Math 2374 Spring 2018 - Week 4

Quick Reivew from previous lecture

- The velocity of the path $c(t)$ is $c^{\prime}(t)$. The speed of the path is $\left\|c^{\prime}(t)\right\|$.
- Tangent line to a path at point $c\left(t_{0}\right)$ is

$$
l(t)=c\left(t_{0}\right)+\left(t-t_{0}\right) c^{\prime}\left(t_{0}\right)
$$

- $\mathbf{D}(c f)\left(x_{0}\right)=c \mathbf{D} f\left(x_{0}\right)$
- $\mathbf{D}(f+g)\left(x_{0}\right)=\mathbf{D} f\left(x_{0}\right)+\mathbf{D} g\left(x_{0}\right)$
- $\mathbf{D}(f g)\left(x_{0}\right)=g\left(x_{0}\right) \mathbf{D} f\left(x_{0}\right)+f\left(x_{0}\right) \mathbf{D} g\left(x_{0}\right)$
- $\mathbf{D}\left(\frac{f}{g}\right)\left(x_{0}\right)=\frac{g\left(x_{0}\right) \mathbf{D} f\left(x_{0}\right)-f\left(x_{0}\right) \mathbf{D} g\left(x_{0}\right)}{\left[g\left(x_{0}\right)\right]^{2}}$
- $\mathbf{D}(f \circ g)\left(x_{0}\right)=\mathbf{D} f\left(g\left(x_{0}\right)\right) \mathbf{D} g\left(x_{0}\right)$
- Example:

Suppose $c(t)=(x(t), y(t), z(t))$ is a path and $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{1}$. Then

$$
\mathbf{D}(f \circ c)(t)=\mathbf{D} f(c(t)) \mathbf{D} c(t)
$$

or

$$
\mathbf{D}(f \circ c)(t)=\nabla f(c(t)) \cdot c^{\prime}(t)
$$

How do you draw a picture like this in Mathematica?

The curve ${ }^{1}$ is

$$
x^{2}+\left(\frac{5 y}{4}-\sqrt{|x|}\right)^{2}=1
$$

[^0]Example 3. The trajectory of a bird is given by the path

$$
\left.c(t)=\widetilde{\left(t^{2}\right.}, \tan (t), t^{4}+7 t\right)
$$

The temperature at each point of the space is measured by a function $f(x, y, z)=$ $x y^{2}+z$. Find the rate of change of temperature that the bird is experiencing at any given at time $t=0$.

The temperature at time t the bird is feeling is

$$
(f \circ c)(+)=\underbrace{(\underbrace{(c+1}_{\text {position }})}_{\text {temperature at position } c(+) \text {. }}
$$

$$
\begin{aligned}
D(f \circ c)(t) & \stackrel{\downarrow}{=} D f(c(t)) D c(t) \\
& =\left[\left.\left.\begin{array}{lll}
y^{2} 2 \times y & 1
\end{array}\right|_{|x 3|}\right|_{(x, y, z)=c(t)}\left[\begin{array}{c}
2 t \\
\sec ^{2} t \\
4 t^{3}+7
\end{array}\right]_{3 \times 1}\right. \\
& =\left[\begin{array}{lll}
\tan ^{2} t & 2 t^{2} \operatorname{tant} & 1
\end{array}\right]\left[\begin{array}{c}
2 t \\
\sec ^{2} t \\
4 t^{3}+7
\end{array}\right]^{2} \\
D\left(f_{0} c\right)(0) & =\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
1 \\
7
\end{array}\right] \\
& =17
\end{aligned}
$$

\checkmark Orienting curves

For example, given a curve C (parabola) from point $p=(-1,1)$ to $q=(2,4)$. Let C be parametrized by the function

$$
c(t)=\left(t, t^{2}\right)
$$

for $-1 \leq t \leq 2$. It has unit tangent vector

$$
T=\frac{c^{\prime}(t)}{\left\|c^{\prime}(t)\right\|}=\frac{\langle 1,2 t\rangle}{\sqrt{1+4 t^{2}}}
$$

We could also parametrize the curve C "backward", that is, going from q to p. Thus,

$$
\tilde{c}(s)=\left(1-s,(1-s)^{2}\right)
$$

for $-1 \leq s \leq 2$.
Its unit tangent vector is

$$
T=\frac{\tilde{c}^{\prime}(s)}{\left\|\tilde{c}^{\prime}(s)\right\|}=\frac{\langle-1,-2(1-s)\rangle}{\sqrt{1+4(1-s)^{2}}}
$$

2.6 Gradients and Directional Derivatives

Motivation:

Let the function $f(x, y)$ be the height of a mountain at each point $\mathbf{x}=(x, y)$.
 of you will depend on the direction you are facing.

Recall that the partial derivatives of f will give:

- the slope $\frac{\partial f}{\partial x}$ in the positive x direction;
- the slope $\frac{\partial f}{\partial y}$ in the positive y direction.

To generalize the partial derivatives to calculate the slope in any direction. This is called the Directional Derivatives.

We formalize this concept as follows:
If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$, the directional derivative of f at the point \mathbf{a} in the direction \mathbf{v} is

$$
\mathbf{D}_{\mathbf{v}} f(\mathbf{a})=\lim _{h \rightarrow 0} \frac{f(\mathbf{a}+h \mathbf{v})-f(\mathbf{a})}{h}
$$

Think: $\left\{\begin{array}{l}\text { a position } \\ v: \text { travel directives. }\end{array}\right.$
if this limit exists. Note that we usually let \mathbf{v} to be anitvector!
Ex: vector $\omega=\langle 1,2,3\rangle$.

$$
\text { unit vector } \frac{w}{\|w\|}=\frac{\langle 1,2,3)}{\sqrt[3]{14}}
$$

\checkmark Note that $\boldsymbol{D}_{\boldsymbol{v}} f(\boldsymbol{a})$ is a number, not a matrix. $\boldsymbol{D}_{\boldsymbol{v}} f(\boldsymbol{a})$ is the slope of $f(x, y)$ when standing at the point \boldsymbol{a} and facing the direction \boldsymbol{v}.

