Math 2374 Spring 2018 - Week 3

Quick Reivew from last week

<a, L, P}
e The distance from a point P = (x1, y1, 21) to '
the plane ax +by 4+ cz+ D =0 is
hovimal vectov” laxy + byy + cz1 + D|
(6'\,19/ (.>' \/CL2+b2—|—C2

e Multiplication of matrices.
e [inecar transformations :

— A 2-dimensional linear transformation 7' : R? — R? given by

ren- [

where a, b, ¢, d are numbers.

a b
Ifdet[c g

and vertices into vertices.

— If Ais a3 x 3 matrix with det(A) # 0, then a 3-dimensional linear trans-
formation 7' : R? — R? given by Tx = Ax maps parallelepipeds onto
parallelepipeds.

] =# 0, then T" maps parallelograms onto parallelograms











2.1 The Geometry of Real-Valued Functions

In this section, we will develop methods for visualizing a function.

§Functions:
Let f be a function which assigns to each vector x = (x1,--- ,x,) in a subset U
of R™, a unique vector f(x) in R™.
We call U is the domain of f. We denote this function f by

f: UCR" — R"

—
to indicate that f maps from U into R™. Here C means ﬁs subset 09.
We denote the component functions of f(z) as follows:

f@) = (i), fal)).
e If m =1, then we call f is a scalar-valued function.

o [f m > 1, then we call f is a Vecilzor—valued function.
c\ov

Example 1. 1. f(z,y) =z + y is a function of two variables and f gives a
value. S oaeisble
For example, f maps (2,1) to a number 3, that is, f(2,1) = 3.

Thus, f maps R? to R. In addition, f is a scalar-valued function.

‘j: l\Zl — \Q‘L
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2. f(x,y,2) = (2%, cos(z) +¢€%). So f:R> — R? and f is a vector-valued
function.
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One way to visualize functions is through their graphs.(Prelecture study in math
insight)

Let f: U C R? — R. Then its graph is the surface formed by the set of points
(a:, Y, z) where z = f(iU, y) _ cealer — valued 7[\4v.c7‘/'m/“
Example 2. f(z,y) = —2% — y* with the domain defined by —2 < x < 2 and

—2 <y < 2. The graph of all points (x,y, f(x,y)) is an elliptic paraboloid.
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If we consider f : R — R. Then its graph is the surface formed by the set of
points (z,y, z,t) where t = f(x,y, z). This surface is in 4 dimensions, therefore it

would be difficult to imagine such a graph.























§Level Sets:

Another way to visualize functions is through level set, that is a subset of the
domain of function f on which f is a constant. That is,

Suek gt
Level set is {z|f(x) = ¢} (%Lar is the set o-f:
where c is constant cealor - glued 7:?% ﬁ tha pot % such that

i\n/\) 7D()<)‘_‘, C )

e The level sets for f : R? — R! are curves.

We call level curves or level contours.

Example 3. f(x,y) = 2° + y*>. Describe the level sets of f.
levels sets -

=0, Ty =0 _ then (xy)=(0,0)

c= 1, Ty =), x%y “= 1 st ovde.
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Example 4. Let f(x,y) = 2° — y*. Study the level curves of f.
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e The level sets for f: R? — R! are surfaces.
We call level surfaces.

E)fample 5. f(z,y,2) = 2% + y* + 2%. Describe the level sets of f.

s;(/s C=o ) F (xy 2) =° (%,y, 2) = (5 o0)
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2.3 Differentiation

In section 2.1, we have discussed some methods for visualizing a function, e.x.,

drawing the level sets, sections.
From Calculus 1, we knew that the derivative of a function can tell us many

things about this function such as locating maxima/minima, and rates of change.

In Calculus 1, we have learned, for function f : R — R,

e Continuous: No break in the graph of f.

e Differentiability: f is continuous, no corner, no vertical tangent line.
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§What does it mean to take ”derivative” of f: R" — R! for n > 1?
the mteveection of the grapl +

. " aneof Y= cenrtant,
e When vy is constant, you walk on this section, then find the slope as x changes.

Example 1. Let z = f(x,y) = 1+ 2% + °.

When y = 0, then z = 1 + 22 is a parabola on the plane y = 0.

Similarly, gopl of { andl jo O .

e When z is constant, you walk on this section, then find the slope as y changes.
Ex: x = —1.
























































g§Partial derivatives of f
Let’s first consider f : R? — R

1. Partial derivatives of f with respect to z: ( "r';« o 2 )

of L fle+hy) = fle,y)
%(’xay)_hm A

h—0

We also denote f(x y) by fo(z,y).

2. Partial derivatives of f with respect to y: ( + , o Qf)
h

(9y< )= ]1112%
We also denote 2 5, (@, y) by fy(@,y).

More general definition: f : R” — R1L

Then j-th parital derivative of f, for j =1,--- ,n, is a function
ﬁ : Rn — RI
&zzj
defined by
ﬁ(xla'” ’xn) — lim f(xly-.- ,ij—i‘h, ,xn>_f<$1,--- 7£Uj7"° 7xn)
8331 h—0 h

if the limit exist.









Recall from Calculus 1, for f: R — RL

e Product rule:
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e Quotient rule:

e Chain rule:

Example 2. Let f(z,y,2) = (1+ ZZ)GCOS(ny) + Tcos(2)y. Find partial deriva-
tives 2L 9L qnd 9L
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