Math 2374 Spring 2018 - Week 8

Quick Review from previous lecture

Fact. (Green’s Theorem)
Let D be a simple region. Suppose P: D — R, Q : D — R are of class C'.

Then
/ de—l—@dy:// (8—Q—8—P> dxdy
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Fact. Let D be a simple region. Then

1
area(D) = 5 </ —ydx + xdy) .
oD



§Green’s Theorem with multiple boundary components
Green’s Theorem can also be applied to non-simple region or has holes in the region:

For example, we consider the annular D : r? < 2 + y? < R?, that has a hole
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Example 4. Let F(x,y) = (y,O). Find the circulation of a vector field F
around a unit disk with counterclockwise oriented boundary. Calculate it by
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using Green’s theorem.
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8.3 Conservative vector fields

Conservative vector fields implies that the work done by this conservative force
field does NOT depend on the path taken from point a to point b. We call it the
path-independent or conservative vector field.

§The gradient theorem for line integrals

+ Fouf

We call a vector field F'is a gradient vector field if F' = V f, for some E;((zalar
valued function f, that is, the vector field F' can be expressed as JF dg — Flew)
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Fact (Gradient theorem for line integrals). If c(t), a <t <b is a path, and f is
a scalar-valued function, then od et porit

[Feds= [vi-ds= ) - fieta). 1)

We also call this kind of vector field F' is conservative and call f is the po-
tential function of F'. (F =0¥f)

Remark:

e Recall in Cal. 1, we have known “Funda{gental theorem of Calculus (FTC)”:
_ Gl

b
/ G'(x)dx = G(b) — G(a).

Thus, (1) can be viewed as a generalization of FTC for more variables.

e If we can recognize the vector field F' in the line integral is actually a gradient,
then evaluation of the integral becomes much “easier” by using the gradient
theorem for line integrals (1).



5 How to determine if a Vector field F' is conservative?
2,E 3F arl.  CoTm wows

Fact. (Conservgtive vector ﬁelﬂ page 453 in textbook
Let F' be a@vector field defined in R3, except for possibly a finite number of
points. The following conditions on F' are equivalent:

(1) For any oriented simple closed curve C, [, F -ds=0.

C
(2) If two oriented simple curves Cp,Cy have same endpoints, ’ 2
/F-ds:/F-ds. &-&7
c Cs
(3) There exists a scalar function f such that F =V f.
(4) V x F = 0.
Remark:

e If a vector field F' satisfies one of (1) — (4), then F'is called “a conservative
field”.

e F'=V/f, then f is called “a potential function of F”.



§The planar case (R?)

Fact. (Conservative vector fields)

Let F be a C! vector field defined in R?. The following conditions on F are
equivalent:

(1) For any oriented simple closed curve C, [, F -ds=0.

(2) If two oriented simple curves Cy,Cy have same endpoints,

/ F-ds:/ F - ds.
@] &)

(3) There exists a scalar function f such that F =V f.
(4) V x F =0.

Remark:

e InR? if = P(x,y)i+ Q(x,y)j, then V x F = (g—f — %—];) k

e In R? the vector field F needs to be C*! everywhere, no exception points.



Example 1. Determine whether the following vector field is a conservative
vector field.

1. F=e"i+ ey

2. F = (2x cos(y))i — (z%sin(y))7. 4
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Example 2. Does the integral

/(562 — ze¥)dx + (y° — zze¥)dy + (2" — ve¥)dz :Lr F - ds
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depend on the specific path C' that we take?
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Example 3. Let F(x,y) = 2zye™, ). Let c¢(t) = (cos(t),t*+ 1), 0 <t < 1.
Is ' a conservative vector field? Find ch - ds.
I 4 ow f: i conor L,

|- ,@,,@ﬂ@))k:@mf,mﬁjk

= ok
= (o,0,2)
2. LWe can -:L/\Ai A ‘([uucTTD\/\
‘F ¢uch ‘H/“l‘t F: V]C
L fd + ) )
J(X: ij o~ _— 7£: ﬁé + éf/ﬂ— n,\u/ﬁ‘"‘im nL)(
R R0 dpedect 4 g
(j\omzj g(\j) = L‘“‘)-"O. 7/““:
y[(x,\ﬂ): g@xl_

&/ gymob@u’f thamom
[E Ao - 0t ds- Hew) = Fee)
(e, 2) = F(1,1)

f(l/
= ne” — 0 #



