Math 2374 Spring 2018 - Week 13

Quick Review from previous lecture

Let $\Phi: D \to \mathbb{R}^3$ be a parametrization of surface S.

• The integral of a real-valued function f(x, y, z) over a surface S is defined as

$$\int \int_{S} f(x, y, z) dS = \int \int_{D} f(\Phi(u, v)) \| \frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v} \| du dv.$$
(1)

In particular, let f(x, y, z) be the mass density function of the surface. Then the total mass of surface S is

$$\int \int_{S} f(x, y, z) dS$$

• The flux of fluid through the surface S is

$$Flux = \int \int_{S} F \cdot d\mathbf{S} = \int \int_{D} F(\Phi(u, v)) \cdot \left(\frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v}\right) \, du dv. \tag{2}$$

§Independence of Parametrization

Let $\Phi(u, v) = (x(u, v), y(u, v), z(u, v))$, be a parametrization of the oriented surface <u>S</u>.

We said the parametrization Φ is orientation-preserving(orientation-reversing) parametrization if the vectors $\left(\frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v}\right)$ points outside (inside) of the surface.

Example 3. Consider the cylinder
$$x^2 + y^2 = 9, 1 \le z \le 4$$
.
From $E \times 1$, $\underline{F}(0, \underline{z}) = (3\cos\theta, 3\sin\theta, \underline{z})$,
 $T_{\theta} = (-3\sin\theta, 3\cos\theta, 0)$
 $T_{\overline{z}} = (0, 0, 1)$
 $T_{\overline{z}} \times T_{\overline{z}} = (3\cos\theta, 3\sin\theta, 0)$
 $\underline{F}_{\overline{z}} = (2, \theta) = (3\cos\theta, 3\sin\theta, 0)$
 $\overline{F}_{\overline{z}} \times T_{\theta} = -(3\cos\theta, 3\sin\theta, 0)$

Fact. Let S be an oriented surface.

1. Let F be a continuous vector field defined on S. Then

• If Φ_1 and Φ_2 are two regular orientation-preserving parametrizations:

$$\int \int_{\Phi_1} F \cdot d\boldsymbol{S} = \int \int_{\Phi_2} F \cdot d\boldsymbol{S}$$

• If Φ_1 is orientation-preserving parametrization and Φ_2 is orientationreversing parametrization:

$$\int \int_{\Phi_1} F \cdot d\boldsymbol{S} = -\int \int_{\Phi_2} F \cdot d\boldsymbol{S}$$

2. If f is a real-valued function on S, and if Φ_1 and Φ_2 are parametrizations of S, then

$$\int \int_{\Phi_1} f dS = \int \int_{\Phi_2} f dS.$$

8.2 Stokes' Theorem

✓ Recall: "Green's theorem" applies only to 2-dimensional vector fields F
and 2-dimensional region D
Greater of F around C^{*}.

$$\int_{C} F \cdot ds = \iint_{D} microscopic circulation of F"dA$$

$$\frac{\text{Recall: Green's theorem: } F = \langle P(x,y), Q(x,y), O \rangle$$
C is the boundary of D, oriented counterclackuise.
microscopic circulation of F: Curl F · k, $(k = (O, O, I))$

$$\int_{C} F \cdot ds = \iint_{D} Curl F \cdot k dA = \iint_{D} \left(\frac{2Q}{2x} - \frac{2P}{2y}\right) dA$$

$$\frac{\langle O = O = D \\ O = O \\ O =$$

Stokes' theorem generalizes Green's theorem to **3-dimensions**.

Fact. (Stokes' Theorem) Let S be an oriented surface defined by a parametrization $\Phi: D \to S$, where D is a region in \mathbb{R}^2 to which Green's Theorem applies. Let C be the oriented boundary of S. Let F be a vector field on S. Then

$$\int_C F \cdot d\mathbf{s} = \int \int_S curl F \cdot d\mathbf{S}.$$

Remark: In other words, Stokes' theorem relates the line integral of a vector field around a simple closed curve C to a <u>surface integral</u> for which \overline{C} is surface's boundary.

For any surface S has **the same boundary** C, since

the total circulation
$$\int_C F \cdot d\mathbf{s}$$
 is equal to $\int \int_S \operatorname{curl} F \cdot d\mathbf{S}$,
their surface integrals $\int \int_S \operatorname{curl} F \cdot d\mathbf{S}$ must be the same.

Example: Let C be unit circle $x^2 + y^2 = 1$, oriented counterclockwise viewed from positive z-axis.

Surface
$$S_{1} = \chi^{2} + g^{2} \leq 1, \quad z = 0$$
, unit disk.
S, has C as its boundary.
Surface $S_{2} \equiv \chi^{2} + g^{2} + z^{2} \equiv 1, \quad z \geq 0$, upper sphere
Thus S_{1}, S_{2} have the same
boundary C.
NUTE that

$$\iint_{S_{1}} (\nabla \times F) \cdot dS' \xrightarrow{\text{Stokes}'} \int_{C} F \cdot ds$$

$$\iint_{S_{2}} (\nabla \times F) \cdot dS' \xrightarrow{\text{Stokes}'} \int_{C} F \cdot ds$$

$$\int_{S_{1}} (\nabla \times F) \cdot dS' \xrightarrow{\text{Stokes}'} \int_{C} F \cdot ds$$
Since right hand rides of the above 2 identifies
are the same, one has

$$\iint_{S_{1}} (\nabla \times F) \cdot dS' = \iint_{S_{2}} (\nabla \times F) \cdot dS'$$

Example 1. Let $F(x, y, z) = (\sin x - \frac{y^3}{3}, \cos y + \frac{x^3}{3}, xyz)$. Compute $\int_C F \cdot ds$, where C is the curve in which the cone $z^2 = x^2 + y^2$ intersects the plane z = 1, oriented counterclockwise when viewed from far out on the +z-axis.

() Compute directly by definition of the integral

$$z = 1, x' + y' = 1$$

$$\int F \cdot dS' = \int_{0}^{2\pi} F(crev) \cdot c'(r) dt$$

$$\Rightarrow It is not easy to compute.$$
(2) $F \cdot dS = \iint (\nabla_{2}F) \cdot dS'$
(3) $F \cdot dS = \iint (\nabla_{2}F) \cdot dS'$
(4) $F \cdot dS' = \int (\nabla_{2}F) \cdot dS'$
(5) $S : x^{2} + y^{2} \leq 1, z = 1.$
(6) $S : x^{2} + y^{2} \leq 1, z = 1.$
(7) $F \cdot dS = (coi0, coi0, roin0, 0)$

$$T_{0} = (coi0, coi0, roin0, 0)$$

$$T_{0} = (-rosn0, roi0, 0)$$

$$T_{0} = (-rosn0, roi0, 0)$$

$$T_{0} = (0, 0, Y), ponts upward.$$

$$\iint \nabla_{x}F = \int_{0}^{2\pi} \int_{0}^{1} (\nabla_{x}F) (E(r,0)) \cdot (T_{x} \times T_{0}) dr dO$$

$$= \int_{0}^{2\pi} \int_{0}^{1} (Y \circ i0, -rsin0, Y^{2}) \cdot (0, 0, Y) dr dO.$$

$$= \int_{0}^{2\pi} \int_{0}^{1} Y^{2} dr dO$$

$$= \int_{0}^{2\pi} \int_{0}^{1} Y^{2} dr dO$$