Recall from Calculus 1, for $f : \mathbb{R}^1 \to \mathbb{R}^1$.

• Product rule:

$$\frac{d}{dx}(fg) = f'g + fg'$$

• Quotient rule:

$$\frac{d}{dx}\left(\frac{f}{g}\right) = \frac{f'g - g'f}{g^2}$$

• Chain rule:

$$\frac{d}{dx}(f(g(x))) = f'(g(x))g'(x)$$

Example 2. Let $f(x, y, z) = (1 + z^2)e^{\cos(xy^2)} + \frac{7\cos(z)y^3}{7\cos(z)y^3}$. Find partial deriva-tives $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, and $\frac{\partial f}{\partial z}$. $\frac{\partial f}{\partial x} = (1 + z^2)e^{\cos(xy^2)} + \frac{7\cos(z)y^3}{\sqrt{2}} + \frac{1}{\sqrt{2}} (\cos(z)y^3) + \frac{1}{\sqrt{2}} (\cos(z)y^$ $= (H Z^{2}) e^{(os(xy^{2})} (-sm(xy^{2}) y^{2})} H$ $\xrightarrow{\text{view}}_{x, z \text{ as constants}} (H Z^{2}) e^{(os(xy^{2})} (-sm(xy^{2}) 2xy) + 21 \cos tz) y^{2}}$ $\frac{\partial f}{\partial t} = 2 z e^{\cos(xy^2)} + (-7 \sin z) y^3$

§Matrix of partial derivatives

> f is scalar-valued function.

For the derivative of $f : \mathbb{R}^n \to \mathbb{R}^1$, its **matrix of partial derivatives** is

$$\mathbf{D}f(a) = \left[\frac{\partial f}{\partial x_1}(a) \cdots \frac{\partial f}{\partial x_n}(a)\right], \quad 1 \times n \text{ matrix.}$$

 $\begin{aligned} & \text{vector -valued function,} \\ \text{If } f: \mathbb{R}^n \to \mathbb{R}^m, \text{ then its matrix of partial derivatives is} \\ & f_{(\mathbf{x})} = \left(\begin{array}{c} f_1(\mathbf{x}), f_2(\mathbf{x}), \cdots, f_m(\mathbf{x}) \\ \hline \partial f_1(a) & \cdots & \frac{\partial f_1}{\partial x_n}(a) \end{array} \right) \\ & \mathbf{D}f(a) = \begin{bmatrix} \begin{array}{c} \partial f_1(a) & \cdots & \frac{\partial f_1}{\partial x_n}(a) \\ \vdots & & \vdots \\ \hline \partial f_m(a) & \cdots & \frac{\partial f_m}{\partial x_n}(a) \end{bmatrix}, & m \times n \text{ matrix} \end{aligned}$

 To motivate the definition of differentiability, let us start from observing the linear approximation if f is "smooth enough".

Recall in Calculus 1, we say the tangent line at (a, f(a)) is an <u>linear</u> to the curve f(x) near x = a, that is,

§Linear Approximation

Now for function $f : \mathbb{R}^2 \to \mathbb{R}^1$, we call the plane tangent to the graph of f at point (x_0, y_0) is the **linear approximation** of f near (x_0, y_0) which can be expressed as follows:

$$z = f(x_0, y_0) + \left[\frac{\partial f}{\partial x}(x_0, y_0)\right](x - x_0) + \left[\frac{\partial f}{\partial y}(x_0, y_0)\right](y - y_0)$$

§Tangent plane

We now formally introduce the plane tangent to the graph of a function $f : \mathbb{R}^2 \to \mathbb{R}^1$.

If f is differentiable at (x_0, y_0) , then the **tangent plane** of the graph of f at $(x_0, y_0, f(x_0, y_0))$ is

$$z = f(x_0, y_0) + \left[\frac{\partial f}{\partial x}(x_0, y_0)\right](x - x_0) + \left[\frac{\partial f}{\partial y}(x_0, y_0)\right](y - y_0) \tag{1}$$

$$= f(x_0, y_0) + \mathbf{D}f(x_0, y_0) \begin{bmatrix} x - x_0 \\ y - y_0 \end{bmatrix}.$$
(2)

Normal vector :
$$\langle t_x(x_0, y_0) - 1 \rangle$$
.
Recall: $Df(x, y) = [f_x(x_0, y_0) - 1]$.
IX2.

