Quick Review from previous lecture

$$
\iint_{D} f(x, y) d x d y=\iint_{D^{*}} f(x(u, v), y(u, v))|\operatorname{det} \mathbf{D} T(u, v)| d u d v
$$

Here the determinant of the derivative matrix

$$
\operatorname{det} \mathbf{D} T(u, v)=\frac{\partial(x, y)}{\partial(u, v)}=\operatorname{det}\left[\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right]
$$

the Jacobian of T. Thus, we also have the following expression

$$
\begin{aligned}
& \iint_{D} f(x, y) d x d y=\iint_{D^{*}} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v . \\
& \text { Polar covid. } \quad \iint d r d \theta . \\
& x=\operatorname{hos} \theta, y=\sin \theta .
\end{aligned}
$$

Here the determinant of the derivative matrix

$$
\operatorname{det} \mathbf{D} T(u, v, w)=\frac{\partial(x, y, z)}{\partial(u, v, w)}=\operatorname{det}\left[\begin{array}{lll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}
\end{array}\right]
$$

the Jacobian of T.

- Cyl imdrical coord. $x=\cos \theta, y=\sin \theta, \quad z=z$.

$$
\iiint_{\omega^{*}} \cdots \quad r d r d \theta d z .
$$

spherical cord. $x=\rho \sin \phi \cos \theta, \quad y=\rho \sin \phi \sin \theta, z=\rho \cos \phi$.

$$
\iiint_{\omega} 1^{\cdots} \quad \rho^{2} \sin \phi d \rho d \phi d \theta \text {. }
$$

Example 5. Evaluate

$$
\iiint_{W} \sqrt{x^{2}+y^{2}+z^{2}} e^{-\left(x^{2}+y^{2}+z^{2}\right)} d V
$$

where W is the solid region bounded by two sphere $x^{2}+y^{2}+z^{2}=4$ and $x^{2}+y^{2}+z^{2}=1$.

Using spherical coordinates,

$$
\begin{aligned}
& T(\rho, \theta, \phi)=(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \\
& 1 \leq \rho \leq 2, \quad 0 \leq \theta<2 \pi, \quad 0 \leq \phi \leq \pi
\end{aligned}
$$

By changing of variables,

$$
\begin{aligned}
& \iiint_{W} \sqrt{x^{2}+y^{2}+z^{2}} e^{-\left(x^{2}+y^{2}+z^{2}\right)} d V \\
& =\int_{0}^{\pi} \int_{0}^{2 \pi} \int_{1}^{2} \rho e^{-\rho^{2}} \rho^{2} \sin \phi d \rho d \theta d \phi \\
& =\int_{0}^{\pi} \int_{0}^{2 \pi}\left(\int_{1}^{2} \rho^{3} e^{-\rho^{2}} d \rho\right) \sin \phi d \theta d \phi \\
& \text { - } \int^{2} 3 \quad \rho^{2} \quad u=\rho^{2}, d u=2 \rho d \rho \\
& \left.\int_{1}^{2} \rho^{3} e^{-\rho^{2}} d \rho=\int^{2} u e^{-u} \frac{d u}{2}\right\} \text { Integration by } \\
& =\frac{8}{2}\left(-5 e^{-4}+2 e^{-1}\right) \text {. } \\
& \text { parts. }
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{\pi} \int_{0}^{2 \pi}\left(\frac{1}{2}\left(-5 e^{-4}+2 e^{-1}\right)\right) \sin \phi d \theta d \phi \\
& =2 \pi\left(\frac{1}{2}\left(-5 e^{-4}+2 e^{-1}\right)\right)\left(\int_{0}^{\pi} \sin \phi d \phi\right) \\
& =-2 \pi\left(5 e^{-4}-2 e^{-1}\right)
\end{aligned}
$$

Example 6. Evaluate this integral

$$
\int_{0}^{3} \int_{0}^{\sqrt{9-z^{2}}} \int_{0}^{\sqrt{9-z^{2}-y^{2}}}\left(10-\sqrt{x^{2}+y^{2}+z^{2}}\right) d x d y d z
$$

From problem,

$$
\begin{aligned}
& 0 \leq x \leq \sqrt{9-z^{2}-y^{2}} \cdot\left[x=\sqrt{9-z^{2}-y^{2}} \cdot \begin{array}{l}
x^{2}+z^{2}+y^{2}=9 \\
0 \leq y \leq \sqrt{9-z^{2}} \\
0 \leq z \leq 3 .
\end{array} .\right.
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\rho T(\rho, \theta, \phi) & =(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \\
D & \leq \rho \leq 3 \\
0 & \leq \phi \\
0 & \leq \theta \leq \pi / 2 \\
=\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{\pi}(10 & -\rho)\left(\rho^{2} \sin \phi\right) d \rho d \phi d \theta \\
= & \rho_{0}^{\pi / 2}\left(\left(\frac{10}{3} \rho^{3}-\frac{1}{4} \rho^{4}\right) \sin \phi\right. \\
0
\end{array}\right) d \phi d \theta
$$

$$
\begin{aligned}
& =\int_{0}^{\pi / 2} \int_{0}^{\pi / 2}\left(\left(90-\frac{1}{4} 81\right) \sin \phi\right) d \phi d \theta \\
& =\left.\int_{0}^{\pi / 2}\left(-90+\frac{81}{4}\right) \cos \phi\right|_{0} ^{\pi / 2} d \theta \\
& =\frac{279}{8} \pi \cdot \neq
\end{aligned}
$$

7.3 Parametrized Surfaces

In Sec. 7.1, 7.2, we have studied integrals along curves.
Now in Sec. 7.3-7.6, we are going to learn how to do integrals over surfaces. Let's begin by studying how to parametrize a surface.

