## Math 2374 Spring 2018 - Week 4

## Quick Reivew from last week

Sec. 2.1: Level sets of functions, and graph of functions.
Sec. 2.3:

- Partial derivatives: $\frac{\partial f}{\partial x}(x, y)=f_{x}(x, y), \ldots$
- If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, then its matrix of partial derivatives is $f=\left(f_{1}(x), \ldots, f_{m}(x)\right)$

$$
\mathbf{D} f(a)=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}(a) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(a) \\
\vdots & & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}}(a) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(a)
\end{array}\right], m \times n \text { matrix }
$$

- If $f$ is differentiable at $\left(x_{0}, y_{0}\right)$, then the tangent plane of the graph of $f$ at $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ is

$$
\begin{align*}
z & =f\left(x_{0}, y_{0}\right)+\left[\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\right]\left(x-x_{0}\right)+\left[\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\right]\left(y-y_{0}\right)  \tag{1}\\
& =f\left(x_{0}, y_{0}\right)+\mathbf{D} f\left(x_{0}, y_{0}\right)\left[\begin{array}{l}
x-x_{0} \\
y-y_{0}
\end{array}\right] . \tag{2}
\end{align*}
$$

2.5 Properties of the derivative

In sec 2.3 , we learned the derivative of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ which is denoted by

$$
\mathbf{D} f\left(x_{0}\right)=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right], m \times n \text { matrix }
$$

we call the matrix of partial derivatives of $f$ at $x_{0}$.

Now we want to know how it interacts with operators, like scalar multiple, sum, product, $\cdots$.

- Constant multiple Rule and Sum Rule:

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are differentiable at $x_{0}$, then we have
(1) $\mathbf{D}(c f)\left(x_{0}\right)=c \mathbf{D} f\left(x_{0}\right)$
(2) $\mathbf{D}(f+g)\left(x_{0}\right)=\mathbf{D} f\left(x_{0}\right)+\mathbf{D} g\left(x_{0}\right)$

- Product Rule and Quotient Rule:

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$ are differentiable at $x_{0}$, then
(1) $(f g)(x)=f(x) g(x)$ is differentiable at $x_{0}$ and

$$
\mathbf{D}(f g)\left(x_{0}\right)=g\left(x_{0}\right) \underline{\mathbf{D} f}\left(x_{0}\right)+f\left(x_{0}\right) \underline{\mathbf{D} g\left(x_{0}\right)} \quad[\text { product }]
$$

(2) $\frac{f(x)}{g(x)}$ is differentiable at $x_{0}$ (Assume that $g$ is never zero) and

$$
\mathbf{D}\left(\frac{f}{g}\right)\left(x_{0}\right)=\frac{g\left(x_{0}\right) \mathbf{D} f\left(x_{0}\right)-f\left(x_{0}\right) \mathbf{D} g\left(x_{0}\right)}{\left[g\left(x_{0}\right)\right]^{2}}
$$

$$
[\text { Quotient }]
$$

Ex: $f(x, y)=x y^{2}, g(t)=(9,2 t)$. Then

$$
(f \circ g)(t)=f(g(t)) \underset{\substack{x=9 \\ y=2 t}}{\substack{x}} g(2 t)^{2}=36 t^{2} \text {. }
$$

- Chain Rule: We consider functions $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. If the domain of $f$ includes the range of $g$, so $f \circ g$ is defined. Suppose that $g$ is differentiable at $x_{0}$, and $f$ is differentiable at $g\left(x_{0}\right)$. Then $f \circ g$ is differentiable at $x_{0}$ and

$$
\mathbf{D}(f \circ g)\left(x_{0}\right)=\mathbf{D} f\left(g\left(x_{0}\right)\right) \underset{(\mathrm{p} \times \mathrm{m})}{\mathbf{D} g\left(x_{0}\right)}
$$

Example 1. Let $f(u, v)=\left(u+v, u, v^{2}\right), g(x, y)=\left(x^{2}+1, y^{2}\right)$. Find $\boldsymbol{D}(f \circ g)(1,1)$.
$f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$
$g=\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$
$3 \times 2$ matrix
$D f: 3 \times 2$ matrix. $\operatorname{Dg}(2 \times 2)$ matrix

$$
\begin{aligned}
& D(f \circ g)(x, y)=D f(g(x, y)) D g(x, y) \\
& D g(x, y)=\left[\begin{array}{cc}
2 x & 0 \\
0 & 2 y
\end{array}\right]_{2 \times 2} . \\
& D f(u, v)=\left[\begin{array}{cc}
1 & 1 \\
1 & 0 \\
0 & 2 v
\end{array}\right]_{3 \times 2}
\end{aligned}
$$

