Recall from Calculus 1 , for $f: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$.

- Product rule:

$$
\frac{d}{d x}(f g)=f^{\prime} g+f g^{\prime}
$$

- Quotient rule:

$$
\frac{d}{d x}\left(\frac{f}{g}\right)=\frac{f^{\prime} g-g^{\prime} f}{g^{2}}
$$

- Chain rule:

$$
\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) g^{\prime}(x)
$$

Example 2. Let $f(x, y, z)=\left(1+z^{2}\right) e^{\cos \left(x y^{2}\right)}+7 \cos (z) y^{3}$. Find partial derivatives $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, and $\frac{\partial f}{\partial z}$.

$$
\begin{aligned}
& \begin{array}{l}
\frac{\partial f}{\partial x}=\left(1+z^{2}\right) e^{\cos \left(x y^{2}\right)} \frac{\partial}{\partial x}\left(\cos \left(x y^{2}\right)\right)+\underset{0}{\partial} \text { (lien } y, z \text { as constant) }
\end{array} \\
& =\left(1+z^{2}\right) e^{\cos \left(x y^{2}\right)}\left(-\sin \left(x y^{2}\right) y^{2}\right) \cdot A \\
& \frac{\partial f}{\partial y} \stackrel{b^{\text {view }} x, z \text { as constants }}{=}\left(1+z^{2}\right) e^{\cos \left(x y^{2}\right)}\left(-\sin \left(x y^{2}\right) 2 x y\right)+21 \cos (z) y^{2} . \\
& \frac{\partial f}{\partial z}=2 z e^{\cos \left(x y^{2}\right)}+(-7 \sin z) y^{3} \text {. }
\end{aligned}
$$

NTE:

$$
D f=\left[\begin{array}{lll}
f_{x} & f_{y} & f_{z}
\end{array}\right]
$$

$$
\begin{aligned}
& f_{x}=\frac{\partial f}{\partial x} \\
& f_{y}=\frac{\partial f}{\partial y} \\
& f_{z}=\frac{\partial f}{\partial z}
\end{aligned}
$$

§Matrix of partial derivatives

$$
\rightarrow f \text { is scalar =valued function. }
$$

For the derivative of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$, its matrix of partial derivatives is

$$
\mathbf{D} f(a)=\left[\frac{\partial f}{\partial x_{1}}(a) \cdots \frac{\partial f}{\partial x_{n}}(a)\right], \quad 1 \times n \text { matrix. }
$$

vector -valued function.

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, then its matrix of partial derivatives is

$$
f(x)=\left(\stackrel{f_{1}(x)}{=}, f_{2}(x), \cdots, f_{m}(x)\left[\begin{array}{|ccc}
\frac{\partial f_{1}}{\partial x_{1}}(a) & \cdots & \left.\frac{\partial f_{1}}{\partial x_{n}}(a)\right) \\
\vdots & & \vdots \\
\mathbf{D} f(a)=[\\
\frac{\partial f_{m}}{\partial x_{1}}(a) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(a)
\end{array}\right], m \times n\right. \text { matrix }
$$

Example 3. (EX6 in page 111) Compute matrix of partial derivatives for function $f(x, y, z)=(\frac{z e^{x}}{f_{1}}, \underbrace{-y e^{z}}_{f_{2}})$. of is 2×3 matrix.

$$
\begin{aligned}
D f(x, y, z) & =\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} & \frac{\partial f_{1}}{\partial z} \\
\frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y} & \frac{\partial f_{2}}{\partial z}
\end{array}\right]_{2 \times 3} \\
& =\left[\begin{array}{ccc}
z e^{x} & 0 & e^{x} \\
0 & -e^{z} & -y e^{z}
\end{array}\right]_{-}
\end{aligned}
$$

To motivate the definition of differentiability, let us start from observing the linear approximation if f is "smooth enough".

Recall in Calculus 1, we say the tangent line at $(a, f(a))$ is an approximation to the curve $f(x)$ near $x=a$, that is,

$$
\begin{aligned}
& \text { Ex: } f(x)=x^{2} . \quad L(x)=f(a)+f^{\prime}(a)(x-a) . \\
& f^{\prime}(x)=2 x \\
& \text { tangent line (lear approximation) } \\
& \text { at } x=1 \text { is } \\
& y=f(1)+f^{\prime}(1)(x-1) . \\
& =1+2(x-1) \Rightarrow y=2 x-1 .
\end{aligned}
$$

EX: $f(x, y)=1+x^{2}+y^{2}$. Linear approximation of f near $(1,1)$.

