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INTRODUCTION - MOTIVATION




Origins of Eigenvalue Problems

e Structural Engineering [Ku = AM u]
e Electronic structure calculations [Shrodinger equation..]
e Stability analysis [e.g., electrical networks, mechanical system,..]

e Bifurcation analysis [e.g., in cuid cow]

w Large sparse eigenvalue problems are among the most demand-

Ing calculations (in terms of CPU time) in scientiEc computing.
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New application in information technology

w Search engines (google) rank web-sites in order to improve searches

w The google toolbar on some browsers (http://toolbar.google.com)

- gives a measure of relevance of a page.

w The problem can be formulated as a Markov chain — Seek the

dominant eigenvector
w Algorithm used: power method

» For detalls see:

http://ww. i prcom com paper s/ pager ank/i ndex. ht ni
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The Problem

We consider the eigenvalue problem

Ax = Ax or Ax = \Bx

Typically: B is symmetric (semi) positive de£nite, A IS symmetric

or nonsymmetric

Requirements vary:

e Compute a few \; 's with smallest or largest real parts;
e Compute all \;’s in a certain region of C ;
e Compute a few of the dominant eigenvalues;

e Compute all \;’s.

Calais February 7, 2005




Types of problems

* Standard Hermitian (or symmetric real) |[Az = \z| A" = A

* Standard non-Hermitian [Az = Az|, A" #£ A

* Generalized
Ax = A\Bx
Several distinct sub-cases (B SPD, B SSPD, B singular with large

null space, both A and B singular, etc..)
* Quadratic
(A+ AB + A*C)x =0
* Nonlinear

AXN)x =0
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EIGENVALUE PROBLEMS — BASICS
DENSE MATRIX CASE

e Background on eigenvalues/ eigenvectors/ Jordan form

e The Schur form

e Perturbation analysis, condition numbers..

e Power method, subspace iteration algorithms

e The QR algorithm

e Practical QR algorithms: use of Hessenberg form and shifts

e The symmetric eigenvalue problem.



Basic de£nitions and properties

A complex scalar X is called an eigenvalue of a square matrix A
If there exists a nonzero vector v in C" such that Au = Au. The
vector u Is called an eigenvector of A associated with \. The set of

all eigenvalues of A is the ‘spectrum’ of A. Notation: A(A).

w» A € A(A) iff the columns of A — AT are linearly dependent.

» ... equivalent to saying that its rows are linearly dependent. So:

there is a nonzero vector w such that

w?(A—XI) =0

w w is called a left eigenvector of A (u is a right eigenvector)

» )\ € A(A) iff [det(A — ) =0
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Basic de£nitions and properties (cont.)

w An eigenvalue is a root of the Characteristic polynomial:

pPa(A) = det(A — A1)

w SO there are n eigenvalues (counted with their multiplicities).

w The multiplicity of these eigenvalues as roots of p4 are called

algebraic multiplicities.

w The geometric multiplicity of an eigenvalue X; is the number of

linearly independent eigenvectors associated with \;.
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w Geometric multiplicity is < algebraic multiplicity.
w An eigenvalue is simple if its (algebraic) multiplicity is one.

w It Is semi-simple if its geometric and algebraic multiplicities are

equal.

Example: Consider

1 2 —4
A=|0 1 2
0O 0 2

What are the eigenvalues of A? their algebraic multiplicities? their

geometric multiplicities? Is one a semi-simple eigenvalue?

Same questions if ass IS replaced by one.
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w Two matrices A and B are similar if there exists a nonsingular

matrix X such that
B=XAX"1

w Def£nition: A is diagonalizable if it is similar to a diagonal matrix

w THEOREM: A matrix is diagonalizable iff it has n linearly
Independent eigenvectors
w THEOREM (Schur form): Any matrix is unitarily similar to a
triangular matrix, i.e., for any A there exists a unitary matrix Q
and an upper triangular matrix R such that

A= QRQH
w Any Hermitian matrix is unitarily similar to a real diagonal matrix,

(i.e. its Schur form is real diagonal).
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Special case: symmetric / Hermitian matrices

w Consider the Schur form of a real symmetric matrix A:
A =QRQ"

Since AH = AthenR= RH »

Eigenvalues of A are real

In addition, Q can be taken to be real when A is real.

(A—AD(u+w)=0—- (A—Al)u=0 and (A—Al)v=0

w Can select eigenvectors to be real.

