Example 3. 1. Find the intersection of the plane $z=x$ and the cylinder $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$.


Recall:


$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}}=1 .
$$

$(x, y)=(a \cos \theta, a \sin \theta)$ $0 \leqslant \theta \leqslant 2 \pi$.

$$
c(\theta)=\left(\begin{array}{ccc}
2 \cos \theta, & 3 \sin \theta, & 2 \cos \theta \\
n_{x}^{\prime \prime} & y & y_{z}^{\prime \prime} \\
z
\end{array}\right) .
$$

2. Suppose the curve that is the intersection of the above two surfaces represents a wire with density at the point $(x, y, \mathcal{E})$ given by $f\left(x, y_{\lambda}\right)^{z}=y x+100$ grams per unit length. Set up the integral that represents the total mass of the wire.

$$
\begin{aligned}
{\text { Total mass }=\int_{c} f d s}^{f} & =\int f(c(\theta))\left\|c^{\prime}(\theta)\right\| d \theta \\
& =\int_{0}^{2 \pi}((00+2 \cos \theta(3 \sin \theta))\|(-2 \sin \theta, 3 \cos \theta,-2 \sin \theta)\| \\
& =\int_{0}^{2 \pi}(100+6 \cos \theta \sin \theta) \sqrt{8 \sin ^{2} \theta+9 \cos ^{2} \theta} d \theta .
\end{aligned}
$$

$\S 7.2$ Line integrals of a vector field
In this section, we consider the problem of integrating a vector field along a path.

Definition:
The line integral of a vector field $F$ along the curve $C$ that is parametrized by $c(t), a \leq t \leq b$, is defined to be

$$
\int_{C} F \cdot d \mathbf{s}=\int_{a}^{b} F(c(t)) \cdot c^{\prime}(t) d t
$$

Motivation: (Work done by force $F$ )
Recall : work $=$ Force. displacement.
Suppose a particle moves along a path $C(t), a \leq t \leq b$, This particle is expericing the force $F(x, y, z)$, at position $(x, y, z)$.

* on small piece, the work
is $\left(F \cdot \frac{c^{\prime}(t)}{\left\|c^{\prime}(t)\right\|}\right)\left\|c^{\prime}(t)\right\| \Delta t$


So the total work along $C$ by force $F$. $\frac{c^{\prime}(t)}{\left\|c^{\prime}(t)\right\|}$ $F$ is

$$
\int F \cdot c^{\prime}(t) d t=\int_{c} F \cdot d s
$$

Example 4. Let $F=\left\langle x^{2},-x y, z\right\rangle$. Suppose the curve $C$ is parametrized by $c(t)=(\underbrace{\sin (t)}_{x}, \underbrace{\cos (t)}_{y}, t), 0 \leq t \leq \pi$. Find $\int_{C} F \cdot d \boldsymbol{s}$.

$$
\begin{aligned}
\int_{C} F \cdot d, s & =\int_{0}^{\pi} F(c(t)) \cdot c^{\prime}(t) d t \\
& =\int_{0}^{\pi}\left(\sin ^{2} t,-\sin t \cos t, t\right) \cdot(\cos t,-\sin t, 1) d t \\
& =\int_{0}^{\pi}\left(\sin ^{2} t \cos t+\sin ^{2} t \cos t+t\right) d t \\
& =\int_{0}^{\pi}\left(2 \sin ^{2} t \cos t+t\right) d t \\
& =2 \frac{1}{3} \sin ^{3} t+\left.\frac{1}{2} t^{2}\right|_{0} ^{\pi}=\frac{1}{2} \pi^{2}
\end{aligned}
$$

