Math 2374 Spring 2018- Week 7

Quick Review from last week

Section 5.5:

(1) Triple integral
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In particular, if f =1, then [ [ fW f(z,y, z)dV is the volume of the region W.

(2) Shadow method:
Imagine a sun is on z axes.

top(z,y)
/// f(x,y,Z)dV—// / f(z,y,2)dz | dedy.
w shadow bottom(z,y)

Section 4.1-4.2:

(1) Suppose c(t) is the path of an object. Then v(t) = ¢/(t) is its velocity and a(t) = ¢”(¢) is the acceleration.
(2) F =ma.

(3) Arc length
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4.3, 4.4 Vector fields, Divergence, and Curl

A vector field in R? is a function F': R? — R? that assigns to each point in

R? a vector in R2. }
We can write the component functions of F' as follows: porr
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*Note that vector fields in three dimensions (R?), F': R3 — R?, can be similarly
defined.
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Example 1. F(a?,—\y) = (—1y, 1x). See also page 237 in textbook.
F(o,0) = (0,92)
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One can think such a vector field represents fluid flow in 2 dimensions. Thus
F(z,y) gives the velocity of a fluid at the position (z,y). We call F(z,y) the
velocity field of the fluid.





















































Example 2. F(z,y) = (3z,




§Gradients vector fields
Let f: R3 — R! the gradient of f is
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This is an example of vector field, it assigns a vector to each point (z,y, 2).

gDivergence and Curl

For a function f : R! — R', we can think < as an operator:
d
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Similarly, we can think V as an operator
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Definitions:
1. Divergence of a vector field F' is the dot product of V and F'.
More precisely, if F' = (Fy, Fy, F3), the divergence of F is the scalar field

V-F=dulF) = (5,3 2) (F,RR)= 2R +i0+%R

More generally, if F' = (Fy, Fy,--- , F,) is a vector field of R", the diver-

gence of F'is

V- F = A\v(l) :(59)(_'/ SQZ/ ~—,’37v\> '(F\, Fz, F"l)
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2. Curl of a vector field F' is the cross product of V and F' = (F1, F3, F3).
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Example 3. Let F = (2% + ey, zy, x + 2). Find divF and curlF.

v F=VF.
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§Physical Interpretations

Imagine F' is the velocity field of a fluid (or a gas). This can help understanding

properties of basic vector fields, such as divergence, V-, and curl, V x.

Example 4. Consider the vector field F = (%, ).
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Example 5. Consider the vector field F' = <_17 _Z>
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Conclusions:

(1) divFE" the rate of expansion per unit volume

o divF < 0, the fluid is compressing.

e divFE' > 0, the fluid is expanding.

WF=2F) +£3)
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§Physical Interpretations

Imagine F' is the velocity field of a fluid (or a gas). The curl F' captures the idea
of how a fluid (or a gas) may rotate.
(2) curlF:

e curll’ = 0, the paddle wheel does NOT spin.

If curl i = 0, we call the vector field F' is irrotational.

Example 6. See examples in math insight entitled “Subtleties about curl”.
Show V (x,y, z) = $2iy2(—yi+ xj) is irrotational when (x,y) # (0,0).
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Fact. We have the following two facts:

1 \ F

_ = 2 2 2

e Gradients are curl free: U v\c- Vx( J&’ ﬁd)h) o j:
¥

Vx(Vf)=0.| (f is a scalar valued function)
= < l',)/ O/ D>,

o Curls are divergence free:

div(curlF) =V - (V x F) =0. | (F is a vector valued function)
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§Flow lines
A flow line for a vector field F' is a path ¢(¢) such that

¢ (+) =F(a»)

C+)
d(t) = F(c(t)). “
0= i),
In other words, the tangent vector ¢/(t) of the curve coincides with the vector
field F'(c(t)). » 4 2
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Example 7. Show that c(t) = (rsin(t), rcos(t), €') is a flow line for the vector
ﬁ@ld F('CU) Y, Z) - (y7 —&, Z)
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7.1 Line integral of a scalar-valued function

In this section, we consider a scalar function f : R® — R! and a path
c(t) : [a,b] — R
Definition:
The line integral of a scalar-valued function f along the path ¢(t), a <t < b,

is defined to be
[ a5 - / Fle@)llc @z

Remark:

1. If we let f(z,y, 2) denote the mass density at (z,y, z) and suppose the image
of ¢(t) represents a wire, then

/fds—/f Nl )t

can be viewed as the total mass of the wire.

2 Tf f = 1, then
/fds-/ | (t)]|dt

J“\S = j ictoll 4.

is the arc length.









Example 1. Let f(x,y, z) = 2°+y*+2% and c(t) = (cos(?),

Find fcfds. o
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Example 2. If the path c(t) = (sin®(t), cos?(t)),0 < t < 7/2 represents a wire
with density at the point (z,y) given by f(x,y) = y grams per unit length.

Find the total mass of the wire.
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