Review:
§ Polar coordinate:

§ Cylindrical coordinate:

§ Spherical coordinate:

$$
\begin{array}{lc}
x=(\rho \sin \psi) \cos \theta, & \rho \geq 0 \\
y=(\rho \sin \phi) \sin \theta, & 0 \leq \theta<2 \pi \\
z=\rho \cos \phi, & 0 \leq \phi \leq \pi
\end{array}
$$

Example: Express $x^{2}+y^{2}-z^{2}=0$ in spherical coordinates.

$$
\begin{aligned}
& \rho^{2} \sin ^{2} \phi \cos ^{2} \theta+\underline{\rho^{2} \sin ^{2} \psi} \sin ^{2} \theta-\rho^{2} \cos ^{2} \phi=0 . \\
& \rho^{2} \sin ^{2} \phi(\underbrace{\cos ^{2} \theta+\sin ^{2} \theta}_{11})-\rho^{2} \cos ^{2} \phi=0 \\
& \rho^{2}\left(\sin ^{2} \phi-\cos ^{2} \phi\right)=0 \\
& \rho=0 \text { or } \sin ^{2} \phi=\cos ^{2} \phi \Rightarrow \sin \phi= \pm \cos \phi \quad 0 \leq \phi \leq \pi \text {. } \\
& \Rightarrow \phi=\pi / 4,3 \pi / 4
\end{aligned}
$$

6.1- 6.2 The Geometry of Maps from \mathbb{R}^{2} to \mathbb{R}^{2} and the change of variables theorem

We consider a function T that maps some region D^{*} in the (u, v) coordinates into the origin region D in (x, y) coordinates, that is,

$$
T: D^{*} \rightarrow D
$$

Then we denote

Example 4. Let $D^{*}=[0,1] \times[0,2 \pi]$, a rectangle in \mathbb{R}^{2}. Let $T(r, \theta)=$ $(r \cos \theta, r \sin \theta)$. What is the image set $D=T\left(D^{*}\right) ?^{1}$

Image of $T=D$ is a disk with radius 1 centered at (0,0)

§Images of Maps T.

Let T be the linear mapping of \mathbb{R}^{2} to \mathbb{R}^{2} given by

$$
T(\vec{x})=A \vec{x},
$$

where a point \vec{x} in \mathbb{R}^{2} expressed by

$$
\vec{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right],
$$

and a 2×2 matrix with $\operatorname{det}(A) \neq 0$ denoted by

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] .
$$

Then we can further express

$$
T(\vec{x})=A \vec{x}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
a x+b y \\
c x+d y
\end{array}\right] .
$$

Fact. T maps parallelograms into parallelograms and vertices into vertices.

On the other hand, if the image $T\left(D^{*}\right)$ is a parallelogram, then D^{*} must be a parallelogram.

Example 5. Let

$$
T(u, v)=\left(\frac{u+v}{2}, \frac{u-v}{2}\right)
$$

and $D^{*}=[-1,1] \times[-1,1]$ in \mathbb{R}^{2}. Find the image set $D=T\left(D^{*}\right)$. $(u, b) \cdot(u, v)$

$$
T(u, v)=\underbrace{\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right]_{2 \times 2}}_{A^{\prime \prime}}\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{c}
\frac{u+v}{2} \\
\frac{u-v}{2}
\end{array}\right]
$$

See NOTE 0126. $\operatorname{det} A<0$. Then T
Check $\operatorname{det} A=-\frac{1}{4}-\frac{1}{4}=-\frac{1}{2} \neq \begin{gathered}\text { reverse the orientation }\end{gathered}$
B. Fact, T mops paralleloyrame D^{*} into parallelogram D. and vertices of D^{*} onto vertices D.

$$
\begin{aligned}
& T(1,1)=(1,0) \\
& T(-1,1)=(0,-1) \\
& T(-1,-1)=(-1,0) \\
& T(1,-1)=(0,1)
\end{aligned}
$$

Example 6. Suppose the parallelogram D is bounded by the lines

$$
y=\frac{3}{2} x-4, y=\frac{3}{2} x+2, y=-2 x+1, y=-2 x+3
$$

Consider a map T that maps D^{*} into D and is defined by

$$
(x, y)=T(u, v)=(u+2 v,-2 u+3 v) .
$$

What is the region D^{*} ?

$$
=\left[\begin{array}{cc}
1 & 2 \\
-2 & 3
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

Find equations in terms of u, v.

$$
\begin{aligned}
& \left\{\begin{array}{l}
2 y=3 x-8 \\
2 y=3 x+4 \\
y=-2 x+1 \\
y=-2 x+3
\end{array} \quad \longrightarrow \begin{array}{l}
2(-2 u+3 v)=3(u+2 v)-8 \\
2(-2 u+3 v)=3(u+20)+4 \\
-24+3 v=-2(u(x+2 v)+1 \\
-24 x+3 v=-2(4+2 v)+3 .
\end{array}\right. \\
& \Rightarrow\left\{\begin{array}{l}
7 u=8 \\
7 u=-4 \\
7 v=1 \\
7 v=3
\end{array}\right. \\
& D^{*}=-\frac{4}{7} \leq u \leq \frac{8}{7} \\
& \eta \leq V \leq 3 / \eta . \quad{ }_{9} \nexists
\end{aligned}
$$

The Change of Variables Theorem

Recall: In Cal. 1, we did the follows computations:
we apply u-sub,

$$
\begin{aligned}
& \int_{0}^{\sqrt{\pi}} 2 x \sin \left(x^{2}\right) d x, \begin{array}{l}
u=x^{2} \\
d u=2 x d x
\end{array} \\
& \begin{aligned}
& \\
& u=x^{2}, d u=2 x d x=\int 2 x \sin \left(x^{2}\right)\left|\frac{d x}{d u}\right|
\end{aligned} d u \\
& \int_{0}^{\pi} \sin (u) d u,
\end{aligned}
$$

where $u=x^{2}$ maps $[0, \sqrt{\pi}]$ into $[0, \pi]$.

One motivation to study "Change of variables", is to transform the region of integration so that the resulting integral becomes easier to solve.

\S Change of variables for double integrals

Fact. Let D^{*} and D be elementary regions in \mathbb{R}^{2}. Let T maps D^{*} onto D is given by

$$
T(u, v)=(x(u, v), y(u, v)) .
$$

Then

$$
\iint_{D} f(x, y) d x d y=\iint_{D^{*}} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

Here the determinant of the derivative matrix

$$
\operatorname{det} \underset{\boldsymbol{D}}{\boldsymbol{D}}=\frac{\partial(x, y)}{\partial(u, v)}=\operatorname{det}\left[\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right],
$$

the Jacobian of T.

Example 7. Consider the map T which transforms polar coordinates into Cartesian coordinates. Then $T(r, \theta)=(r \cos \theta, r \sin \theta)$, that is,

$$
x=r \cos \theta, \quad y=r \sin \theta .
$$

What is Jacobian of T?

