Math 2374 Spring 2018 - Week 6
(1) Triple integral

$$
\iiint_{W} f(x, y, z) d V
$$

In particular, if $f=1$, then $\iiint_{W} f(x, y, z) d V$ is the volume of the region W.
(2) idea: reduce a "triple" integral into a "double" integral.

Shadow method:
Imagine a sun is on z axes.

$$
\iiint_{W} f(x, y, z) d V=\iint_{\text {shadow }}\left(\int_{\operatorname{bottom}(x, y)}^{\operatorname{top}(x, y)} f(x, y, z) d z\right) d x d y
$$

$E X=W$ is bounded by cone $z=\sqrt{x^{2}+y^{2}}$
and upper sphere $z=\sqrt{1-x^{2}-y^{2}}$.
Find volume of W.

$$
\begin{aligned}
\sqrt{x^{2}+y^{2}} & =\sqrt{1-x^{2}-y^{2}} \\
x^{2}+y^{2} & =\frac{1}{2}
\end{aligned}
$$

$$
\int_{-\frac{1}{\sqrt{2}}}^{\sqrt{\sqrt{3}} \sqrt{\frac{1}{2}-x^{2}}} \int_{\sqrt{\frac{1}{2}-x^{2}}}^{\sqrt{1-x^{2}-y^{2}}} 1
$$

$1 d z d y d x$

Example 3. Evaluate

$$
\iiint_{R} x d V
$$

with R is the region enclosed by the planes $x=0, y=0$, and $z=2$ and the surface $z=x^{2}+y^{2}$ and lying in the quadrant $x \geq 0, y \geq 0$.
*Note that to plot the paraboloid $z=x^{2}+y^{2}$. One way is using the following code in Mathematic (see Lab 07 file):
$\mathrm{f}\left[\mathrm{r}_{-}\right.$, theta-$]=\left\{\mathrm{r} \operatorname{Cos}\left[\right.\right.$ theta], $\mathrm{r} \operatorname{Sin}\left[\right.$ theta], $\left.\mathrm{r}^{\wedge} 2\right\}$
ParametricPlot3D[f[r, theta], $\{r, 0,1\},\{$ theta, $0,2 \mathrm{Pi}\}]$
[Method 1] 怂 intersection.

$$
\begin{aligned}
& \text { Shadow } \\
& \int_{0}^{\sqrt{2}} \int_{0}^{\sqrt{2-x^{2}}} \int_{x^{2}+y^{2}}^{2} \\
& x d z d y d x=\int_{0}^{\sqrt{2}} \int_{0}^{\sqrt{2-x^{2}}} x\left(2-x^{2}-y^{2}\right) d y d x \\
& =\int_{0}^{\sqrt{2}} 2 x y-x^{3} y-\left.\frac{x}{3} y^{3}\right|_{0} ^{\sqrt{2-x^{2}}} d x \text {. } \\
& =\int_{0}^{\sqrt{2}} 2 x \sqrt{2-x^{2}}-x^{3} \sqrt{2-x^{2}}-\frac{x}{3}\left(2-x^{2}\right)^{3 / 2} d x \\
& \begin{array}{l}
u=2-x^{2} \\
d u=-2 x d x
\end{array}=-\left.\frac{2}{3}\left(2-x^{2}\right)^{\frac{3}{2}}\right|_{0} ^{\sqrt{2}}-\int_{0}^{\sqrt{2}} x^{3} \sqrt{2-x^{2}} d x+\frac{1}{3} \frac{1}{5}\left(2-x^{2}\right)^{\frac{5}{2}} \\
& \begin{aligned}
x^{2}=2-u & =7 \\
& =8 \sqrt{2} / 5 . \quad \sim \quad-\int(2-u) \sqrt{u}\left(-\frac{d u}{2}\right)+\sim
\end{aligned}
\end{aligned}
$$

[Method 2]

$$
z=x^{2}+y^{2}
$$

$$
x= \pm \sqrt{z-y^{2}}
$$

Take $x=\sqrt{z-y^{2}}$

$$
\begin{aligned}
& 0 \leq x \leq \sqrt{z-y^{2}} \\
& 0 \leq y \leq \sqrt{z} \\
& 0 \leq z \leq 2
\end{aligned}
$$

$$
\int_{0}^{2} \int_{0}^{\sqrt{z}} \int_{0}^{\sqrt{z-y^{2}}} x d x d y d z
$$

Example 4. Let region W be bounded by the elliptic paraboloids $y=5-4 x^{2}-z^{2}$ and $y=x^{2}+z^{2} / 4$. Set up the integral

$$
\iiint_{W} f(x, y, z) d V
$$

$$
\begin{gathered}
x^{2}+z^{2} / 4 \leqslant y \leqslant 5-4 x^{2}-z^{2} \\
\text { shadow } \\
\left.\left\lvert\, \begin{array}{l}
-1 \\
-\sqrt{4-4 x^{2}}
\end{array}\right.\right] z \leq \sqrt{4-4 x^{2}} . \\
\int_{-1}^{1} \int_{-\sqrt{4-4 x^{2}}}^{1-4 x^{2}} \int^{5}+4 x^{2}-z^{2} / 4
\end{gathered} f(x, y, z) d y d z d x .
$$

4.1, 4.2 Acceleration, Newton's Second Law, and Arc Length.