Fid $D(f \circ g)(1,1)=D f(\underline{g(1,1)}) \operatorname{Dg}(1,1)$.

$$
\begin{aligned}
& D g(1,1)=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right] \\
& (u, v)=g(1,1)=(2,1) \\
& D f(g(1,1))=D f(2,1)=\left[\begin{array}{ll}
1 & 1 \\
1 & 0 \\
0 & 2
\end{array}\right] \\
& D(f \circ g)(1,1)=\left[\begin{array}{ll}
1 & 1 \\
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{ll}
2 & 2 \\
2 & 0 \\
0 & 4
\end{array}\right]_{3 \times 2}
\end{aligned}
$$

Example 2. Let $f(x, y, z)=x^{2}+x e^{x y^{2} z}$, and $g(x, y, z)=z^{2}+1$. Find $\boldsymbol{D}(f g)(x, y, z)$.

$$
\begin{aligned}
& D(f g)(x, y, z) \\
= & g D f(x, y, z)+f D g(x, y, z) . \\
= & \left(z^{2}+1\right)\left[\begin{array}{lll}
t_{x} & t_{y} & t_{z}
\end{array}\right]+\left(x^{2}+x e^{x y^{2} z}\right)\left[\begin{array}{lll}
g_{x} & g_{y} & g z
\end{array}\right) . \\
= & \left(z^{2}+1\right)\left[2 x+e^{x y^{2} z}+x y^{2} z e^{x y^{2} z}\right. \\
& +\left(x^{2}+x e^{x y^{2} z}\right)\left[\begin{array}{lll}
0 & 0 & x^{2} z e^{x y^{2} z} \\
x^{2} y^{2} e^{x y^{2} z}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Supllity } \\
& =
\end{aligned}\left[\begin{array}{lll}
\left(z^{2}+1\right)\left(2 x+e^{x y^{2} z}+x y^{2} z e^{x y^{2} z}\right) & \left(z^{2}+1\right)\left(2 y x^{2} z e^{x y^{2} z}\right)
\end{array}\right]
$$

Example 3. Suppose $c(t): \mathbb{R}^{1} \rightarrow \mathbb{R}^{3}$ is a path and $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{1}$. Let $h(t)=f(c(t))=f(x(t), y(t), z(t))$, where $c(t)=(x(t), y(t), z(t))$. Then

$$
\begin{aligned}
D h(t) & =D(f \circ c)(t) \\
& =D f(c(t)) D c(t) \\
& =\left[\begin{array}{lll}
f_{x} & f_{y} & f_{z}
\end{array}\right]_{(x, y, z)=c(t)}\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t) \\
z^{\prime}(t)
\end{array}\right] . \\
& =f_{x}(c(t)) x^{\prime}(t)+f_{y}(c(t)) y^{\prime}(t)+f_{z}(c(t)) z^{\prime}(t) \\
& =\nabla f(c(t)) \cdot C^{\prime}(t) .
\end{aligned}
$$

$$
\text { Here } \nabla f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle
$$

$$
c^{\prime}(t)=\left\langle x^{\prime}(t), \quad y^{\prime}(t), \quad z^{\prime}(t)\right\rangle
$$

2.4 Introduction to parametrized curves

A function $c(t):[a, b] \rightarrow \mathbb{R}^{m}$ (that is, $c(t)$ maps from $[a, b]$ to $\left.\mathbb{R}^{m}\right)$ is a path in $\mathbb{R}^{m}$.
For example,

$$
\begin{gathered}
x y \quad \Rightarrow \quad y=x^{2} . \\
c(t)=\left(t, t^{2}\right) \text { for } t \text { in }[-1,1] .
\end{gathered}
$$

Here we refer to $t$ as a free parameter.


$$
\begin{aligned}
& C(0)=(0,0) \\
& (1)=(1,1) \\
& ((-1)=(-1,1) \\
& C(2)=(2,4) .
\end{aligned}
$$

We call $c(+1$ parametrize the parabola $y=x^{2}$
or call $C(t)$ a parametrization of
Example 1.

$$
y=x^{2}
$$

$$
\begin{aligned}
& c_{1}(t)=\left(\cos (t), \sin ^{4, y}(t)\right), 0 \leq t \leq 2 \pi, \quad x^{2}+y^{2}=1 \\
& c_{2}(t)=(\cos (3 t), \sin (3 t)), 0 \leq t \leq 2 \pi / 3
\end{aligned}
$$

