Math 2374 Spring 2018 - Week 14
 Quick Review from last week

- Stokes' Theorem:

$$
\int_{C} F \cdot d \mathbf{s}=\iint_{S} \operatorname{curl} F \cdot d \mathbf{S}
$$

where C be the oriented boundary of S.

EX: $\quad x=y^{2}+z^{2}, \quad x \leq 1$, normal is pointing $-x$ dircitivn.

8.4 Gauss' Theorem

Suppose a vector field F represents the flow of a fluid. Recall the divergence of $F(\operatorname{div} F$ or $\nabla \cdot F)$ represents the "expansion or compression" of the fluid. ga s

$$
\operatorname{div}>0 \quad \operatorname{dvF}<0 \text {. }
$$

The divergence(Gauss) theorem says that
"The total expansion of the fluid inside 3D region W " equals

$$
\iiint_{W} d N F d V
$$

"the total flux of the fluid out of the boundary of W "

$$
\iint_{\partial w} F \cdot d S \quad \partial w
$$

Definition:

Let W be an elementary region in \mathbb{R}^{3}. If the boundary of W is a surface made up of a finite number of surfaces, then we call the boundary of W is a closed surface.

Example 1. 1. Cube is an elementary region and its boundary is composed of 6 rectangles.

2. Sphere is the boundary of a solid ball.

> EX:

$$
\begin{aligned}
& \text { ball } x^{2}+y^{2}+z^{2} \leq 4 \\
& \text { sphere } \quad x^{2}+y^{2}+z^{2}=4
\end{aligned}
$$

Definition: Orientations in a closed surface:

- Outward pointing normal: normal points outwards.

Fact. (Gauss' Theorem) or Divergence Theorem.
Let W be an elementary region in \mathbb{R}^{3} whose boundary ∂W, oriented with outward pointing normal. Let F be a smooth vector field on W. Then

$$
\begin{equation*}
\iint_{\partial W} F \cdot d \boldsymbol{S}=\iiint_{W}(\nabla \cdot F) d V \tag{1}
\end{equation*}
$$

Example 2. Let

$$
F(x, y, z)=\left(2 x-z, x^{2} y,-x z^{2}\right)
$$

Evaluate

$$
\iint_{\partial W} F \cdot d \boldsymbol{S}
$$

where W is the unit cube $[0,1] \times[0,1] \times[0,1]$, \boldsymbol{n} is the outward pointing normal.
Remark: If we compute $\iint_{\partial W} F \cdot d \mathbf{S}$ directly by using the definition of surface integral, then we have to parametrize 6 boundary of W and compute them individually. Thus, for this problem, it is "much" easier to compute $\iint_{\partial W} F \cdot d \mathbf{S}$ by using Gauss' Theorem (Divergence Theorem) than by computing it directly.
(1)

$$
\begin{array}{r}
\quad \iint_{\partial W} F \cdot d S=\iint_{E_{1}} F \cdot d S+\ldots+\iint_{E_{6}} F \cdot d S^{\prime} \\
E_{1}, \ldots, E_{0} \text { we } 6 \text { boundary of } W .
\end{array}
$$

(2) Apply Gauss' theorem,

$$
\begin{aligned}
\iint_{\partial w} F \cdot d S & =\iiint_{W}(\nabla \cdot F) d V \\
& =\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}(\nabla \cdot F) d x d y d z \\
\nabla \cdot F=2 & +x^{2}-2 \times z \\
& =\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(2+x^{2}-2 \times z\right) d x d y d z \\
& =11 / F
\end{aligned}
$$

Example 3. Consider a solid W bounded by $z=1$ and $z=x^{2}+y^{2}$, that is, W is described by $x^{2}+y^{2} \leq z \leq 1$. Let

$$
F(x, y, z)=\left(2 x+z^{2}, x^{5}+z^{7}, \cos \left(x^{2}\right)+\sin \left(y^{3}\right)-z^{2}\right)
$$

Evaluate

$$
\iint_{S} F \cdot d \boldsymbol{S}
$$

where Sops $^{\text {s. }}$ the boundary of the solid W, \boldsymbol{n} is the outward pointing normal.

$$
\begin{aligned}
& \text { By Gauss' Theorem, } \\
& \iint_{S} F \cdot d S^{\prime}=\iiint_{W}(D \cdot F) d v
\end{aligned}
$$

$$
\begin{aligned}
& \nabla \cdot F=2+0+(-2 z) \\
&=\iiint_{W}(2-2 z) d v
\end{aligned}
$$

cylindrical coord.

$$
\left\{\begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta \\
z=z \\
r_{11}^{2}=\sqrt{x^{2}+y^{2} \leq z} \leq 1 \\
0 \leq r \leq 1 \\
0 \leq \theta<2 \pi
\end{array}\right.
$$

$$
\begin{aligned}
& =\int_{0}^{2 \pi} \int_{0}^{1} \int_{\gamma^{2}}^{1}(2-2 z) d z r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1} 2 z-\left.z^{2}\right|_{\gamma^{2}} ^{1} r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\left[(2-1)-\left(2 \gamma^{2}-\gamma^{4}\right)\right] r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\left(\gamma-2 r^{3}+\gamma^{5}\right) d r d \theta \\
& =\frac{\pi / 3 .}{3}
\end{aligned}
$$

Example 4. Let $F=\left(x y^{2}, x^{2} y, y\right)$ and S is the surface of the cylinder $x^{2}+y^{2}=1$, bounded by the planes $z=1$ and $z=x-2$, and including the portions of $z=1$ and $z=x-2$ in the region $x^{2}+y^{2} \leq 1$ with outward pointing normal. Evaluate
${ }_{S}^{\text {Sis closed }}$ surface $\iint_{S} F \cdot d \boldsymbol{S}$.
$z=1$

Cyl lindirical cooed.

$$
\begin{aligned}
& \left\{\begin{array}{l}
x=r \cos \theta \\
y=\sin \theta \\
z=z \\
0 \leqslant \gamma \leqslant 1 \\
0 \leqslant \theta<2 \pi \\
x-2 \leqslant z \leqslant 1 \\
8 \cos \theta-2
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { By Gauss - theorem, } \\
& \iint F \cdot d S=\iiint_{W}(T \cdot F) d V \\
&=\iint_{w}\left(x^{2}+y^{2}\right) d V \\
& r d . \\
&=\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{1} r^{2} \cos \theta-2 \\
&=\int_{0}^{2 \pi} \int_{0}^{1} r^{3}\left(\left.z\right|_{r \cos \theta-2}\right) d z r d r d \theta \\
&=\int_{0}^{2 \pi} \int_{0}^{1} r^{3}(1-r \cos \theta+2) d r d \theta \\
&=\int_{0}^{22} \int_{0}^{1} 3 r^{3}-r^{4} \cos \theta d r d \theta \\
&=\int_{0}^{2 \pi} \frac{3}{4} r^{4}-\left.\frac{1}{5} r^{5} \cos \theta\right|_{0} ^{1} d \theta \\
&=\int_{0}^{2 \pi} \frac{3}{4}-\frac{1}{5} \cos \theta d \theta \\
&=
\end{aligned}
$$

