Math 2374 Spring 2018 - Week 3

Quick Reivew from last week

• The distance from a point $P = (x_1, y_1, z_1)$ to the plane ax + by + cz + D = 0 is hormal vector $\frac{|ax_1 + by_1 + cz_1 + D|}{\sqrt{a^2 + b^2 + c^2}}$

- Multiplication of matrices.
- Linear transformations :
 - A 2-dimensional linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$T(x,y) = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \left[\begin{array}{c} x \\ y \end{array} \right]$$

where a, b, c, d are numbers.

- If det $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \neq 0$, then T maps **parallelograms** onto **parallelograms** and vertices into vertices.
- If A is a 3×3 matrix with $det(A) \neq 0$, then a 3-dimensional linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ given by $T\mathbf{x} = A\mathbf{x}$ maps **parallelepipeds** onto **parallelepipeds**.

2.1 The Geometry of Real-Valued Functions

In this section, we will develop methods for visualizing a function.

§Functions:

Let f be a function which assigns to each vector $x = \langle x_1, \dots, x_n \rangle$ in a subset U of \mathbb{R}^n , a unique vector f(x) in \mathbb{R}^m .

We call U is the **domain** of f. We denote this function f by

$$f: U \subset \mathbb{R}^n \to \mathbb{R}^m$$

to indicate that f maps from U into \mathbb{R}^m . Here \subset means (is subset of). We denote the component functions of f(x) as follows:

$$f(x) = (f_1(x), \cdots, f_m(x)).$$

- If m = 1, then we call f is a **scalar**-valued function.

• If m > 1, then we call f is a **vector**-valued function. **Example 1.** 1. f(x, y) = x + y is a function of two variables and f gives a 2 martables value. For example, f maps (2,1) to a number 3, that is, f(2,1) = 3. Thus, $f \text{ maps } \mathbb{R}^2$ to \mathbb{R} . In addition, f is a scalar-valued function. $f: \mathbb{R}^2 \to \mathbb{R}^1$

2. $f(x, y, z) = (x^2y, \cos(z) + e^x)$. So $f : \mathbb{R}^3 \to \mathbb{R}^2$ and f is a vector-valued function.

One way to visualize functions is through their graphs.(Prelecture study in math insight)

Let $f: U \subset \mathbb{R}^2 \to \mathbb{R}$. Then its graph is the surface formed by the set of points (x, y, z) where z = f(x, y). Example 2. $f(x, y) = -x^2 - y^2$ with the domain defined by $-2 \le x \le 2$ and $-2 \le y \le 2$. The graph of all points (x, y, f(x, y)) is an elliptic paraboloid. $f: [-2, 2] \times [-2, 2] \times [-2, 2] \subset \mathbb{R}^2 \longrightarrow \mathbb{R}^4$ f has maximum of (0, 0) f(0, 0) = 0

If we consider $f : \mathbb{R}^3 \to \mathbb{R}$. Then its graph is the surface formed by the set of points (x, y, z, t) where t = f(x, y, z). This surface is in 4 dimensions, therefore it would be difficult to imagine such a graph.

§Level Sets:

Another way to visualize functions is through **level set**, that is a subset of the domain of function f on which f is a constant. That is,

where c is constant

Level set is $\{x|f(x) = c\}$ such that (that is, the set of there c is constant • The level sets for $f: \mathbb{R}^2 \to \mathbb{R}^1$ are curves. We call level sets for $f: \mathbb{R}^2 \to \mathbb{R}^1$ are curves. We call **level curves** or **level contours**.

Example 3. $f(x, y) = x^2 + y^2$. Describe the level sets of f. levels sets : c = 0, f(x, y) = 0, then (x, y) = (0, 0). c=1, f(x,y) = 1, $x^{2}ty^{2} = 1$, unit crole. c=2, f(x,y) = 2, $x^{2}+y^{2} = 2$, crole with radius 52. z = f(x, y) $f = x^2 + y^2$ Level sets: y 8= 15 . 2-4 X Graph of f

• The level sets for $f : \mathbb{R}^3 \to \mathbb{R}^1$ are surfaces. We call **level surfaces**.

