Math 2374 Spring 2018- Week 7 Quick Review from last week

Section 5.5:
(1) Triple integral

$$
\iiint_{W} f(x, y, z) d V
$$

In particular, if $f=1$, then $\iiint_{W} f(x, y, z) d V$ is the volume of the region W.
(2) Shadow method:

Imagine a sun is on z axes.

$$
\iiint_{W} f(x, y, z) d V=\iint_{\text {shadow }}\left(\int_{\text {bottom }(x, y)}^{\operatorname{top}(x, y)} f(x, y, z) d z\right) d x d y
$$

Section 4.1-4.2:
(1) Suppose $c(t)$ is the path of an object. Then $v(t)=c^{\prime}(t)$ is its velocity and $a(t)=c^{\prime \prime}(t)$ is the acceleration.
(2) $F=m a$.
(3) Arc length

$$
\begin{aligned}
L & =\int_{a}^{b}\left\|c^{\prime}(t)\right\| d t \\
& =\int_{a}^{b} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}+\left[z^{\prime}(t)\right]^{2}} d t
\end{aligned}
$$

* Quiz 5: 4.1-4.4

4.3, 4.4 Vector fields, Divergence, and Curl

A vector field in \mathbb{R}^{2} is a function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that assigns to each point in \mathbb{R}^{2} a vector in \mathbb{R}^{2}.

We can write the component functions of F as follows:

$$
\overbrace{(x, y)}^{7}\left(F_{1}(x, y), F_{2}(x, y)\right) \cdot F(x, y)=\left\langle F_{1}(x, y), F_{2}(x, y)\right\rangle
$$

${ }^{*}$ Note that vector fields in three dimensions $\left(\mathbb{R}^{3}\right), F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, can be similarly defined.

Example 1. $F\left(\begin{array}{l}\text { posintion } \\ x, y) \\ \left\langle-\frac{1}{4} y, \frac{1}{4} x\right\rangle \\ \text { vector } \\ \text {. See also page } 237 \text { in textbook. }\end{array}\right.$

One can think such a vector field represents fluid flow in 2 dimensions. Thus $F(x, y)$ gives the velocity of a fluid at the position (x, y). We call $F(x, y)$ the velocity field of the fluid.

Example 2. $F(x, y)=\left\langle\frac{1}{4} x, \frac{1}{4} y\right\rangle$.

§Gradients vector fields

Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{1}$, the gradient of f is

$$
\nabla f(x, y, z)=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle
$$

This is an example of vector field, it assigns a vector to each point (x, y, z).

§Divergence and Curl

For a function $f: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$, we can think $\frac{d}{d x}$ as an operator:

$$
\frac{d}{d x} \underbrace{f}_{\text {input }}=\underbrace{f^{\prime}(x)}_{\text {output }}
$$

Similarly, we can think ∇ as an operator

$$
\nabla=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle
$$

$$
\begin{aligned}
& \nabla \underbrace{f}_{\text {input }}=\underbrace{\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z}}_{\text {output }} \mathbf{k}=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle \\
& \begin{array}{ll}
\text { "tabla " operator } \\
{ }^{-1} \text { Del" }
\end{array} \underline{\text { Recall }}: \\
& i=\langle 1,0,0\rangle \\
& j=\langle 0,1,0\rangle \\
& k=\langle 0,0,1\rangle,
\end{aligned}
$$

$$
\nabla \text { : called "tabla" operator }
$$

Definitions:

1. Divergence of a vector field F is the dot product of ∇ and F.

More precisely, if $F=\left\langle F_{1}, F_{2}, F_{3}\right\rangle$, the divergence of F is the scalar field

$$
\nabla \cdot F=\operatorname{div}(F)=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \cdot\left(F_{1}, F_{2}, F_{3}\right)=\frac{\partial}{\partial x} F_{1}+\frac{\partial}{\partial y} F_{2}+\frac{\partial}{\partial z} F_{3} .
$$

More generally, if $F=\left\langle F_{1}, F_{2}, \cdots, F_{n}\right\rangle$ is a vector field of \mathbb{R}^{n}, the divergence of F is

$$
\begin{aligned}
\nabla \cdot F & =d_{v}(F)=\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{n}}\right) \cdot\left(F_{1}, F_{2}, \ldots, F_{n}\right) \\
& =\frac{\partial}{\partial x_{1}} F_{1}+\frac{\partial}{\partial x_{2}} F_{2}+\cdots+\frac{\partial}{\partial x_{n}} F_{n} .
\end{aligned}
$$

