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ by $g(\mathbf{x})=B \mathbf{x}$ that maps from \mathbb{R}^{n} to \mathbb{R}^{m}. Then g is a linear transformation.

EX:

$$
A=\left[\begin{array}{rrr}
1 & 0 & -1 \\
3 & 1 & 2
\end{array}\right], 2 \times 3 \text { matrix. }
$$

$$
\text { Define } f(\vec{x})=A \vec{x}, \vec{x} \text { is a vector in } \mathbb{R}^{3} \text {. }
$$

$$
=\left[\begin{array}{ccc}
1 & 0 & -1 \\
3 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], \quad \vec{x}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] .
$$

$$
=\left[\begin{array}{c}
x-z \\
3 x+y+2 z
\end{array}\right]_{2 x 1}
$$

$$
f(1,2,3)=\left[\begin{array}{c}
1-3 \\
3+2+6
\end{array}\right]=\left[\begin{array}{c}
-2 \\
11
\end{array}\right]
$$

f maps a vector $(1,2,3)$ in \mathbb{R}^{3} to a vector $(-2,1)$

$$
\text { in } \mathbb{R}^{2}
$$

On the other hand, given any function g, then g may not be a linear transformation.
mation.
\quad For example, $g(\underbrace{x, y}_{\mathbb{R}^{2}})=\underbrace{\vec{x}}_{\mathbb{R}^{3}})$. $\underbrace{x^{2}, y, x}_{\mathbb{R}^{3}}$ and $g(\underbrace{x, y, z}_{\mathbb{R}^{2}})=(\underbrace{x, x y y}_{\mathbb{R}^{2}})$ are not linear trans-
formations.
Example 6. For $f(x, y)=(\underbrace{(4 x+2 y, y / \pi, x+y})$, can you find a matrix A such that $f(\boldsymbol{x})=A \boldsymbol{x}$.

$$
\left.\begin{array}{rl}
f(x, y) & =\frac{\left(4 x+2 y, \frac{y}{\pi}, x+y\right) .}{} \\
& =\left[\begin{array}{ll}
4 & 2 \\
0 & \frac{1}{\pi} \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
(x) \\
y \\
y
\end{array}\right)
\end{array}\right] .
$$

uTE: $4 x+2 y=\langle a, b\rangle \cdot(x, y\rangle$

$$
\begin{aligned}
& =a x+b y . \\
\Rightarrow \quad a & =4 \\
b & =2 .
\end{aligned}
$$

\S Determinants and linear transformations. A linear transformatron $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then T is associated with a $n \times n$ matrix.

1. A linear transformation $T: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$ of the form $T(x)=a x$ for some scalar a.

$$
=[a][x]=[a x] .
$$

Example 7. (a) A one-dimensional linear transformation $T(x)=3 x$.

$$
\begin{aligned}
& T(0)=0 \\
& T(1)=3 .
\end{aligned}
$$

$$
T=3 x
$$

7 maps $[0,1]$ onto $\frac{[0,3]}{\text { the length }}$.

(b) $T(x)=-0.5 x$.

(1) length of $[-0.5,0]$ in decreased by a factor of $|-0.5|$.
(2) sign of (-0.5) implies that T reverses the orientation.坐
2. A linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ of the form

$$
T(x, y)=(a x+b y, c x+d y)=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]_{2 \times 2}\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

where a, b, c, d are numbers.

Example 8. (a) A two-dimensional linear transformation

$$
T(x, y)=\left[\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$T(0,0)=(0,0)$
$T(1,0)=\left[\begin{array}{cc}-2 & 0 \\ 0 & -2\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{c}-2 \\ 0\end{array}\right]$
$T(1,1)=\left[\begin{array}{cc}-2 & 0 \\ 0 & -2\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{c}-2 \\ -2\end{array}\right]$
$T(0,1)=\left[\begin{array}{cc}-2 & 0 \\ 0 & -2\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{c}0 \\ -2\end{array}\right]$.
area $R=1$
(1) area $R^{\prime}=4$ area R
area $R^{\prime}=4$.
y^{\prime} countercloclowine

(b) A two-dimensional linear transformation

- $\rightarrow \mathrm{x} \rightarrow$ ه $\rightarrow \mathrm{x} T(x, y)=\left[\begin{array}{cc}-1 & -1 \\ 1 & 3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$.
counterclockwise

$$
T(1,1)=\left[\begin{array}{cc}
-1 & -1 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
-2 \\
4
\end{array}\right]
$$

$$
T(0,1)=\left[\begin{array}{c}
-1 \\
3
\end{array}\right] .
$$

(1) area of R^{\prime} will increase by a factor of $\left|\operatorname{det}\left[\begin{array}{c}1-1-1\end{array}\right)\right|$
(2) $\operatorname{det}\left[\begin{array}{cc}-1 & -1 \\ 1 & 3\end{array}\right]<0$, so T reverses the orientation. T.
3. A linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ of the form

$$
\begin{gathered}
T(\mathbf{x})=\left[\begin{array}{ccc}
2 & 1 & 1 \\
1 & 2 & -1 \\
-3 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] . \\
\operatorname{det}\left[\begin{array}{ccc}
2 & 1 & 1 \\
1 & 2 & -1 \\
-3 & -1 & 2
\end{array}\right]=12
\end{gathered}
$$

(1) $\operatorname{det}[\sqrt{d}]>0, \pi$ preserves the orientation.
(2) T expands the wlumes of objects ky a factor of 12 .
(3) maps "parallelepiped" ito "parallelepiped"

T see math insights (part 3) for pictures Conline reading
§How linear transformations map parallelograms and parallelepipeds?
Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ with $\operatorname{det}(A) \neq 0$. A 2-dimensional linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
T(x, y)=(a x+b y, c x+d y)=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

where a, b, c, d are numbers. Then T maps parallelograms onto parallelograms and vertices into vertices.

If A is a 3×3 matrix with $\operatorname{det}(A) \neq 0$, then a 3 -dimensional linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $T \mathbf{x}=A \mathbf{x}$ maps parallelepipeds onto parallelepipeds.
§Geometric properties of the determinant.
We have learned that the determinant of a square matrix can be related to the area or volume of a region.

In particular, for the linear transformation $f(\mathbf{x})=A \mathbf{x}$, the determinant of A reflects how the linear transformation f can scale or reflect objects.

1. The absolute value of the determinant reflects how the linear transformation T expands or compresses objects.

Properties:

- $|\operatorname{det}(c A)|=c^{n}|\operatorname{det}(A)|$ in n-dimensions.

Example 9.

$$
\begin{aligned}
& B=\left[\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right] . \\
& A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] . \\
& B=2 A
\end{aligned}
$$

$$
T_{1} \text { Gee }|\operatorname{det}(B)|=2^{2}|\operatorname{det} A| \text {. }
$$

2. The sign of the determinant determines whether the linear transformation T preserves or reverses orientation.

- $\operatorname{det}(c A)=c^{n} \operatorname{det}(A)$ in n-dimensions.

3. The effect of multiplying matrices.

- $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

$$
\begin{aligned}
& I_{2}= {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] } \\
& I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] . \\
& I_{n}=\left[\begin{array}{lll}
1 & 0 \\
0 & 1
\end{array}\right] .
\end{aligned}
$$

4. The determinant of a matrix inverse.

- $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$. Note that here $\operatorname{det}(A)$ is not zero.
A^{-1}, inverse of A, satisfies $A^{-1} A=A A^{-1}=I_{n}$, dot $A \not E D$, we call $A{ }^{17}$ B invertible. A