There i1s an orthonormal basis of eigenvectors of A
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The min-max theorem

Label eigenvalues increasingly:
A > X > Ay

The eigenvalues of a Hermitian matrix A are characterized by the

relation
(Az, x)
AL = max min
S, dim(S)=k €S, x#0 (w, w)

w Consequence:

Al = m;%c(Aw, x)/(x,x) An = m;gl(A:c, x)/(x,x)
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The Law of Interia

w A matrix A with m negative, z zero, and p positive eigenvalues,

has inertia [m, z, p|.

Sylvester’s Law of inertia: I If X Is an n X n nonsingular matrix,

then A and XT AX have the same inertia.

Example: Supposethat A = LDL* where L is unit lower triangular,

and D diagonal. How many negative eigenvalues does A have?

Example: Assume that A is tridiagonal. How many operations are

required to determine the number of negative eigenvalues of A?

Example: Devise an algorithm based on the inertia theorem to com-

pute the z-th eigenvalue of a tridiagonal matrix.
Calais February 7, 2005




Perturbation analysis

w General questions: If A is perturbed how does an eigenvalue

change? How about an eigenvector?

w Also: sensitivity of an eigenvalue to perturbations
THEOREM [Gerschgorin]

VA €A(A), 3Ji suchthat |A—ay <'Y |aij -
Jj=1
J#1

w In words: An eigenvalue A of A is located in one of the closed

discs D(aii, pi) with Pi = Xj+£5 |aij| .
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Gerschgorin’s theorem - example

w Find a region of the complex plane where the eigenvalues of the

following matrix are located:

w Refnement: if disks are all disjoint then each of them contains

one eigenvalue

» Ref£nement: can combine row and column version of the theorem

(column version obtained by applying theorem to AH).
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Bauer-Fike theorem

THEOREM [Bauer-Fike] Let A, @ be an approximate eigenpair with
|@||2 = 1, and let r = A4 — MA@ (‘residual vector’). Assume A is

diagonalizable: A = X DX !, with D diagonal. Then

JX e A(A) suchthat |A— X| < condy(X)]|7]|2

w Very restrictive result - also not too sharp in general.

w Alternative formulation. If E is a perturbation to A then for any

eigenvalue X of A + E there is an eigenvalue X of A such that:

IA — Al < condy(X)||E||2 -

{&Prove this result from the previous one. |
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Conditioning of Eigenvalues

w Assume that X is a simple eigenvalue with right and left eigenvec-
tors u and w¥ respectively. Consider the matrices:

A(t) = A+ tE
w Eigenvalue \(t), eigenvector u(t).

w Conditioning of A of A relative to E is the |d\(t)/dt| att = 0.

w \Write
A(t)u(t) = A(t)u(t)

» then multiply both sides to the left by w
w? (A + tE)u(t) = A(t)wu(t) —

A()wHu(t) = w? Au(t) + tw? Eu(t)
= Awu(t) + tw? Eu(t).



Hence,
A(t) — A

t
w Take the limitatt = 0,

wu(t) = w? Eu(t)

wH EBu

wHu

X(0) =

w Note: the left and right eigenvectors associated with a simple

eigenvalue cannot be orthogonal to each other.

Actual conditioning of an eigenvalue, given a perturbation “in the

direction of E” is the modulus of the above quantity.

w |n practice, one only has an estimate of || E|| for some norm

[ Eu||2||w]]2 [[all2][w]]2
< [1E]l2

A=, w)) (uy w))




De£nition. The condition number of a simple eigenvalue A of an

arbitrary matrix A is deEned by

cond(A) =

cos 0(u, w)
in which v and w are the right and left eigenvectors, respectively,

associated with \.

Example: Consider the matrix

—149 —50 —154
A= 537 180 546
—-27 —9 =25
w» A(A) = {1,2,3}. Right and left eigenvectors associated with
A= 1:
0.3162 0.6810
u=|—0.9487 | and w = | 0.2253

0.0 0.6967



So:

cond(A;) =~ 603.64

w Perturbing aq; to —149.01 yields the spectrum:

{0.2287, 3.2878,2.4735}.

» as expected..

w For Hermitian (also normal matrices) every simple eigenvalue is

well-conditioned, since cond(\) = 1.
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The power method

» Basic idea is to generate the sequence of vectors A*v, where

vy % 0 —then normalize.

w Most commonly used normalization: ensure that the largest com-

ponent of the approximation is equal to one.