EX: $\quad t=\frac{1}{2}, \quad C_{1}\left(\frac{\pi}{2}\right)=(0,1)$

$$
C_{2}\left(\frac{\pi}{2}\right)=(0,-1)
$$



## Derivatives of parametrized curves

Consider the function $c: \mathbb{R}^{1} \rightarrow \mathbb{R}^{m}$ where

$$
c(t)=\left(c_{1}(t), c_{2}(t), \cdots, c_{m}(t)\right)
$$

The Derivatives of the function $c: \mathbb{R}^{1} \rightarrow \mathbb{R}^{m}$ at time $t$ is

$$
\underline{\underline{\mathbf{D}} c(t)}=\left[\begin{array}{c}
c_{1}^{\prime}(t) \\
\vdots \\
c_{m}^{\prime}(t)
\end{array}\right]_{m \times 1}
$$

matrix of partial derivative

$$
c^{\prime}(t)=\left\langle C_{1}^{\prime}(t), C_{2}^{\prime}(t), \cdots, C_{m}^{\prime}(t)\right\rangle .
$$

We could also define the derivatives by using the limit definition:

$$
c^{\prime}(t)=\lim _{h \rightarrow 0} \frac{c(t+h)-c(t)}{h}
$$

- If $c^{\prime}(t) \neq 0$, the velocity $c^{\prime}(t)$ gives a "direction" for the tangent line to the curve at $t$. We call $c^{\prime}(t)$ is a "tangent vector" to the curve at $t$.
- Note that $c^{\prime}(t)$ is the velocity of the curve $c(t)$. The speed of the path is $\left\|c^{\prime}(t)\right\|$.
- Tangent line to a path at point $c\left(t_{0}\right)$ is

$$
l(t)=c\left(t_{0}\right)+\left(t-t_{0}\right) c^{\prime}\left(t_{0}\right)
$$

$E X: \quad c(t)=\left(t, t^{2}\right)$


Example 2. Let $c(t)=\begin{gathered}\mathbf{x} \text { y z } \\ \left(t^{3}, e^{t}, 2 t\right)\end{gathered}$ and $f(x, y, z)=\left(x^{2}-y^{2}, 2 y, z^{2}\right)$.

1. Find $(f \circ c)(1)$.
2. Find the equation of the tangent line to the curve $f \circ c$ at $t=1$.

$$
\begin{aligned}
1 .(f \circ c)(1) & =f(c(1)) \\
& =\left\langle\left(t^{3}\right)^{2}-\left(e^{t}\right)^{2}, 2 e^{t},(2 t)^{2}\right\rangle \\
& =\left\langle t^{6}-e^{2 t}, 2 e^{t}, 4 t^{2}\right\rangle
\end{aligned}
$$

2. Tangent line

$$
\begin{aligned}
l(t) & =\left(f_{0 c}\right)(1)+(\tau-1)\left(f_{0} c\right)^{\prime}(1) \\
& =\left(1-e^{2}, 2 e^{\prime}, 4\right)+(t-1)\left(6-2 e^{2}, 2 e, 8\right)
\end{aligned}
$$

Compute $\left(f_{0} c\right)^{\prime}(1)$.

$$
\begin{aligned}
& (f \circ c)^{\prime}(t)=\left(6 t^{5}-2 e^{2 t}, 2 e^{t}, 8 t\right) \\
& (f \circ c)^{\prime}(1)=\left(6-2 e^{2}, 2 e^{\prime}, 8\right)
\end{aligned}
$$

A vector-valued function $c: \mathbb{R} \rightarrow \mathbb{R}^{m}$ can be viewed as a parametrization of a curve. We think of $t$ as time and the parametrization $c(t)$ as being the position of an object at time $t$. The curve parametrized by $c(t)$ is the trajectory of this object.

Go back to Example 1,

$$
\begin{aligned}
& c_{1}(t)=(\cos (t), \sin (t)), 0 \leq t \leq 2 \pi \\
& c_{2}(t)=(\cos (3 t), \sin (3 t)), 0 \leq t \leq 2 \pi / 3 .
\end{aligned}
$$

So $c_{1}$ and $c_{2}$ are parametrization of an unit circle.

Velocity:

$$
\begin{gathered}
c_{1}^{\prime}(t)=(-\sin (t), \cos (t)) \\
c_{2}^{\prime}(t)=(-3 \sin (3 t), 3 \cos (3 t))
\end{gathered}
$$

Speed:

$$
\begin{gathered}
\left\|c_{1}^{\prime}(t)\right\|=\|(-\sin (t), \cos (t))\|=1 \\
\left\|c_{2}^{\prime}(t)\right\|=\|(-3 \sin (3 t), 3 \cos (3 t))\|=3
\end{gathered}
$$

Thus, $c_{2}(t)$ is 3 times faster than $c_{1}(t)$.