Example 4. Let $f(x, y)=(1+y) e^{2 x+3 y}$.

1. Find $D f(1,0)$.

$$
\begin{aligned}
D f & =\left[\begin{array}{ll}
f_{x} & f_{y}
\end{array}\right] \\
& =\left[\begin{array}{ll}
2(1+y) e^{2 x+3 y} & e^{2 x+3 y}+3(1+y) e^{2 x+3 y}
\end{array}\right] . \\
D f(1,0) & =\left[\begin{array}{ll}
2 e^{2} & e^{2}+3 e^{2}
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 e^{2} & 4 e^{2}
\end{array}\right]
\end{aligned}
$$

2. Find the equation for the tangent plane at $(x, y)=(1,0)$.

Tangent plane is

$$
\begin{aligned}
z & =f(1,0)+f_{x}(1,0)(x-1)+f_{y}(1,0) y \\
& =2 e^{2}+2 e^{2}(x-1)+4 e^{2} y \\
z & =2 e^{2} x+4 e^{2} y-e^{2}
\end{aligned}
$$

(NOTE: Normal vector is $\left\langle 2 e^{2}, 4 e^{2},-1\right\rangle$)
3. Find a linear approximation of the function f near the point $(1,0)$. Also use it to approximate the value of $f(0.9,0.01)$.
1
A linear approximation

$$
\begin{aligned}
& L(x, y)=e^{2}+2 e^{2}(x-1)+4 e^{2} y \\
& \begin{aligned}
f(0.9,0.01) & \sim L(0.9,0.01) \\
& =e^{2}+2 e^{2}(0.9-1)+4 e^{2}(0.01) \\
& =e^{2}(1-0.2+0.04) \\
& =0.84 e^{2}(\approx 6.20680 \%)
\end{aligned}
\end{aligned}
$$

\S Differentiability for functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}$
Roughly speaking, the definition of differentiability means the linear approximation

$$
z=f\left(x_{0}, y_{0}\right)+\left[\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\right]\left(x-x_{0}\right)+\left[\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\right]\left(y-y_{0}\right)
$$

is a "good" approximation of f near $\left(x_{0}, y_{0}\right)$.

Formal definition is as follows:
We say f is differentiable at $\left(x_{0}, y_{0}\right)$ if $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist at $\left(x_{0}, y_{0}\right)$ and if
as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$.

\S Differentiability for functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

General definition is as follows:
We say f is differentiable at x_{0} in \mathbb{R}^{n} if all partial derivatives of f exists at x_{0} and

$$
\frac{f(x)-\sqrt{\left(f\left(x_{0}\right)+\mathbf{D} f\left(x_{0}\right)\left(x-x_{0}\right)\right)}}{\left\|x-x_{0}\right\|} \rightarrow 0
$$

as $x \rightarrow x_{0}$.
Here
$\begin{aligned} & \text { (matrix of } \\ & \text { partial derinatives }\end{aligned} \mathbf{D} f\left(x_{0}\right)=\left[\begin{array}{ccc}\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \vdots & & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}\end{array}\right], m \times n$ matrix

§Gradient of f

For the derivative of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$, its matrix of partial derivatives is

$$
\mathbf{D} f(x)=\left[\frac{\partial f}{\partial x_{1}} \cdots \frac{\partial f}{\partial x_{n}}\right], \quad 1 \times n \text { matrix. }
$$

If we write it as a vector form

$$
\left\langle\frac{\partial f}{\partial x_{1}}, \cdots, \frac{\partial f}{\partial x_{n}}\right\rangle
$$

then we call it the gradient of f, denoted by ∇f or grad f. (We will revisit it in section 2.6.)

Example 5. Let

$$
f(x, y, z)=x e^{\cos (y)}+z^{2} .
$$

Find ∇f.

$$
\begin{aligned}
D f & =\left(t_{x}, t_{y}, t_{z}\right) \\
& =\left(e^{\cos y},-x \sin y e^{\cos y}, 2 z\right) \\
\text { NOE } & =\text { we will revisit it later! }
\end{aligned}
$$

\S Some Facts

Fact. If f is differentiable at x_{0}, then f is continuous at x_{0}.
Fact. $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$. Suppose the partial derivatives $\frac{\partial f_{i}}{\partial x_{j}}$ exist and are continnous in a neighborhood of x_{0}. Then f is differentiable at x_{0}.

