Quick Reivew from last week

- The velocity of the path $c(t)$ is $c^{\prime}(t)$. The speed of the path is $\left\|c^{\prime}(t)\right\|$.
- Tangent line to a path at point $c\left(t_{0}\right)$ is

$$
l(t)=c\left(t_{0}\right)+\left(t-t_{0}\right) c^{\prime}\left(t_{0}\right)
$$

- $\mathbf{D}(f g)\left(x_{0}\right)=g\left(x_{0}\right) \mathbf{D} f\left(x_{0}\right)+f\left(x_{0}\right) \mathbf{D} g\left(x_{0}\right)$
- $\mathbf{D}\left(\frac{f}{g}\right)\left(x_{0}\right)=\frac{g\left(x_{0}\right) \mathbf{D} f\left(x_{0}\right)-f\left(x_{0}\right) \mathbf{D} g\left(x_{0}\right)}{\left[g\left(x_{0}\right)\right]^{2}}$
- $\mathbf{D}(f \circ g)\left(x_{0}\right)=\mathbf{D} f\left(g\left(x_{0}\right)\right) \mathbf{D} g\left(x_{0}\right)$
- Example:

Suppose $c(t)=(x(t), y(t), z(t))$ is a path and $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{1}$. Then

$$
\mathbf{D}(f \circ c)(t)=\mathbf{D} f(c(t)) \mathbf{D} c(t)
$$

or

$$
\mathbf{D}(f \circ c)(t)=\nabla f(c(t)) \cdot c^{\prime}(t)
$$

- Directional Derivatives $\mathbf{D}_{\mathbf{v}} f(x)=\nabla f(x) \cdot \underline{\mathbf{v}}$ unit vector
- If $\nabla f(x) \neq 0$, then $\nabla f(x)$ points in the direction of the fastest increase of f.
- The tangent plane of the level surface $f(x, y, z)=c(c$ is constant $)$ at point $\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
\nabla f\left(x_{0}, y_{0}, z_{0}\right) \cdot\left(x-x_{0}, y-y_{0}, z-z_{0}\right)=0
$$

if $\nabla f\left(x_{0}, y_{0}, z_{0}\right) \neq 0$.

Quiz $3: 5.1 .-5.3$.
5.1-5.2 Double integrals
$f(x, y)$
Consider a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}$ defined on a rectangle $R=[a, b] \times[c, d]$ (that is, $a \leq x \leq b, c \leq y \leq d)$.

Divide $[a, b]$ and $[c, d]$ into n equal subintervals.

area of $R_{i j}=\Delta x \Delta y=\left(\frac{p-a}{n}\right)\left(\frac{d-c}{n}\right)$
There are n^{2} subrectangles $R_{i j}$ in R. We define

$$
=\operatorname{aren}\left(R_{i j}\right) \cdot f\left(x_{i j}-y_{i j}\right) .
$$

Here ($x_{i j}, y_{i j}$) is in $R_{i j}$

$$
\begin{aligned}
& \iint_{R} f(x, y) d A \\
= & \iint_{R} f(x, y) d x d y \quad \text { area of } R_{i j} . \\
= & \lim _{n \rightarrow \infty} \sum_{i, j=1}^{n} \underbrace{f\left(x_{i j}, y_{i j}\right)}_{\text {height of }} \overbrace{\Delta x \Delta y}^{\Delta y} \text { if the limit exists. }
\end{aligned}
$$

NoTE that if $f \geq 0$,
then $\iint_{R} f d A$ is the volume of the $3 D$ regor under ${ }^{R}$ the graph of $f(z=f(x, y))$
§How do we compute double integral of $f(x, y)$ over the domain R, that is, $\iint_{R} f d A$?