Exan	$\mathbf{ple} \ 5. \ f$	(x, y, z)	$= x^2 + y^2 + z^2$. Descri	ibe the le	vel sets	s of f .		
sets	(=0	,	f (x,y, z)	τo,	(×, y,	2) =	(0, 0) ,	, 0)	
	C=	J	f(x, y, z)	= _	ᡘ᠈ᢅ᠊᠇	y2+	2 ² =>	l, vinit	sphere
	C= 2	1	f (x, y, z)	=2,	×2.	ty ^z -t	₹² = -	z, sph	ese
0,0	↑ Z							with ,	radous
sets								(JΣ,
X	C	= 1 C = 2	y						
M	77. T.	C	7 raph of	f	īs ī	\searrow	4	Imens	าวมีหรุ

2.3 Differentiation

In section 2.1, we have discussed some methods for visualizing a function, e.x., drawing the level sets, sections.

From Calculus 1, we knew that the derivative of a function can tell us many things about this function such as locating maxima/minima, and rates of change.

In Calculus 1, we have learned, for function $f : \mathbb{R}^1 \to \mathbb{R}^1$,

• Continuous: No break in the graph of f.

• Differentiability: f is continuous, no corner, no vertical tangent line.

§What does it mean to take "derivative" of $f : \mathbb{R}^n \to \mathbb{R}^1$ for n > 1?

• When y is constant, you walk on this <u>section</u>, then find the slope as x changes.

Example 1. Let $z = f(x, y) = 1 + x^2 + y^2$.

When y = 0, then $z = 1 + x^2$ is a parabola on the plane y = 0.

Similarly,

• When x is constant, you walk on this <u>section</u>, then find the slope as y changes. Ex: x = -1.

Partial derivatives of f

Let's first consider $f : \mathbb{R}^2 \to \mathbb{R}^1$.

1. Partial derivatives of f with respect to x: $\begin{pmatrix} \downarrow_{x} & \downarrow_{x} \\ \downarrow_{x} & \downarrow_{x} \end{pmatrix}$

$$\frac{\partial f}{\partial x}(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

We also denote $\frac{\partial f}{\partial x}(x, y)$ by $f_x(x, y)$.

2. Partial derivatives of f with respect to y: $\begin{pmatrix} f_y \\ g \end{pmatrix}$, or $\frac{\partial f}{\partial y} \end{pmatrix}_{.}$ $\frac{\partial f}{\partial y}(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$

We also denote $\frac{\partial f}{\partial y}(x, y)$ by $f_y(x, y)$.

More general definition: $f : \mathbb{R}^n \to \mathbb{R}^1$.

Then *j*-th parital derivative of f, for $j = 1, \dots, n$, is a function

$$\frac{\partial f}{\partial x_j}: \ \mathbb{R}^n \to \mathbb{R}^1$$

defined by

$$\frac{\partial f}{\partial x_j}(x_1,\cdots,x_n) = \lim_{h \to 0} \frac{f(x_1,\cdots,x_j+h,\cdots,x_n) - f(x_1,\cdots,x_j,\cdots,x_n)}{h}$$

if the limit exist.

Recall from Calculus 1, for $f : \mathbb{R}^1 \to \mathbb{R}^1$.

• Product rule:

$$\frac{d}{dx}(fg) = f'g + fg'$$

• Quotient rule:

$$\frac{d}{dx}\left(\frac{f}{g}\right) = \frac{f'g - g'f}{g^2}$$

• Chain rule:

$$\frac{d}{dx}(f(g(x))) = f'(g(x))g'(x)$$

Example 2. Let $f(x, y, z) = (1 + z^2)e^{\cos(xy^2)} + \frac{7\cos(z)y^3}{\cos(z)y^3}$. Find partial derivatives $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, and $\frac{\partial f}{\partial z}$. $\frac{\partial f}{\partial x} = (1 + z^2)e^{(\cos(xy^2))} + 0$, $\frac{\partial f}{\partial x} = (1 + z^2)e^{(\cos(xy^2))} + 0$, $z = (1 + z^2)e^{(\cos(xy^2))}(-\sin(xy^2)y^2)$. f