娕
§Differential form
Let the path $c(t)=(x(t), y(t), z(t))$. We write

$$
F(x, y, z)=(P(x, y, z), Q(x, y, z), R(x, y, z))
$$

and also write $d \mathbf{s}$ as the differential form

$$
d \mathbf{s}=(d x, d y, d z)
$$

then we can rewrite

$$
\begin{align*}
\int_{c} F \cdot d \mathbf{s} & =\int_{c}(P, Q, R) \cdot(d x, d y, d z) \\
& =\int_{c} P d x+Q d y+R d z .
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
\int_{c} F \cdot d s & =\int F(c(t)) \cdot c^{\prime}(t) d t . \\
& =\int(P(c(t)), Q(c(t)), R(c(t))) \cdot\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right) d t \\
& =\int P(c(t)) x^{\prime}(t)+Q(c(t)) y^{\prime}(t)+R(c(t)) z^{\prime}(t) d t .
\end{aligned}
$$

$$
\text { So }(1)=(2)
$$

Example 5. Evaluate the line integral

$$
\int_{C} x^{2} d x+x y d y+d z
$$

where the curve $C$ is parametrized by $c(t)=\left(t, t^{2}, 1\right)^{\prime, k}, 0 \leq t \leq 1$.
[method 1] Consider the vector field

$$
F=\left\langle x^{2}, x y, 1\right\rangle
$$

Then

$$
\begin{aligned}
& \int_{c} x^{2} d x+x y d y+d z=\int_{c} F \cdot d S 1 \\
& =\int_{c} F(c(t)) \cdot c^{\prime}(t) d t \\
& =\int_{0}^{1}\left(t^{2}, t^{3}, 1\right) \cdot(1,2 t, 0) d t \\
& =\int_{0}^{1} t^{2}+2 t^{4} d t=11 / 15 \cdot 4
\end{aligned}
$$

[metho di] $\int_{c} \frac{P}{x^{2}} d x+\stackrel{Q}{x y} d y+\AA_{1}^{R} d z$

$$
x(t)=t
$$

$$
=\int\left(t^{2} x^{\prime}(t)+t^{3} y^{\prime}(t)+1 z^{\prime}(t)\right) d t \begin{aligned}
& y(t)=t^{2} \\
& z(t)=1
\end{aligned}
$$

$$
=\int\left(t^{2} 1+t^{3}(2 t)+1 \cdot 0\right) d t
$$

$$
=\int_{0}^{1} t^{2}+2 t^{4} d t=11 / 15
$$

## §Reparametrization

Suppose that a curve $C$ is parametrized by

$$
c(t), a \leq t \leq b
$$

and also parametrized backward by

$$
c_{-}(t)=c(a+b-t) .
$$

A simple curve $C$ has two orientations (we discussed in section 2.4) that are determined by unit tangent vectors

$$
T=\frac{c^{\prime}(t)}{\left\|c^{\prime}(t)\right\|} \quad \text { and } \quad T^{-}=\frac{c_{-}^{\prime}(t)}{\left\|c_{-}^{\prime}(t)\right\|} \text { (that points in opposite direction.) }
$$



Thus,

1. Line integrals $\int_{c} F \cdot d \mathbf{s}$ (can be interpreted as Work done by force $F$ ):

$$
\int_{c_{-}} F \cdot d \mathbf{s}=-\int_{c} F \cdot d \mathbf{s}
$$


2. Path integrals $\int_{c} f d s=\int f(c(t))\left\|c^{\prime}(t)\right\| d t$ (can be interpreted as Total mass of wire):

$$
\int_{c_{-}} f d s=\int_{c} f d s
$$

Example 6. Consider a curve parametrized by

$$
c(t)=\left(t, t^{2}\right), 0 \leq t \leq 1
$$

Then the same curve with the opposite orientation is as follows:

$$
\tilde{c}(\tilde{t})=\left(1-\tilde{t},(1-\tilde{t})^{2}\right), 0 \leq \tilde{t} \leq 1
$$

Let $f(t)=8 t$ and vector field $F(x, y)=(x+y, x)$. Then
(1)

$$
\int_{c} F \cdot d \mathbf{s}=\int_{0}^{1}\left(t+t^{2}, t\right) \cdot(1,2 t) d t=3 / 2
$$

and

$$
\int_{\tilde{c}} F \cdot d \mathbf{s}=\int_{0}^{1}\left((1-\tilde{t})+(1-\tilde{t})^{2}, 1-\tilde{t}\right) \cdot(-1,2(1-\tilde{t})) d \tilde{t}=-3 / 2 .
$$

(2)

$$
\int_{c} f d s=\frac{2}{3}\left(5^{3 / 2}-1\right)
$$

and

$$
\int_{\tilde{c}} f d s=\frac{2}{3}\left(5^{3 / 2}-1\right) .
$$