ALGORITHM : 1. The Power Method
1. Choose a nonzero initial vector v(?),

2.Fork =1,2,...,until convergence, Do:
3. k) = alkAv("’—l) where

4. oy = argmax;_,_,|(Av#D),

5. EndDo

W argmax;—i.. n|Xi| = the component x; with largest modulus
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Convergence of the power method

THEOREM Assume that there is one and only one eigenvalue \;
of A of largest modulus and that \; is semi-simple. Then either
the initial vector vy has no component in the invariant subspace
associated with \; or the sequence of vectors generated by the
algorithm converges to an eigenvector associated with A\; and oy,

converges to A;.
Proof in the diagonalizable case.

» v, IS = vector A*v, normalized by a certain scalar &y in such a

way that its largest component is 1.

w Decompose the initial vector vy as vy = »i_; v;u; where the wu;’s

are the eigenvectors associated with the A\;’'s,z = 1,...,n.
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w Note that A*u; = Xlu;

1 no_
v = : X3 AV
scaling i=1
1 n
= X Afmu + S Ay
scaling i=2
scaling’ =10¥ Yo

w Second term inside bracket converges to zero. QED

w Proof suggests that the convergence factor is given by
_ 1l

A

where X\, Is the second largest eigenvalue in modulus.

PD

Example: Consider a ‘Markov Chain’ matrix of size n = 55. Dom-

Inant eigenvalues are A = 1 and A = —1 w the power method

applied direCtIy to A fails. (Why?) Calais February 7, 2005




w \We can consider instead the matrix I + A The eigenvalue A = 1

IS then transformed into the (only) dominant eigenvalue A = 2

Iteration | Norm of diff.  Res. norm | Eigenvalue
20| 0.639D-01| 0.276D-01|1.02591636
40 0.129D-01 | 0.513D-02|1.00680780
60 0.192D-02 | 0.808D-03|1.00102145
80| 0.280D-03| 0.121D-03/1.00014720
100 0.400D-04 | 0.174D-04 | 1.00002078
120  0.562D-05| 0.247D-051.00000289
140  0.781D-06| 0.344D-06|1.00000040
161 0.973D-07| 0.430D-07  1.00000005
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The Shifted Power Method

» In previous example shifted A into B = A + I before applying
power method. We could also iterate with B(o) = A + oI for any

positive o

Example: With o = 0.1 we get the following improvement.

Iteration | Norm of diff. | Res. Norm | Eigenvalue
20| 0.273D-01| 0.794D-02 1.00524001
40 0.729D-03| 0.210D-03|1.00016755
60| 0.183D-04 | 0.509D-05 1.00000446
80| 0.437D-06| 0.118D-06 1.00000011
88| 0.971D-07| 0.261D-07 1.00000002
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w Question: What is the best shift-of-origin o to use?
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Inverse lteration

Observation: The eigenvectors of A and A~! are identical.

w |ldea: use the power method on A1

w Will compute the eigenvalues closest to zero.

» Shift-and-invert Use power method on |(A — oI)~ ! w» will com-

pute eigenvalues closest to o.
w Advantages: fast convergence in general.

w Drawbacks: need to factor A (or A — o) into LU..
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Subspace iteration

w Generalizes the power method

ALGORITHM : 2. Orthogonal iteration
Start: QO — [(ha RN Qm]

1

2. lterate: Until convergence do,
3. X (= AQr_1

4 X = QR (QR factorization)
5. EndDo

w Normalization in step 4 is similar to the scaling used in the power

method.

» Improvement: normalize only once in a while.
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ALGORITHM : 3. Subspacelteration with Projection
Start: Choose Qo = [qos - - - 5 @)

Ilterate: For k = 1,..., until convergence do:
Compute Z = AQ_1.
Z = ZRy (QR factorization)
B =7ZHAZ
Compute the Schur factorization B = YRY #
Qr=2Y

EndDo

w Again: no need to orthogonalize + project at each step.

w Assume || > [z = oo | Am| > Amal] = ¢ > ||, then

convergence rate for \; is (generally)

[ Ama1/ A1
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The QR algorithm

w The most common method for solving small (dense) eigenvalue

problems. The basic algorithm:

ALGORITHM : 4. QR without shifts

1. Until Convergence Do:

2. Compute the QR factorization A = QR
3. Set A := RQ
4. EndDo

w “Until Convergence” means “Until A becomes close enough to

an upper triangular matrix”
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» Note: A,.., = RQ = QP (QR)Q = Q7 AQ

w A,.. IS Similar to A throughout the algorithm .

w Above basic algorithm is never used Iin practice. Two variations:
(1) use shift of origin and

(2) Transform A into Hessenberg form..
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Practical QR: Shifts of origin

Observation: (from theory): Last row converges fastest. Conver-

gence is dictated by li*n|1|

w We will now consider only the real symmetric case.

w Eigenvalues are real.
» A¥) remains symmetric throughout process.