Parametrized surfaces extends the idea of parametrized curves to vectorvalued functions of $\mathbf{2}$ variables.

Example:
$c(t)=\left(t, t^{2}\right)$ parametrizes a parabola $y=x^{2}$. Notice that $c(t)$ only has $\mathbf{1}$ variable.

Similar idea, to parametrize surfaces, we need a function of $\mathbf{2}$ variables.
(1) A unit sphere centered at the origin is parametrized by the function

$$
(x, y, z)=\Phi(\theta, \phi)=(\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi)
$$

where $0 \leq \theta<2 \pi$, and $0 \leq \phi \leq \pi$.(1)
upper sphere $z=\sqrt{1-x^{2}-y^{2}}$. $\Psi(\theta, \phi)=(\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \psi)$.

$$
0 \leq \psi \leq \pi, \quad 0 \leq \theta<2 \pi .
$$

(2) Parametrize the cone $z=\sqrt{x^{2}+y^{2}}$. (2) $\overline{4}(x, y)=\left(x, y, \sqrt{1-x^{2}-y^{2}}\right)$.
(1) syludrical coord.

$$
\begin{aligned}
& \Phi(r, \theta)=(r \cos \theta, r \sin \theta, r) \\
& 0 \leq r, \quad 0 \leq \theta<2 \pi .
\end{aligned}
$$

(2)

$$
\Phi(x, y)=\left(x, y, \sqrt{x^{2}+y^{2}}\right),-\infty<x, y<\infty .
$$

Example 1. Give a parametrization of the plane

$$
2 x+7 y-15 z-123=0
$$

with $A B C \neq 0$.

$$
\begin{aligned}
\Phi(x, y) & =\left(x, y, \frac{2 x+7 y-123}{15}\right), \\
\text { or } \Psi(x, z) & =\left(x, \frac{-2 x+15 z+123}{7}, z\right),
\end{aligned}
$$

Example 2. Give a parametrization of the surface $x^{2}+y^{2}=z$ with $0 \leq z \leq 25$.
(1) Cylindrical.

$$
\begin{aligned}
\text { 里 }(r, \theta)=\left(\gamma \cos \theta, \gamma \sin \theta, \gamma^{2}\right), & 0 \leq r \leq 5 \\
0 & \leq \theta<2 \pi .
\end{aligned}
$$

(2) $\Phi(x, y)=\left(x, y, x^{2}+y^{2}\right), 0 \leq x^{2}+y^{2} \leq 25$
** Check math insight for various Quadric surfaces in last section in Part 19**

§Tangent vectors to a parametrized surface

Fact. Suppose

$$
\Phi(u, v)=(x(u, v), y(u, v), z(u, v))
$$

is a parametrization of a surface S. Assume Φ is differentiable at $\left(u_{0}, v_{0}\right)$ from the domain.
(1) Fix $u=u_{0}$, then $\Phi\left(u_{0}, v\right)$ is a curve on S. The tangent vector to this curve at point $\Phi\left(u_{0}, v_{0}\right)$ is

$$
T_{v}:=\frac{\partial \Phi}{\partial v}\left(u_{0}, v_{0}\right)=\left\langle\frac{\partial x}{\partial v}\left(u_{0}, v_{0}\right), \frac{\partial y}{\partial v}\left(u_{0}, v_{0}\right), \frac{\partial z}{\partial v}\left(u_{0}, v_{0}\right)\right\rangle
$$

(2) Fix $v=v_{0}$, then $\Phi\left(u, v_{0}\right)$ is a curve on S. The tangent vector to this curve at point $\Phi\left(u_{0}, v_{0}\right)$ is

$$
T_{u}:=\frac{\partial \Phi}{\partial u}\left(u_{0}, v_{0}\right)=\left\langle\frac{\partial x}{\partial u}\left(u_{0}, v_{0}\right), \frac{\partial y}{\partial u}\left(u_{0}, v_{0}\right), \frac{\partial z}{\partial u}\left(u_{0}, v_{0}\right)\right\rangle
$$

$$
\Phi(u, v)=(x, y, z)
$$

surface

Remarks:

- $\frac{\partial \Phi}{\partial u}$ and $\frac{\partial \Phi}{\partial v}$ are tangent to curves on surface S.
- Thus, a unit normal vector to the surface S is

$$
\mathbf{n}=\frac{\frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v}}{\left\|\frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v}\right\|}
$$

Definition:

We call the surface S is an oriented surface if S is a two-sided surface with one side specified as the outside or positive side; the other side as the inside or negative side.
The orientation of a surface is given by the unit normal vector \mathbf{n}.

Remarks:

- If the unit normal $\mathbf{n}=(x, y, z)$ has positive z component $(z \geq 0)$, then we call \mathbf{n} is the upward-pointing normal on S.
- Möbius strip is NOT oriented surface since it only has one side. See page 402.