- \quad. $F=d_{N}(F)$ is scular-valued.
- $\nabla \times F=\operatorname{cul}(\bar{F})$ is a veitor-valued

2. Curl of a vector field F is the cross product of ∇ and $F=\left\langle F_{1}, F_{2}, F_{3}\right\rangle$.

$$
\begin{aligned}
\nabla \times F=\operatorname{cur} \|(F) & =\left|\begin{array}{ccc}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{2 y} & \frac{\partial}{\partial z} \\
F_{1} & F_{2} & F_{3}
\end{array}\right| \\
& =\left\langle\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}, \frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}, \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right\rangle
\end{aligned}
$$

Example 3. Let $F=\left\langle x^{2}+e^{x} y, x y, x+z\right\rangle$. Find $\operatorname{div} F$ and curl F.

$$
\begin{aligned}
\operatorname{div} F & =\nabla \cdot F \\
& =\frac{\partial}{\partial x}\left(x^{2}+e^{x} y\right)+\frac{\partial}{\partial y}(x y)+\frac{\partial}{\partial z}(x+z) \\
& =2 x+e^{x} y+x+1=e^{x} y+3 x+1
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{cuv} \mid F & =\nabla \times F \\
& =\left|\begin{array}{ccc}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x^{2}+e^{x} y & x y & x+z
\end{array}\right| \\
& =\left\langle 0-0,0-1, y-e^{x}\right\rangle, \notin \mid
\end{aligned}
$$

§Physical Interpretations

Imagine F is the velocity field of a fluid (or a gas). This can help understanding properties of basic vector fields, such as divergence, $\nabla \cdot$, and curl, $\nabla \times$.

Example 4. Consider the vector field $F=\left\langle\frac{x}{4}, \frac{y}{4}\right\rangle$.

Example 5. Consider the vector field $F=\left\langle-\frac{x}{4},-\frac{y}{4}\right\rangle$.

$$
\operatorname{diN} F=-1 / 2<0 .
$$

Conclusions:
(1) $\operatorname{div} F$: the rate of expansion per unit volume

- $\operatorname{div} F<0$, the fluid is compressing.
- $\operatorname{div} F>0$, the fluid is expanding.
§Physical Interpretations
Imagine F is the velocity field of a fluid (or a gas). The curl F captures the idea of how a fluid (or a gas) may rotate.
(2) curl:
- $\operatorname{curl} F=0$, the paddle wheel does NOT spin.

If $\operatorname{curl} F=0$, we call the vector field F is irrotational.
Example 6. See examples in math insight entitled "Subtleties about curl". Show $V(x, y, z)=\frac{1}{x^{2}+y^{2}}(-y \boldsymbol{i}+x \boldsymbol{j})$ is irrotational when $(x, y) \neq(0,0)$.

(a)

(b)

$$
\left.\begin{array}{rl}
\mathrm{cul} \mid V(\nabla x V) & k \\
=\left|\begin{array}{ccc}
i & j & k \\
\frac{\partial}{\partial y} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{-y}{x^{2}+y^{2}} & \frac{x}{x^{2}+y^{2}} & 0
\end{array}\right| & =\left\langle 0-0, \frac{\partial}{\partial z}\left(\frac{-y}{x^{2}+y^{2}}\right)-0, \frac{\partial}{\partial x}\left(\frac{x}{x^{2}+y^{2}}\right)-\frac{\partial}{\partial y}\left(\frac{-y}{x^{2}+y^{2}}\right)\right\rangle \\
& =\left\langle 0,0, \frac{x^{2}+y^{2}-x(2 x)}{\left(x^{2}+y^{2}\right)^{2}}-\frac{-\left(x^{2}+y^{2}\right)+y(2 y)}{x^{2}+y^{2}}\right\rangle
\end{array}\right\rangle
$$

Fact. We have the following two facts:

- Gradients are curl free:

$$
\begin{aligned}
& \text { acts: } \\
& \nabla \times \nabla f=\nabla \times\left(f_{x}, f_{y}, f_{z}\right)=\left|\begin{array}{ccc}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{2 z} \\
t_{x} & f_{y} & t_{z}
\end{array}\right|
\end{aligned}
$$

