Recall from Calculus 1, for f: R — RL

e Product rule:
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e Quotient rule:

e Chain rule:

Example 2. Let f(a: y,z) = (1+ 22)6008(”2) + Tcos(2)y. Find partial deriva-
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§Matrix of partial derivatives
) f 7 Scalewr ’:V(All/kﬂ,o( ‘FMV\C’(')\J/\.

For the derivative of f : R"” — R! its matrix of partial derivatives is

Df(a) = [(;Z( ) - g;n( )], | % n matrix.
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If f:R"”— R™, then its matrix of partial derivatives is

b= (0, fou, ””9@%@0.” 91 (a))]
Df(a) : n5 , M X n matrix
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Example 3. (EX6 in page 111) Compute matriz of partial derivatives for
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To motivate the definition of differentiability, let us start from observing the
linear approximation if f is “smooth enough”. Dioay

Recall in Calculus 1, we say the tangent line at (a, f(a)) is an approximation to
the curve f(x) near x = a, that is,

L) = f(a) + fla)z —a). 8T
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§Linear Approximation
Now for function f : R?> — R!, we call the plane tangent to the graph of f at point
(x0,yo) is the linear approximation of f near (xg, 1) which can be expressed

as follows:

2 = flzo, yo) + [g—ﬁ(cﬁo, yo)] (x — zo) + [g—‘;(mo, ya)] (¥ — vo)-

§Tangent plane
We now formally introduce the plane tangent to the graph of a function f : R? —
R,

If f is differentiable at (xo, o), then the tangent plane of the graph of f at

(%0, Yo, [ (20, Y0)) is
7= Fwo, ) + [%(xo’ ?/0>] (# — o) + [g—g(mo, yo)] (Y — vo) (1)
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EX: f(x,y) = 1+ 2% + y?. Linear approximation of f near (1,1).
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Example 4. Let f(x,y) = (1 +y)e** 3,
1. Find Df(1,0).
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2. Find the equation for the tangent plane at (x,y) = (1,0).
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3. Find a linear approximation of the function f near the point (1,0).
Also use it to approzimate the value of £(0.9,0.01).
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§Differentiability for functions f :R? — R!

Roughly speaking, the definition of differentiability means the linear approxima-
tion

2= f(z0,y0) + [%(Io,yo)] (x — x0) + [g—g(ﬁo, yo)] (v — o)

is a "good” approximation of f near (xg, yo).

Formal definition is as follows:
We say f is differentiable at (z, 1) if % and g—JyE exist at (xg, o) and if
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g§Differentiability for functions f: R" — R™

General definition is as follows:
We say f is differentiable at z, in R" if all partial derivatives of f exists at

xo and i Ay
F(@) - (F(xo) + Df(an)(z — z0)) | Linew oy
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§Gradient of f

For the derivative of f : R" — R!, its matrix of partial derivatives is

of . 9f
0xq 0x,,

D)= |

] , 1 X n matrix.
If we write it as a vector form

o o

8:1:1 ’ ’ a$n ’

then we call it the gradient of f, denoted by V f or gradf. (We will revisit it in
section 2.6.)

Example 5. Let
flx,y,2) = 2e®W 4 22
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§Some Facts

Fact. If f is differentiable at x(, then f is continuous at x.

Fact. f : R™ — R". Suppose the partial derivatives % exist and are contin-
J

uous in a netghborhood of xo. Then f is differentiable at x.
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