

















































Example:









































































6.1- 6.2 The Geometry of Maps from R2 to R2 and the change of

variables theorem

We consider a function T that maps some region D∗ in the (u, v) coordinates into

the origin region D in (x, y) coordinates, that is,

T : D∗ → D

Then we denote

(x, y) = T (u, v).

Example 4. Let D∗ = [0, 1] × [0, 2π], a rectangle in R2. Let T (r, θ) =

(r cos θ, r sin θ). What is the image set D = T (D∗)?1

1If D∗ = [0, 1]× [0, π], then D is
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§Images of Maps T .

Let T be the linear mapping of R2 to R2 given by

T (~x) = A~x,

where a point ~x in R2 expressed by

~x =

[
x

y

]
,

and a 2× 2 matrix with det(A) 6= 0 denoted by

A =

[
a b

c d

]
.

Then we can further express

T (~x) = A~x =

[
a b

c d

] [
x

y

]
=

[
ax + by

cx + dy

]
.

Fact. T maps parallelograms into parallelograms and vertices into

vertices.

On the other hand, if the image T (D∗) is a parallelogram, then D∗ must

be a parallelogram.
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Example 5. Let

T (u, v) =

(
u + v

2
,
u− v

2

)
and D∗ = [−1, 1]× [−1, 1] in R2. Find the image set D = T (D∗).
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Example 6. Suppose the parallelogram D is bounded by the lines

y =
3

2
x− 4, y =

3

2
x + 2, y = −2x + 1, y = −2x + 3.

Consider a map T that maps D∗ into D and is defined by

(x, y) = T (u, v) = (u + 2v, −2u + 3v).

What is the region D∗?
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The Change of Variables Theorem

Recall: In Cal. 1, we did the follows computations:

∫ √π
0

2x sin(x2)dx,

we apply u-sub,

u = x2, du = 2xdx

so we have ∫ π

0

sin(u)du,

where u = x2 maps [0,
√
π] into [0, π].

One motivation to study “Change of variables”, is to transform the region of

integration so that the resulting integral becomes easier to solve.
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§Change of variables for double integrals

Fact. Let D∗ and D be elementary regions in R2. Let T maps D∗ onto D is

given by

T (u, v) = (x(u, v), y(u, v)).

Then ∫ ∫
D

f (x, y)dxdy =

∫ ∫
D∗
f (x(u, v), y(u, v))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ dudv.
Here the determinant of the derivative matrix

detDT =
∂(x, y)

∂(u, v)
= det

[
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]
,

the Jacobian of T .

Example 7. Consider the map T which transforms polar coordinates into

Cartesian coordinates. Then T (r, θ) = (r cos θ, r sin θ), that is,

x = r cos θ, y = r sin θ.

What is Jacobian of T?
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