Example 4. Let $f(x, y) = (1 + y)e^{2x+3y}$.

1. Find Df(1,0).

$$DF = \begin{bmatrix} f_{x} & f_{y} \end{bmatrix}$$

$$= \begin{bmatrix} 2(1+y) e^{2x+3y} & e^{2x+3y} + 3(1+y) e^{2x+3y} \end{bmatrix}$$

$$Df(1, \circ) = \begin{bmatrix} 2 e^{2} & e^{2} + 3e^{2} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{2 e^{2}}{f_{x}(1, \circ)} & \frac{4 e^{2}}{f_{y}(1, \circ)} \end{bmatrix}$$

2. Find the equation for the tangent plane at (x, y) = (1, 0).

Tangent plane is

$$z = f(1,0) + f_x(1,0)(x-1) + f_y(1,0) y$$

 $= e^2 + 2e^2(x-1) + 4e^2 y$.
 $z = 2e^2 X + 4e^2 y - e^2$.
 $MTE: Normal vector8 is $\langle 2e^2, 4e^2, -(>)$$

3. Find a linear approximation of the function f near the point (1,0). Also use it to approximate the value of f(0.9, 0.01).

A linear approximation $L(x, y) = e^{2} + 2e^{2}(x-1) + 4e^{2}y$ $f(0, 9, 0, 01) \sim L(0, 9, 0.01)$ $= e^{2} + 2e^{2}(o_{-}9 - 1) + 4e^{2}(0.01)$ $= e^{2}(1 - 0.7 + 0.04)$ = 0.84 e° (~ 6, 206 807)

1

§Differentiability for functions $f : \mathbb{R}^2 \to \mathbb{R}^1$

Roughly speaking, the definition of differentiability means the linear approximation Г ∩ r ٦ ΓΩſ

$$z = f(x_0, y_0) + \left\lfloor \frac{\partial f}{\partial x}(x_0, y_0) \right\rfloor (x - x_0) + \left\lfloor \frac{\partial f}{\partial y}(x_0, y_0) \right\rfloor (y - y_0)$$

is a "good" approximation of f near (x_0, y_0) .

Formal definition is as follows:
We say
$$f$$
 is **differentiable** at (x_0, y_0) if $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist at (x_0, y_0) and if

$$\frac{f(x, y) - \left(f(x_0, y_0) + \left[\frac{\partial f}{\partial x}(x_0, y_0)\right](x - x_0) + \left[\frac{\partial f}{\partial y}(x_0, y_0)\right](y - y_0)\right)}{\|(x, y) - (x_0, y_0)\|} \to 0$$

as $(x, y) \to (x_0, y_0)$.

§Differentiability for functions $f : \mathbb{R}^n \to \mathbb{R}^m$

General definition is as follows:

We say f is **differentiable** at x_0 in \mathbb{R}^n if all partial derivatives of f exists at x_0 and

$$\frac{f(x) - \left(f(x_0) + \mathbf{D}f(x_0)(x - x_0)\right)}{\|x - x_0\|} \xrightarrow{f(x) - 1}{\to 0} \xrightarrow{f(x) - 1}{\to 0} 0$$

as $x \to x_0$.

Here

Here
(matrix of)
$$\mathbf{D}f(x_0) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}, \quad m \times n \text{ matrix}$$

Gradient of f

For the derivative of $f : \mathbb{R}^n \to \mathbb{R}^1$, its matrix of partial derivatives is

$$\mathbf{D}f(x) = \left[\frac{\partial f}{\partial x_1} \cdots \frac{\partial f}{\partial x_n}\right], \quad 1 \times n \text{ matrix.}$$

If we write it as a vector form

$$\left\langle \frac{\partial f}{\partial x_1}, \cdots, \frac{\partial f}{\partial x_n} \right\rangle,$$

then we call it the **gradient of** f, denoted by ∇f or $\operatorname{grad} f$. (We will revisit it in section 2.6.)

Example 5. Let

$$f(x, y, z) = xe^{\cos(y)} + z^2.$$

Find ∇f .

§Some Facts

Fact. If f is differentiable at x_0 , then f is continuous at x_0 .

Fact. $f : \mathbb{R}^m \to \mathbb{R}^n$. Suppose the partial derivatives $\frac{\partial f_i}{\partial x_j}$ exist and are continuous in a neighborhood of x_0 . Then f is differentiable at x_0 .