$\nabla \times(\nabla f)=0 . \quad(f$ is a scalar valued function $)$

- Curls are divergence free:

$$
\begin{aligned}
& \operatorname{div}(\operatorname{curl} F)=\nabla \cdot(\nabla \times F)=0 . \quad \text { (F is a vector } \\
&=\left\langle F_{1}, F_{2}, F_{3}\right\rangle \\
& \nabla \times F \\
& \Rightarrow \nabla \cdot\left\langle\frac{\partial}{\partial y} F_{3}-\frac{\partial}{\partial z} F_{2}, \frac{\partial}{\partial z} F_{1}-\frac{\partial}{\partial x} F_{3}, \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right\rangle . \\
&\nabla \cdot F)=0 .
\end{aligned}
$$

(F is a vector valued function)
§Flow lines
A flow line for a vector field F is a path $c(t)$ such that

$$
c^{\prime}(t)=F(\underbrace{c(t)}_{\text {position }}) .
$$

In other words, the tangent vector $c^{\prime}(t)$ of the curve coincides with the vector field $F(c(t))$.
 field $F(x, y, z)=(y,-x, z)$.

$$
\begin{aligned}
& c^{\prime}(t)=\left\langle r \cos t,-\sin t, e^{t}\right\rangle \\
& F(c(t))=\left\langle r \cos t,-r \sin t, e^{t}\right\rangle
\end{aligned}
$$

Thus, $F(c(t))=c^{\prime}(t)$, it implies $c(t)$ is a flow line for F.
7.1 Line integral of a scalar-valued function

In this section, we consider a scalar function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{1}$ and a path $c(t):[a, b] \rightarrow \mathbb{R}^{3}$.

Definition:

The line integral of a scalar-valued function f along the path $c(t), a \leq t \leq b$, is defined to be

$$
\int_{c} f d s=\int_{a}^{b} f(c(t))\left\|c^{\prime}(t)\right\| d t
$$

Remark:

1. If we let $f(x, y, z)$ denote the mass density at (x, y, z) and suppose the image of $c(t)$ represents a wire, then

$$
\int_{c} f d s=\int_{a}^{b} \sqrt{f(c(t))}\left\|c^{\prime}(t)\right\| d t
$$

can be viewed as the total mass of the wire.
2. If $f=1$, then

$$
\int_{c} f d s=\int_{a}^{b}\left\|c^{\prime}(t)\right\| d t
$$

is the arc length.

$$
\int 1 d s=\int_{a}^{b}\left\|c^{\prime}(t)\right\| d t .
$$

Example 1. Let $f(x, y, z)=x^{2}+y^{2}+z^{2}$ and $c(t)=(\overbrace{\cos (t)}^{\cos ^{x}}, \frac{\prime, y}{\sin (t)},{ }_{t})^{z}, 0 \leq t \leq 2 \pi$. Find $\int_{c} f d s$.

$$
\begin{aligned}
\int_{c} f d s & =\int_{0}^{2 \pi} f\left(((t))\left\|c^{\prime}(t)\right\| d t\right. \\
& =\int_{0}^{2 \pi}(\underbrace{\left(\cos ^{2} t\right)+\sin ^{2} t}+t^{2})\|\langle-\sin t, \cos t, 1\rangle\| d t \\
& =\int_{0}^{2 \pi}\left(1+t^{2}\right) \sqrt{2} d t \\
& =2 \sqrt{2} \pi+\frac{8 \sqrt{2}}{3} \pi^{3}
\end{aligned}
$$

7

Example 2. If the path $c(t)=(\overbrace{\sin ^{2}(t)}^{x} \overbrace{\cos ^{2}(t)}^{1, y}, 0 \leq t \leq \pi / 2$ represents a wire with density at the point (x, y) given by $f(x, y)=y$ grams per unit length. Find the total mass of the wire.

$$
\begin{aligned}
\int_{c} f d s & =\int_{0} f\left((c t)\left\|c^{\prime}(t)\right\| d t\right. \\
& =\int_{0}^{\pi / 2} \cos ^{2} t\|\langle 2 \cos t \sin t, 2 \cos (t)(-\sin t)\rangle\| d t \\
& =\int_{0}^{\pi / 2} \cos ^{2} t \sqrt{8 \cos ^{2} t \sin ^{2} t} d t \\
& =\int_{0}^{\pi / 2} \cos ^{2} t \quad 2 \sqrt{2} \sin t \cos t d t \\
& =2 \sqrt{2} \int_{0}^{\pi / 2} \sin t \cos ^{3} t d t \quad u=\cos t . \\
& =\left.2 \sqrt{2}\left(-\frac{1}{4} \cos ^{4} t\right)\right|_{0} ^{\pi / 2} \\
& =3 \frac{\sqrt{2}}{2} \not \nRightarrow
\end{aligned}
$$

