## Quick Review from previous lecture

- Orientations in a closed surface:
- Outward pointing normal: normal points outward.
- Inward pointing normal: normal points inward.
- The divergence (Gauss) theorem says that

Let $F$ be a smooth vector field on $W$. Then

$$
\begin{equation*}
\iiint_{W}(\nabla \cdot F) d V=\overbrace{\iint_{\partial W} F \cdot d \mathbf{S}} \tag{1}
\end{equation*}
$$

where $W$ has boundary $\partial W$, oriented with outward pointing normal.
This means
"The total expansion of the fluid inside 3D region $W$ " equals "the total flux of the fluid out of the boundary of $W$ "

$$
\text { Quiz } 9: 8.4,3.1,3.2
$$

3.1 Iterated partial derivatives
$f(x, y)$ scalar valued.
If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}$, then $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ are also functions of two variables. The partial derivatives of $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ are

$$
\begin{aligned}
& f_{x x}=\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right), \quad f_{y y}=\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right) \\
& f_{x y}=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right), \quad f_{y x}=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)
\end{aligned}
$$

Example 1. Let $f(x, y)=e^{x y}+y \cos (x)$. Find $f_{x x}, f_{x y}, f_{y x}, f_{y y}$.

$$
\begin{aligned}
& f_{x}=y e^{x y}+(-y \sin x) \\
& f_{y}=x e^{x y}+\cos x \\
& f_{x x}=\frac{\partial}{\partial x}\left(f_{x}\right)=\frac{\partial}{\partial x}\left(y e^{x y}-y \sin x\right)=y^{2} e^{x y}-y \cos x \\
& f_{x y}=\frac{\partial}{\partial y}\left(f_{x}\right)=\frac{e^{x y}+x y e^{x y}-\sin x}{} \\
& f_{y y}=\frac{\partial}{\partial y}\left(f_{y}\right)=\frac{\partial}{\partial y}\left(x e^{x y}+\cos x\right)=x^{2} e^{x y}+0 . \\
& f_{y x}=\frac{\partial}{\partial x}\left(f_{y}\right)=\frac{\partial}{\partial x}\left(x e^{x y}+\cos x\right)=e^{x y}+x y e^{x y}-\sin x .
\end{aligned}
$$

we saw that $f_{x y}=f_{y x}$

Recall "what is Linear approximation":


That is, we want to approximate $f(\hat{x}) \stackrel{1}{\text { near }} x=a$ bub le using a line. We take a line through the point $(a, f(a))$ with slope $f^{\prime}(a)$ :

$$
T_{1}(x)=f(a)+f^{\prime}(a)(x-a) .
$$

We call it the first order Taylor polynomial(or Linear approximation) of $f$ near $a$. (app roxmaton)

In Calculus 2, you also learned the second order Taylor polynomial (or quadratic approximation) of $f$ near $a$ :

$$
\begin{aligned}
T_{2}(x) & =f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2} . \\
n-+h \text { landor }_{\text {palynon-a| }} T_{n}(x) & =
\end{aligned}
$$

Now let's start section 3.2.
We want to generalize the Taylor polynomial to functions of multiple variables.
Fact. (Taylor Polynomials for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$ )
We consider a $C^{2}$ function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$ with $n$ variables. Let $f$ be differentable at a. Denote

$$
\begin{aligned}
& x=\left(x_{1}, x_{2}, \cdots, x_{n}\right), \\
& a=\left(a_{1}, a_{2}, \cdots, a_{n}\right) .
\end{aligned}
$$

- Then the first order Taylor polynomial (approximation) of $f$ at a is

$$
T_{1}(x)=f(a)+\mathbf{D} f(a)(x-a),
$$

that is,

$$
T_{1}(x)=f(a)+\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(a)\left(x_{i}-a_{i}\right) .
$$

