Math 2374 Spring 2018 - Week 3

## Quick Reivew from last week

- The distance from a point $P=\left(x_{1}, y_{1}, z_{1}\right)$ to the plane $a x+b y+c z+D=0$ is


$$
\begin{array}{ll}
\text { normal vector } & \frac{\left|a x_{1}+b y_{1}+c z_{1}+D\right|}{\sqrt{a^{2}+b^{2}+c^{2}}} \\
\langle a, b, c\rangle .
\end{array}
$$

- Multiplication of matrices.
- Linear transformations :
- A 2-dimensional linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
T(x, y)=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

where $a, b, c, d$ are numbers.
If get $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \neq 0$, then $T$ maps parallelograms onto parallelograms and vertices into vertices.

- If $A$ is a $3 \times 3$ matrix with $\operatorname{det}(A) \neq 0$, then a 3 -dimensional linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $T \mathbf{x}=A \mathbf{x}$ maps parallelepipeds onto parallelepipeds.


### 2.1 The Geometry of Real-Valued Functions

In this section, we will develop methods for visualizing a function.

## §Functions:

Let $f$ be a function which assigns to each vector $x=\left\langle x_{1}, \cdots, x_{n}\right\rangle$ in a subset $U$ of $\mathbb{R}^{n}$, a unique vector $f(x)$ in $\mathbb{R}^{m}$.

We call $U$ is the domain of $f$. We denote this function $f$ by

$$
f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

to indicate that $f$ maps from $U$ into $\mathbb{R}^{m}$. Here $\subset$ means (is subset of).
We denote the component functions of $f(x)$ as follows:

$$
f(x)=\left(f_{1}(x), \cdots, f_{m}(x)\right) .
$$

- If $m=1$, then we call $f$ is a scalar-valued function.
- If $m>1$, then we call $f$ is a vector-valued function.

Example 1. 1. $f(\underbrace{x, y})=x_{x+y}^{\text {scalar }}$ is a function of two variables and $f$ gives a value. $\quad$ variables $^{ \pm}$
For example, $f$ maps $(2,1)$ to a number 3 , that is, $f(2,1)=3$.
Thus, $f$ maps $\mathbb{R}^{2}$ to $\mathbb{R}$. In addition, $f$ is a scalar-valued function.

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

2. $f\left(\overparen{\mathbb{R}^{3}}(\sqrt[\mathbb{R}^{2}]{(x, y, z})=\left(x^{2} y, \cos (z)+e^{x}\right)\right.$. So $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ and $f$ is a vector-valued function.
EX: $f(x, y)=x^{2}+y^{2}$ on the unit dist, B, $\left(x^{2}+y^{2} \leq 1\right)$

$$
f: B \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}
$$




One way to visualize functions is through their graphs.(Prelecture study in math insight)

Let $f: U \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$. Then its graph is the surface formed by the set of points $(x, y, z)$ where $z=f(x, y)$. \& scalar-valued function.
Example 2. $f(x, y)=-x^{2}-y^{2}$ with the domain defined by $-2 \leq x \leq 2$ and $-2 \leq y \leq 2$. The graph of all points $(x, y, f(x, y))$ is an elliptic paraboloid.
$f:[-2,2] \times[-2,2] \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{1} \quad\left(x, y,-x^{2}-y^{2}\right)$
$f:[-2,2] \times[-2,2] \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}$.


If we consider $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$. Then its graph is the surface formed by the set of points $(x, y, z, t)$ where $t=f(x, y, z)$. This surface is in 4 dimensions, therefore it would be difficult to imagine such a graph.
§Level Sets:
Another way to visualize functions is through level set, that is a subset of the domain of function $f$ on which $f$ is a constant. That is,
 where $c$ is constant (scalar-valued function, ser of the point $x$ such that $f(x)=c$ )

- The level sets for $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}$ are curves.

We call level curves or level contours.

Example 3. $f(x, y)=x^{2}+y^{2}$. Describe the level sets of $f$.
levels sets:

$$
\begin{array}{ll}
c=0, & f(x, y)=0, \\
c=1, & f(x, y)=1, \quad x^{2}+y^{2}=1,
\end{array} \quad \text { unit circle. }
$$

$c=2, \quad f(x, y)=2, \quad x^{2}+y^{2}=2$, circle with radius $\sqrt{2}$.



Graph of $f$.

Example 4. Let $f(x, y)=x^{2}-y^{2}$. Study the level curves of $f$.
level sets

$$
\begin{array}{lll}
c=0, & f(x, y)=0, & \\
c=1, & & x^{2}-y^{2}=0, \quad x= \pm y . \\
c=2, & & f(x, y)=1,
\end{array} \begin{array}{ll}
x^{2}-y^{2}=1, \quad \text { hyperbola. } \\
c=-1, & f
\end{array}
$$

Level sets:


Graph of $f$.



