Math 2374 Spring 2018 - Week 8

Quick Review from previous lecture

Fact. (Green's Theorem)

Let D be a simple region. Suppose $P:D\to\mathbb{R},\ Q:D\to\mathbb{R}$ are of class C^1 . Then

$$\int_{\partial D} P dx + Q dy = \int \int_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

Fact. Let D be a simple region. Then

$$area(D) = \frac{1}{2} \left(\int_{\partial D} -y dx + x dy \right).$$

§Green's Theorem with multiple boundary components

Green's Theorem can also be applied to non-simple region or has holes in the region:

For example, we consider the annular $D: r^2 \leq x^2 + y^2 \leq R^2$, that has a hole

in it.

Example 4. Let F(x,y) = (y,0). Find the circulation of a vector field F around a unit disk with counterclockwise oriented boundary. Calculate it by using Green's theorem.

Consider
$$F = (y, 0)$$
. $\frac{\partial Q}{\partial x} - \frac{\partial Y}{\partial y}$

$$\int_{\partial Q} F \cdot ds' = - \operatorname{area}(Q).$$

$$= - \pi(|||^2 - (\frac{1}{3})^2) = -(\frac{8}{9})\pi$$

8.3 Conservative vector fields

Conservative vector fields implies that the work done by this conservative force field does NOT depend on the path taken from point a to point b. We call it the path-independent or conservative vector field.

§The gradient theorem for line integrals

We call a vector field F is a **gradient vector field** if $F = \nabla f$, for some scalar valued function f, that is, the vector field F can be expressed as $\int_{-F(cas)}^{F} F \cdot ds = \int_{-F(cas)}^{F} f(cas) ds$

$$F = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right).$$

of FOR

Fact (Gradient theorem for line integrals). If c(t), $a \le t \le b$ is a path, and f is a scalar-valued function, then

nction, then
$$\int_{c} F \cdot d\mathbf{s} = \int_{c} \nabla f \cdot d\mathbf{s} = f(\overline{c(b)}) - f(c(a)). \tag{1}$$

We also call this kind of vector field F is **conservative** and call f is the **potential function of** F. $(\not\vdash = \not)$

Remark:

• Recall in Cal. 1, we have known "Fundamental theorem of Calculus (FTC)":

$$\int_{a}^{b} G'(x)dx = G(b) - G(a).$$

Thus, (1) can be viewed as a generalization of FTC for more variables.

• If we can recognize the vector field F in the line integral is actually a gradient, then evaluation of the integral becomes much "easier" by using the gradient theorem for line integrals (1).

§ How to determine if a vector field F is conservative? Fact. (Conservative vector fields) page 453 in textbook Let F be a (C^1) vector field defined in \mathbb{R}^3 , except for possibly a finite number of points. The following conditions on F are equivalent:

- (1) For any oriented simple closed curve C, $\int_C F \cdot d\mathbf{s} = 0$.
- (2) If two oriented simple curves C_1, C_2 have same endpoints,

$$\int_{C_1} F \cdot d\mathbf{s} = \int_{C_2} F \cdot d\mathbf{s}.$$

- (3) There exists a scalar function f such that $F = \nabla f$.
- (4) $\nabla \times F = 0$.

Remark:

- If a vector field F satisfies one of (1) (4), then F is called "a conservative field".
- $F = \nabla f$, then f is called "a potential function of F".

§The planar case (\mathbb{R}^2)

Fact. (Conservative vector fields)

Let F be a C^1 vector field defined in \mathbb{R}^2 . The following conditions on F are equivalent:

- (1) For any oriented simple closed curve C, $\int_C F \cdot d\mathbf{s} = 0$.
- (2) If two oriented simple curves C_1, C_2 have same endpoints,

$$\int_{C_1} F \cdot d\mathbf{s} = \int_{C_2} F \cdot d\mathbf{s}.$$

- (3) There exists a scalar function f such that $F = \nabla f$.
- (4) $\nabla \times F = 0$.

Remark:

- In \mathbb{R}^2 , if $F = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j}$, then $\nabla \times F = \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y}\right)\mathbf{k}$
- In \mathbb{R}^2 , the vector field F needs to be C^1 everywhere, no exception points.

Example 1. Determine whether the following vector field is a conservative vector field.

1.
$$F = e^{xy} i + e^{x+y} j$$

2.
$$F = (2x\cos(y))\mathbf{i} - (x^2\sin(y))\mathbf{j}$$
.

1. $\cos |F| = \begin{vmatrix} 1 & 1 & 1 & 1 \\ \frac{2}{2x} & \frac{2}{2y} & \frac{3}{2z} \\ e^{ky} & e^{k+y} & 0 \end{vmatrix} = \langle 0, 0, \frac{2}{2x}(e^{k+y}) - \frac{3}{2y}(e^{ky}) \rangle$

2. $e^{ky} = \begin{vmatrix} 1 & 1 & 1 \\ \frac{2}{2x} & \frac{2}{2y} & \frac{3}{2z} \\ e^{ky} & e^{k+y} & 0 \end{vmatrix} = \langle 0, 0, e^{k+y} - xe^{ky} \rangle$

2. $e^{ky} = \begin{vmatrix} 1 & 1 & 1 \\ \frac{2}{2x} & \frac{2}{2y} & \frac{3}{2z} \end{vmatrix} = \langle 0, 0, e^{k+y} - \frac{3}{2y}(e^{ky}) \rangle$