» As k goes to infnity the last column and row (except a(*)) con-

verge to zero quickly.,,

» and a{*) converges to lowest eigenvalue.
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a a a a a a

» Idea: Apply QR algorithm to A% — uI with 4 = a®). Note:
eigenvalues of A%) — , T are shifted by i, and eigenvectors are the

Same.
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ALGORITHM : 5. QR with shifts
1. Until row a;,,1 < 2 < n converges to zero DO:

2. Obtain next shift (e.g. u = any,)
3. A—pul = QR

5. Set A := RQ + ul

6. EndDo

w Convergence is cubic at the limit! [for symmetric case]
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w Result of algorithm:

o o o o O

0O 0 0 0 0 A,

w Next step: derate, i.e., apply above algorithmto (n —1) X (n —1)

upper triangular matrix.
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Practical QR: Use of the Hessenberg Form

Recall: Upper Hessenberg matrix is such that
az-j:Oforj<i—1

Observation: The QR algorithm preserves Hessenberg form (tridi-

agonal form in symmetric case). Results in substantial savings.

w 1-st step: reduce A to Hessenberg form. Then (2nd step) apply

QR algorithm to resulting matrix.

w It is easy to adapt the Householder factorization to reduce a ma-

trix into Hessenberg form — [similarity transformation]

w Consider the £rst step only on a 6 X 6 matrix.



>
>
*
*
>
*

> We want HlAHClF = HlA.Hl

to have the form:

S O O O
%
>*
%
%
%

*x * * * %
w Choose aw in H; = I — 2ww?! sothat (H;A)[2:n,1] =0
w Apply to left B = H;A. Then apply to right A, = BH;.

Observation: the Householder matrix H; which transforms the
column A(:, 1) into e; works only on rows 2 to n. When applying
H to the right of B = H; A, only columns 2 to n will be altered

w 1st column retains the same pattern (zeros below row 2)
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QR for Hessenberg matrices

w Need the “implicit Q theorem”

Suppose that QT AQ is an unreduced upper Hessenberg matrix.
Then columns 2 to n of Q are determined uniquely (up to signs)

by the £rst column of Q.

Implication: | In order to compute A;,, = Q,’{AQi we can:

w Compute the £rst column of Q; [easy: = scalar x A(:,1)]

w Choose other columns so Q; = unitary, and A;,, = Hessenberg.
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Example: Withn =6 :

1. Choose G, =
G(1,2,60q) SO that
(GlA)zl — O

o O O
e
*

» A =GrAG,

S o +H+




2. Choose G5

G(2, 37 92)
(G3A1)31 =0

3. Choose Gj

G(?’a 49 03)
(G3A3)42 =0

SO

SO

that

that

> A2 — GglAlGQ —

> Ag — G§A2G3 —

S O O %

*

*

o O O




G(4,5,0,) SO that | A, = GZA3G4 _
(G4A3)53 =0

o O O
o
*
*
*

w Process known as “Bulge chasing”

w Similar idea for the symmetric (tridiagonal) case
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The QR algorithm for symmetric matrices

»w Most important method used : reduce to tridiagonal form and

apply the QR algorithm with shifts.

w Householder transformation to Hesseenberg form yields a tridi-
agonal matrix because

HAH" = A,
IS symmetric and also of Hessenberg form w it is tridiagonal sym-
metric.

Tridiagonal form is preserved by QR similarity transformation
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Practical method !

w How to implement the QR algorithm with shifts?

w It IS best to use Givens rotations — can do a shifted QR step

without explicitly shifting the matrix..

w Two most popular shifts:

S = any, and s = smalleste.v. of A(n —1:n,n —1: n)
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THE SINGULAR VALUE DECOMPOSITION

e The SVD — existence - properties.
e Pseudo-inverses and the SVD
e Use of SVD for least-squares problems

e Applications of the SVD



The Singular Value Decomposition (SVD)

For any real n X m matrix A there exists orthogonal matrices U €&

R**™and V & R™*™ such that
A=UxV"
where X is a diagonal matrix with nonnegative diagonal entries.
011 > 022 2> +++ Opp > 0 With p = min(m, n)

w The o;; are called singular values of A. Denoted simply by ;.