Recall:

- $c(t): \mathbb{R} \rightarrow \mathbb{R}^{n}$ is a parametrization of a curve. Suppose that

$$
c(t)=\left(x_{1}(t), x_{2}(t), \cdots, x_{n}(t)\right)
$$

Then

$$
\left.\begin{array}{c}
\\
\text { matrix } c \\
\text { of } \\
\text { partial } \\
\text { desinatiaes }
\end{array}\right]\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
\vdots \\
x_{n}^{\prime}(t)
\end{array}\right], \quad n \times 1 \text { matrix. }
$$

- It can be written in vector form

$$
c^{\prime}(t)=\left(x_{1}^{\prime}(t), x_{2}^{\prime}(t), \cdots, x_{n}^{\prime}(t)\right) .
$$

- $c^{\prime}(t)$ is velocity.
- $\left\|c^{\prime}(t)\right\|$ is speed.

Remark: How to find a parametrization for the straight-line path from the point $(1,2,3)$ to the point $(3,1,2)$.

$$
\begin{aligned}
& c(t)=(1,2,3)+t((3,1,2)-(1,2,3)) \\
& 0 \leq t \leq 1 \\
&(3,1,2) \\
& \text { end point. } \\
& c(0)=(1,2,3) \\
& c(1)=(3,1,2) .
\end{aligned}
$$

§Velocity, acceleration

- $v(t)=c^{\prime}(t)$ is the velocity of the curve.
- $a(t)=v^{\prime}(t)=c^{\prime \prime}(t)$ is the acceleration of the curve.

Example 1. If $a(t)=\langle 4 t, 7 \sin (t), 3\rangle$ with $v(0)=\langle 3,1,0\rangle$ and $c(0)=\langle 1,1,0\rangle$. Find $c(t)$. Find $v(t)$, antidernative of $a(t)$.

$$
\begin{aligned}
& v(t)=\left(2 t^{2}+c_{1},-7 \cos t+c_{2}, 3 t+c_{3}\right) . \\
& v(0)=\left(c_{1},-7+c_{2}, c_{3}\right) \\
& (11,1,0) \Rightarrow c_{1}=3, \quad c_{2}=8, \quad c_{3}=0 . \\
& v(t)=\left(2 t^{2}+3, \quad-7 \cos t+8,3 t\right)
\end{aligned}
$$

Find $c(t)$,

$$
\begin{aligned}
& c(t)=\left(\frac{2}{3} t^{3}+3 t+d_{1},-\eta \sin t+8 t+d_{1}, \quad \frac{3}{2} t^{2}+d_{3}\right) \\
& \left.c(0)=1 \quad d_{1}, d_{2}, d_{3}\right) \\
& \quad 1,1,0) \Rightarrow d_{1}=1, \quad d_{2}=1, \quad d_{3}=0 . \\
& c(1)=\left(\frac{2}{3} t^{3}+3 t+1,-\eta \sin t+8 t+1, \frac{3}{2} t^{2}\right)
\end{aligned}
$$

§Newtow's Second Law
If F is the force acting and m is the mass of the particle, then
(the force) $F=m a$,
where a is the acceleration.

$$
F(c(t))=m c^{\prime \prime}(t)
$$

$$
\begin{aligned}
\frac{\sqrt{m} \stackrel{a}{\longrightarrow}}{I / 1 / 1 /} & \\
F & =m a .
\end{aligned}
$$

Example 2. Suppose a particle of mass m moves along the path

$$
r(t)=\left\langle 71+5 t^{2}, \cos \left(e^{2 t}\right), \ln (t+1)\right\rangle
$$

Find the force acts on this particle at time $t>0$.

$$
\begin{aligned}
F & =m r^{\prime \prime}(t) \\
& =m\left(10,-\cos \left(e^{2 t}\right) 4\left(e^{2 t}\right)^{2}-4 \sin \left(e^{2 t}\right) e^{2 t}, \frac{-1}{(t+1)^{2}}\right)
\end{aligned}
$$

§Arc Length
If $c(t)=\langle x(t), y(y), z(t)\rangle$ is a parametrization of a curve in \mathbb{R}^{3}, then the length of the curve from t_{0} to t_{1} is

$$
\begin{aligned}
L & =\int_{t_{0}}^{t_{1}}\left\|c^{\prime}(t)\right\| d t \\
& =\int_{t_{0}}^{t_{1}} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}+\left[z^{\prime}(t)\right]^{2}} d t
\end{aligned}
$$

where L is also called arc length.
Example 3. Find (arc) length of the curve that is parametrized by

$$
c(t)=\left\langle\cos (t), \sin (t), 2 t^{3 / 2}\right\rangle
$$

$$
\begin{aligned}
0 \leq t \leq 11 . & \int_{0}^{1 \prime}\left\|c^{\prime}(t)\right\| d t . \\
= & \int_{0}^{11} \sqrt{\underbrace{\cos ^{2} t+\sin ^{2} t}_{\because}+9 t} d t . \\
= & \int_{0}^{11}(t)=\left(-\sin t, \cos t, 3 t^{\frac{1}{2}}\right) \\
= & \left.\left.\frac{1}{9} \frac{2}{3}(1+9 t)^{\frac{3}{5}}\right|_{0} ^{11} d t .\right) u=1+9 t . \\
= & 744
\end{aligned}
$$