3. $e^{k} = \langle 0, 0, e^{k+y} - xe^{ky} \rangle$

4. $e^{k} = \langle 0, 0, 0 \rangle$

6. $e^{k} = \langle 0, 0, 0 \rangle$

6. $e^{k} = \langle 0, 0, 0 \rangle$

7. $e^{k} = \langle 0, 0, 0 \rangle$

8. $e^{k} = \langle 0, 0, 0 \rangle$

9. $e^{k} = \langle 0, 0, 0 \rangle$

1. $e^{k} = \langle 0, 0, 0 \rangle$

1. $e^{k} = \langle 0, 0, 0 \rangle$

1. $e^{k} = \langle 0, 0, 0 \rangle$

2. $e^{k} = \langle 0, 0, 0 \rangle$

3. $e^{k} = \langle 0, 0, 0 \rangle$

4. $e^{k} = \langle 0, 0, 0 \rangle$

4. $e^{k} = \langle 0, 0, 0 \rangle$

5. $e^{k} = \langle 0, 0, 0 \rangle$

6. $e^{k} = \langle 0, 0, 0 \rangle$

6. $e^{k} = \langle 0, 0, 0 \rangle$

7. $e^{k} = \langle 0, 0, 0 \rangle$

8. $e^{k} = \langle 0, 0, 0 \rangle$

9. $e^{k} = \langle 0, 0, 0 \rangle$

1. $e^{k} = \langle 0, 0, 0 \rangle$

2. $e^{k} = \langle 0, 0, 0 \rangle$

3. $e^{k} = \langle 0, 0, 0 \rangle$

4. $e^{k} = \langle 0, 0, 0 \rangle$

4. $e^{k} = \langle 0, 0, 0 \rangle$

5. $e^{k} = \langle 0, 0, 0 \rangle$

6. $e^{k} = \langle 0, 0, 0 \rangle$

6. $e^{k} = \langle 0, 0, 0 \rangle$

7. $e^{k} = \langle 0, 0, 0 \rangle$

8. $e^{k} = \langle 0, 0, 0 \rangle$

9. $e^{k} = \langle 0, 0, 0 \rangle$

1. $e^{k} = \langle 0, 0, 0 \rangle$

2. $e^{k} = \langle 0, 0, 0 \rangle$

3. $e^{k} = \langle 0, 0, 0 \rangle$

4. $e^{k} = \langle 0, 0, 0 \rangle$

5. $e^{k} = \langle 0, 0, 0 \rangle$

6. $e^{k} = \langle 0, 0, 0 \rangle$

7. $e^{k} = \langle 0, 0, 0 \rangle$

8. $e^{k} = \langle 0, 0, 0 \rangle$

9. $e^{k} = \langle 0, 0, 0 \rangle$

1. $e^{k} = \langle 0, 0, 0 \rangle$

2. $e^{k} = \langle 0, 0, 0 \rangle$

3. $e^{k} = \langle 0, 0, 0 \rangle$

4. $e^{k} = \langle 0, 0, 0 \rangle$

1. $e^{k} = \langle 0, 0, 0 \rangle$

2. $e^{k} = \langle 0, 0, 0 \rangle$

3. $e^{k} = \langle 0, 0, 0 \rangle$

4. $e^{k} = \langle 0, 0, 0 \rangle$

5. $e^{k} = \langle 0, 0, 0 \rangle$

6. $e^{k} = \langle 0, 0, 0 \rangle$

7. $e^{k} = \langle 0, 0, 0 \rangle$

8. $e^{k} = \langle 0, 0, 0 \rangle$

9. $e^{k} = \langle 0, 0, 0 \rangle$

Example 2. Does the integral

$$\int_C (\underline{x^2 - ze^y}) dx + (\underline{y^3 - xze^y}) dy + (\underline{z^4 - xe^y}) dz = \int \mathbf{F} \cdot \mathbf{ds}.$$

50, Fiz conservatile.

depend on the specific path C that we take?

Vertex field
$$F = (x^2 - ze^y, y^3 - xze^y, z^4 - xe^y)$$

Curl $F = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 3y & 3z \\ x^2 - ze^y & y^2 - xze^y & z^4 - xe^y \end{bmatrix}$

$$= (-xe^y + xe^y) - e^y + e^y - ze^y + ze^y$$

$$= (0, 0, 0)$$

$$= (0, 0, 0)$$
T is conservative, so the line integral is path. independent!

Example 3. Let $F(x,y) = (2xye^{x^2}, e^{x^2})$. Let $c(t) = (\cos(t), t^2 + 1), 0 \le t \le 1$.

Is F a conservative vector field? Find $\int_{c} F \cdot d\mathbf{s}$.

how F is conservative.

Curl
$$F = \left(\frac{3}{2x}e^{x^2} - \frac{3}{2y}(2xye^{x^2})\right) k = \left(2xe^{x^2} - 2xe^{x^2}\right) k$$

$$= 0 \text{ k}.$$

$$= (0,0,0)$$

$$f$$
 such that $F = \nabla f$.

$$f_x = 2xye^{x^2} \implies f = ye^x + g(y)$$
 independent of x

$$ty = e^{x^2}$$

$$ty = e^{x^2}$$
 => $f = ye^{x^2} + h(x)$ independent of y

$$f(x,y) = ye^{x^2}$$

$$\int F \cdot ds = \int \nabla f \cdot ds = f(c(n)) - f(c(n))$$

$$= f(\cos(1), 2) - f(1, 1)$$