- Then the second order Taylor polynomial (approximation) of $f$ at $a$ is

$$
T_{2}(x)=f(a)+\mathbf{D} f(a)(x-a)+\frac{1}{2!}(x-a)^{T} \mathbf{H} f(a)(x-a)
$$

that is,

$$
\begin{aligned}
& T_{2}(x)=f(a)+\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(a)\left(x_{i}-a_{i}\right)+\frac{1}{2!} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(a)\left(x_{i}-a_{i}\right)\left(x_{j}-a_{j}\right) . \\
& D f(a)=\left[\begin{array}{lll}
\frac{\partial f}{\partial x_{1}}(a) & \cdots & \frac{\partial f}{\partial x_{n}}(a)
\end{array}\right] \\
& \begin{aligned}
D f(a)(x-a) & =\left[\begin{array}{lll}
\frac{\partial f}{\partial x_{1}}(a) & \cdots & \frac{\partial f}{\partial x_{n}}(a)
\end{array}\right]\left[\begin{array}{c}
x_{1}-a_{1} \\
x_{2}-a_{2} \\
\vdots \\
x_{n}-a_{n}
\end{array}\right]
\end{aligned} \\
& \\
& =\frac{\partial f}{\partial x_{1}}(a)\left(x_{1}-a_{1}\right)+\frac{\partial f}{\partial x_{2}}(a)\left(x_{2}-a_{2}\right)+\ldots+\frac{\partial f}{\partial x_{n}}(a)\left(x_{n}-a_{n}\right) .
\end{aligned}
$$

Hessian matrix of $f$ :

$$
\left.\begin{array}{l}
H f(a)=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{n}}
\end{array}\right]_{n \times n} \\
(x-a)^{\top} H f(x-a)=\left[\begin{array}{lll}
x_{1}-a_{1} & \cdots & x_{n}-a_{n}
\end{array}\right][
\end{array}\right]
$$

Example 2. Find $1^{\text {st }}$ and $2^{\text {nd }}$ order Taylor approximation of

$$
f(x, y)=2 x^{2}+x y+4 y^{2}-1
$$

at the point $\left(x_{0}, y_{0}\right)=(1,2)$.

$$
\begin{aligned}
& f(1,2)=/ 9 \\
& f_{x}=4 x+y, \quad f_{x}(1,2)=6 \\
& f_{y}=x+8 y, f_{y}(1,2)=17 \\
& f_{x x}=\frac{\partial}{\partial x}(4 x+y)=4 \\
& f_{y y}=\frac{\partial}{\partial y}(x+8 y)=8 \\
& f_{x y}=\frac{\partial}{\partial y}(4 x+y)=1
\end{aligned}
$$

$$
\begin{aligned}
& T_{1}(x, y)= f(1,2)+f_{x}(1,2)(x-1)+f_{y}(1,2)(y-2) \\
&= A_{1}+6(x-1)+17(y-2) \\
& T_{2}(x, y)= f(1,2)+f_{x}(1,2)(x-1)+f_{y}(1,2)(y-2) \\
&+ \frac{1}{2}\left[f_{x x}(1,2)(x-1)^{2}+f_{y y}(1,2)(y-2)^{2}\right. \\
&\left.+2 f_{x y}(1,2)(x-1)(y-2)\right] \\
&= 19+6(x-1)+19(y-2)+\frac{1}{2}\left[4(x-1)^{2}+8(y-2)^{2}\right. \\
&+2(x-1)(y-2)]
\end{aligned}
$$

Example 3. Consider the function $f(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$.
( 1 st Taylor polynomial)

1. Find a linear approximation of $f$ near $(4,4,2)$.

$$
\begin{align*}
& f(4,4,2)=\left(4^{2}+4^{2}+2^{2}\right)^{1 / 2}=(36)^{1 / 2}=6 . \\
& f_{x}=\frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2} 2 x, \quad f_{x}(4,4,2)=\frac{1}{2}(16+16+4)^{-1 / 2} 8 \\
& f_{y}=\frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2} 2 y, \quad f_{y}(4,4,2)=\frac{1}{2}\left(16+(6+4)^{-1 / 2}=\frac{1}{2}=\frac{1}{6}=\frac{2}{3}\right. \\
& f_{z}=\frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2} 2 z, \quad f_{z}(4,4,2)=1 / 3 . \\
& T_{1}(x, y, z)=6+\frac{2}{3}(x-4)+\frac{2}{3}(y-4)+\frac{1}{3}(z-2) .
\end{align*}
$$

2. Estimate the value $\left(4.01^{2}+3.99^{2}+2.03^{2}\right)^{1 / 2}$ by using the linear approximaton you found in (a). real value (calculator: we get $6.01008 \ldots$ )

$$
\begin{aligned}
&\left((4.01)^{2}+(3.99)^{2}+(2.03)^{2}\right)^{1 / 2} \\
& \sim T_{1}(4.01,3.99 .2 .03)=6+\frac{2}{3}(0.01)+\frac{2}{3}(-0.01)+\frac{1}{3}(0.03) \\
&=0.01
\end{aligned}
$$

(approximated value)

