Math 2374 Spring 2018 - Week 14

Quick Review from last week

e Stokes’ Theorem:
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c S

where C' be the oriented boundary of S.
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8.4 Gauss’ Theorem

Suppose a vector field F' represents the flow of a fluid. Recall the divergence of
F cﬁfpa or V - F) represents the "expansion or compression” of the fluid. g=s
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“The total expansion of the fluid inside 3D region W equals f\f-z-

The divergence(Gauss) theorem says that
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“the total flux of th(e fluid out of the boundary of W”
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Definition:
Let W be an elementary region in R3. If the boundary of W is a surface made
up of a finite number of surfaces, then we call the boundary of W is a closed

surface.

Example 1. 1. Cube is an elementary region and its boundary is composed

of 6 rectangles. /
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2. Sphere is the boundary of a solid ball.
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Definition: Orientations in a closed surface:

e Outward pointing normal: normal points outwards. g

e ——

/
e Inward pointing normal: normal points inwards. hovnal  poanits Muwards

Fact. (Gauss’ Theorem) or Divergence Theorem.
Let W be an elementary region in R? whose boundary OW, oriented with
outward pointing normal. Let F' be a smooth vector field on W. Then
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Example 2. Let
F(xayVZ) - (QI — % xzya _xZQ)'
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where W is the unit cube [0, 1] x x [0, 1], m is the outward pointing normal.

Fvaluate

Remark: If we compute [ |, o I dS directly by using the definition of surface
integral, then we have to parametrize 6 boundary of W and compute them indi-
vidually. Thus, for this problem, it is “much” easier to compute [ [, F' - dS by
using Gauss’ Theorem (Divergence Theorem) than by computing it directly.
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Example 3. Consider a solid W bounded by z = 1 and z = x> + y?, that is,
W is described by 2> +y? < 2 < 1. Let

F(r,y,2) = 2z + 2%, 2° + 27, cos(x?) + sin(y’) — 27).
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where Sois the boundary of the solid W, m is the butward pointing normal.\
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Example 4. Let ' = (zy?, 2%y, y) and S is the surface of the cylinder
2? + y*> = 1, bounded by the planes z = 1 and z = x — 2, and including the
portions of z = 1 and z = v —2 in the region x> +y* < 1 with outward pointing

normal. Evaluate
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