Recall that R is a rectangle with $a \leq x \leq b, c \leq y \leq d$.
Ans: By "Slice principle",

$$
\begin{aligned}
& \iint_{R} f(x, y) d A \\
= & \int_{a}^{b}\left[\int_{c}^{d} f(x, y) d y\right] d x
\end{aligned}
$$

$$
\begin{aligned}
& \iint_{R} f(x, y) d A \\
= & \int_{c}^{d}\left[\int_{a}^{b} f\left(x, y_{0}\right) d x\right] d y
\end{aligned}
$$

We we can switch \quad between these two orders as stated below.
[Fubini Theorem]
Fact. If f is continuous on $R=[a, b] \times[c, d]$, then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b}\left[\int_{c}^{d} f(x, y) d y\right] d x=\int_{c}^{d}\left[\int_{a}^{b} f(x, y) d x\right] d y
$$

Example 1. Evaluate the integral

$$
\iint_{R} x y e^{-x^{2}+y^{2}} d A
$$

$\underset{\text { where }}{\underset{\sim}{x}} \stackrel{\stackrel{y}{x}}{[0,1]} \times \stackrel{y}{[0,2]}$.

$$
\begin{aligned}
& \int_{0}^{2}\left[\int_{0}^{1} x y e^{-x^{2}+y^{2}} d x\right] d y \\
& \text { Take } y=1 \\
& \int x e^{-x^{2}+1} d x \\
& =\int_{0}^{2}\left[\int_{y^{2}}^{-1+y^{2}}-\frac{1}{2} y e^{u} d u\right] d y d u=-2 x d x \text {. } \\
& =\int_{0}^{2}\left(-\left.\frac{1}{2} y e^{u}\right|_{y^{2}} ^{-1+y^{2}}\right) d y \\
& =\int_{0}^{2}-\frac{1}{2} y \underbrace{e^{-1+y^{2}}}+\frac{1}{2} y e^{y^{2}} d y \\
& =-\frac{1}{4} e^{1+y^{2}}+\left.\frac{1}{4} e^{y^{2}}\right|_{0} ^{2} \\
& =\frac{1}{4} e^{4}-\frac{1}{4} e^{3}+\frac{1}{4} e^{-1}-\frac{1}{4} .
\end{aligned}
$$

Remark: If you compute $\int_{0}^{1} \int_{0}^{2} x y e^{-x^{2}+y^{2}} d y d x$, by Fubinis tho., you should have the same answer. \&

Example 2. Evaluate the integral

$$
\iint_{R} y e^{x y} d A
$$

where $R=[1,5] \times[0,2]$.

$$
\begin{aligned}
& \text { (1) } \int_{0}^{2} \int_{1}^{5} y e^{x y} d x d y \\
& =\int_{0}^{2}\left(\left.e^{x y}\right|_{1} ^{5}\right) d y \\
& =\int_{0}^{2}\left(e^{5 y}-e^{y}\right) d y \\
& =\frac{1}{5} e^{5 y}-\left.e^{y}\right|_{0} ^{2} \\
& = \\
& =\frac{1}{5} e^{10}-e^{2}+\frac{4}{5} .
\end{aligned}
$$

$$
\text { (2) } \begin{aligned}
& \int_{1_{0}^{5}} \int_{0}^{2} \underbrace{y}_{u} \underbrace{e^{x y}}_{d v} d y d x, \quad u=y \\
= & \int_{1}^{5}\left[\left.\frac{d}{y \frac{1}{x}} e^{x y}\right|_{0} ^{2}-\int_{0}^{2} \frac{1}{x} e^{x y} d y\right] d x \\
= & \int_{1}^{5}\left[\frac{2}{x} e^{2 x}-\int_{0}^{2} \frac{1}{x} e^{x y} d y\right] d x \\
= & \int_{1}^{5}\left(\frac{2}{x} e^{2 x}\right)-\left.\frac{1}{x^{2}} e^{x y}\right|_{0} ^{2} d x \\
= & \int_{1}^{5} \frac{2}{x} e^{2 x}-\frac{1}{x^{2}} e^{2}+\frac{1}{x^{2}} d x .
\end{aligned}
$$

$=$ the same answer.