We denote

$$
\mathbf{D}_{\mathbf{v}} f(x)=\nabla f(x) \cdot \mathbf{v}
$$

Recall that Gradients in \mathbb{R}^{3}
If $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{1}$, the gradient of f,

$$
\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle
$$

We also denote it by $\operatorname{grad} f$.

Example 1. $f(x, y, z)=x^{2}+x y+3 z$. Find the rate of change for f in the direction $w=\langle 1,2,1\rangle$ at point $(1,0,0)$.

Note that it is the same as asking the directional derivative of f at point $(1,0,0)$ along the vector w.

$$
\begin{aligned}
& D_{w} f(x, y, z)=\nabla f(x, y, z) \cdot \frac{w}{\|w\|} . \\
& \nabla f=\langle 2 x+y, x, 3\rangle \Rightarrow \nabla f(1,0,0)=\langle 2,1,3\rangle \\
& \begin{aligned}
& \frac{w}{\|w\|}=\frac{\langle 1,2,1\rangle}{\sqrt{1+4+1}}=\frac{\langle 1,2,1\rangle}{\sqrt{6}} \\
& D_{w} f(1,0,0)=\langle 2,1,3\rangle \cdot \frac{\langle 1,2,1\rangle}{\sqrt{6}} \\
&=\frac{7}{\sqrt{6}}=\frac{7 \sqrt{6}}{6} \cdot \$
\end{aligned}
\end{aligned}
$$

Fact. If $\nabla f(x) \neq 0$, then $\nabla f(x)$ points in the direction of the fastest increase of f.

Explanation: We know the rate of change of f in direction U (unit vector) is

$$
\begin{aligned}
D_{v} f & =\| f \cdot v . \\
& =\|\nabla f\|\|v\| \cos \theta \\
& =\|\nabla f\| \quad 1 \cos \theta
\end{aligned}
$$

The maximum vale of $D_{v} f$ is $\|\nabla f\|$ when $\theta=0$.

Fact. If $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{1}$ has continuous partial derivatives. Suppose that $\left(x_{0}, y_{0}, z_{0}\right)$ lie on the level surface $f(x, y, z)=c$ for some constant c. Then $\nabla f\left(x_{0}, y_{0}, z_{0}\right)$ is normal to the level surface.

EX: $f(x, y, z)=z+x^{2}+y^{2}$.
Consider level surface (set) $f(x, y, z)=10$. Then

$$
z=10-x^{2}-y^{2}
$$

§ Tangent planes to level surfaces
The tangent plane of the level surface $f(x, y, z)=c(c$ is constant) at point $\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
\nabla f\left(x_{0}, y_{0}, z_{0}\right) \cdot\left(x-x_{0}, y-y_{0}, z-z_{0}\right)=0
$$

if $\nabla f\left(x_{0}, y_{0}, z_{0}\right) \neq 0$.
\checkmark Note that $\nabla f\left(x_{0}, y_{0}, z_{0}\right)$ is the "normal vector" to the tangent plane of the surface " $f=$ constant" at $\left(x_{0}, y_{0}, z_{0}\right)$.

Example 2. Find the equation of the plane tangent to the surface

$$
3 x y+10 e^{-y^{2}}=-z^{2} y+e^{100} 10
$$

at the point $(2,0,1)$.
Consider $f(x, y, z)=3 x y+10 e^{-y^{2}}+z^{2} y$.

$$
\begin{aligned}
& f(x, y, z)=10 \\
& \nabla f= \\
& \nabla f\left(2 y, 3 x-20 y e^{-y^{2}+z^{2},} 2 z y\right\rangle \\
& \nabla f(2,0,1)=\langle 0,6-0+1,0\rangle \\
&=\langle 0,1,0\rangle \text { normal vector }
\end{aligned}
$$

Tangent plane is

$$
\begin{aligned}
& \nabla f(2,0,1) \cdot(x-2, y-0, z-1)=0 \\
& \langle 0,7,0\rangle \cdot(x-2, y, z-1)=0
\end{aligned}
$$

$=$)

position pressure.
Example 3. Let $A\left(\underset{x, y, z}{1-x^{2}-e^{y} z}\right.$ is the atmospheric pressure at position (x, y, z). If you were at position $(2,0,1)$, find the direction that you would need to move in order to decrease the atmospheric pressure asap. Write the answer in the form of a unit vector.

$$
\begin{aligned}
& \nabla A=\left\langle-2 x,-e^{y} z,-e^{y}\right\rangle \\
& \nabla A(2,0,1)=\langle-4,-1,-1\rangle \\
&-\nabla A(2,0,1)=\langle 4,1,1\rangle \\
& \frac{\langle 4,1,1\rangle}{11\langle 4,1,1\rangle \|}=\frac{\langle 4,1,1\rangle}{\sqrt{18}} \\
&=\frac{\langle 4,1,1\rangle}{3 \sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} \\
&=\left\langle\langle 4,1,1\rangle \cdot \frac{\sqrt{2}}{6}\right. \\
&=\left\langle\frac{2}{3} \sqrt{2}, \frac{\sqrt{2}}{6}, \frac{\sqrt{2}}{6}\right\rangle
\end{aligned}
$$

[^0]: ${ }^{1}$ This picture is created by Mathematica. It consists of 4 different paths.