- The level sets for $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{1}$ are surfaces. We call level surfaces.

Example 5. $f(x, y, z)=x^{2}+y^{2}+z^{2}$. Describe the level sets of $f$. Level
$\qquad$

$$
\begin{array}{cc}
c=0, & f(x, y, z)=0 \\
c=1, & f(x, y, z)=1 \\
c=2, & f(x, y, z)=2 \\
\vdots
\end{array}
$$

$$
(x, y, z)=(0,0,0)
$$

$$
x^{2}+y^{2}+z^{2}=1 \text {, vinit sphere }
$$

$$
x^{2}+y^{2}+z^{2}=2 \text {, sphere }
$$

 with radius $\sqrt{2}$

NTE: Graph of $f$ is in 4 dimensions.

### 2.3 Differentiation

In section 2.1, we have discussed some methods for visualizing a function, ex., drawing the level sets, sections.

From Calculus 1, we knew that the derivative of a function can tell us many things about this function such as locating maxima/minima, and rates of change.

In Calculus 1, we have learned, for function $f: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$,

- Continuous: No break in the graph of $f$.
- Differentiability: $f$ is continuous, no corner, no vertical tangent line.






## $\S$ What does it mean to take "derivative" of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$ for $n>1$ ?

 the intersection of the graph of $f$- When $y$ is constant, you walk on this section, then find the slope as $x$ constant.

Example 1. Let $z=f(x, y)=1+x^{2}+y^{2}$.
When $y=0$, then $z=1+x^{2}$ is a parabola on the plane $y=0$.


Similarly,

The blue curve above
is the intersection of graph of $f$ and $y=0$


- When $x$ is constant, you walk on this section, then find the slope as $y$ changes.

Ex: $x=-1$.

$$
\begin{aligned}
& z=f(-1, y)=2+y^{2} . \\
& \frac{d z}{d y}=2 y .
\end{aligned}
$$



is the intersection of
§Partial derivatives of $f$
Let's first consider $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}$.

1. Partial derivatives of $f$ with respect to $x$ : ( $\left.\begin{array}{lll}f_{x} & \text { or } \frac{\partial f}{\partial x}\end{array}\right)$

$$
\frac{\partial f}{\partial x}(x, y)=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}
$$

We also denote $\frac{\partial f}{\partial x}(x, y)$ by $f_{x}(x, y)$.
2. Partial derivatives of $f$ with respect to $y$ : ( $t_{y}$, or $\left.\frac{\partial f}{\partial y}\right)$.

$$
\frac{\partial f}{\partial y}(x, y)=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}
$$

We also denote $\frac{\partial f}{\partial y}(x, y)$ by $f_{y}(x, y)$.

More general definition: $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$.
Then $j$-th parital derivative of $f$, for $j=1, \cdots, n$, is a function

$$
\frac{\partial f}{\partial x_{j}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}
$$

defined by

$$
\frac{\partial f}{\partial x_{j}}\left(x_{1}, \cdots, x_{n}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{1}, \cdots, x_{j}+h, \cdots, x_{n}\right)-f\left(x_{1}, \cdots, x_{j}, \cdots, x_{n}\right)}{h}
$$

if the limit exist.

Recall from Calculus 1 , for $f: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$.

- Product rule:

$$
\frac{d}{d x}(f g)=f^{\prime} g+f g^{\prime}
$$

- Quotient rule:

$$
\frac{d}{d x}\left(\frac{f}{g}\right)=\frac{f^{\prime} g-g^{\prime} f}{g^{2}}
$$

- Chain rule:

$$
\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) g^{\prime}(x)
$$

Example 2. Let $f(x, y, z)=\left(1+z^{2}\right) e^{\cos \left(x y^{2}\right)}+7 \cos (z) y^{3}$. Find partial derivatives $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$, and $\frac{\partial f}{\partial z}$.

$$
\begin{aligned}
\frac{f}{y y}, \text { and } \frac{\partial f}{\partial z} \\
\begin{aligned}
\frac{\partial f}{\partial x} & =(\text { vies } y, z \text { as constant) } \\
= & \left(1+z^{2}\right) e^{\cos \left(x y^{2}\right)} \frac{\partial}{\partial x}(\eta \cos (z) \\
& \left.\left.=\left(1+z^{2}\right) e^{\cos \left(x y^{2}\right)}\left(x y^{2}\right)\right)+\sin \left(x y^{2}\right) y^{2}\right)
\end{aligned}
\end{aligned}
$$

To be continued!