Proof: | [one among many!] Let o = || Al = max, ,=1 || A2

There exists a pair of unit vectors v, u; such that

A’Ul = oOo1uUy
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w Complete v; Into an orthonormal basis of R™

V = [v1, Vo] = m X m unitary

w Complete u, into an orthonormal basis of R™

U = [u1,Uz] =n X n unitary

w Then, it is easy to show that

01 ’UJT

0 B

AV =U X

01 ’UJT
)EAl

0 B

| = vrav—|

w Observe that

(e

w This shows that w must be zero [why?]

2 oi+ flwl® = jof 4+ [|w])?

()l

w Complete the proof by an induction argument.
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Case 1: |

Case 2: |

O
O
>
O

O

O

> O
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The “thin” SVD

w Consider the Case-1. It can be rewritten as
2
A= [U1U2]( ) vT
0
Which gives:
A=U;x;, VT
where U; Isn X m (same shape as A), and X; and V arem X m

w referred to as the “thin” SVD. Important in practice.

<&$>Show how to obtain the thin SVD from the QR factorization of A

and the SVD of an m X m matrix
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Some properties. IAssume that

op1>022>--2>20,>0ando,y;=---=0,=0
Then:
e rank(A) = r = number of nonzero singular values.
e Ran(A) = span{ui,us,...,u,}
e Null(A) = span{v,11,Vri2y++.,Um}

e The matrix A admits the SVD expansion:
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Properties of the SVD (continued)

e ||Al||2 = o1 = largest singular value

o Apz(z"fla

1=

e When A is an n X n nonsingular matrix then ||[A7 1|, = 1/0, =

iInverse of smallest s.v.




De£ne the r X r matrix

21 = diag(a'l, oo 0',«)

w Let A € R™™™ and consider now AT A (which is of size m x m)

w This gives the spectral decomposition of AT A. Similarly, U gives

the eigenvectors of AAT.

Important: I ATA = VD,VT and AAT = UD,UT give the SVD
factors U, V up to signs!



& Compute the singular value decomposition the matrix:

SFind the matrix B of rank 1 which is the closest to the above matrix

in the 2-norm sense.

$OWhat is the pseudo-inverse of A? What is the pseudo-inverse of

B?

{Find the vector x of smallest norm which minimizes ||b — Ax||»

with b = (1,1)7

OFind the vector  of smallest norm which minimizes ||b — Bxz||,

with b = (1,1)7
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Pseudo-inverse of an arbitrary matrix

The pseudo-inverse of A Is given by
7t o0

AT=V(
0 0

o

Moore-Penrose conditions: IThe pseudo inverse of a matrix is uniquely

determined by these four conditions:
(1) AXA=A (2) XAX =X

3) (AX)H = AX (4) (XA)H = XA

» In the full-rank overdetermined case, AT = (ATA)~tAT
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| east-squares problems and the SVD

w SVD can give much information about solving overdetermined

and underdetermined linear systems —
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| east-squares problems and pseudo-inverses

w A restatement of the £rst part of the previous result:
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I1l-conditioned systems and the SVD

w Let A be n X n (square matrix) and A = UXV? its SVD

» Solution of Ax = bisz = A~1p = s %P v;

1=1 o;

w When A is very ill-conditioned, it may have many small
singular values. The division by these small o;’s will amplify any
noise in the data. Result: solution may be meaningless.

w Remedy: use regularization, i.e., truncate the SVD by only
keeping the os that are larger than a threshold 7.

w This gives the truncated SVD solution (SVD regularization:)

ulb
. 7
TTSvD — X
o, >T o;

(%

w Many applications [e.q., Image processing,..
y app [ J 9ep Cgais]FebruaryZZOOB




Numerical rank and the SVD

w Assume that the original matrix A is exactly of rank k.
w The computed SVD of A will be the SVD of a nearby matrix A+ FE.
w Easy to show that |6; — o;| < a o1eps

w Result: zero singular values will yield small computed singular

values

w Determining the “numerical rank:” treat singular values below a

certain threshold 4 as zero. Practical problem : need to set §.
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LARGE SPARSE EIGENVALUE PROBLEMS




General Tools for Solving Large Eigen-Problems

w Projection techniques — Arnoldi, Lanczos, Subspace Iteration;
w Preconditioninings: shift-and-invert, Polynomials, ...

w Deration and restarting techniques

Good computational codes combine these three ingredients
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A few popular solution Methods

e Subspace Iteration [Now less popular — sometimes used for vali-

dation]

e Arnoldi’s method (or Lanczos) with polynomial acceleration [Stiefel
'58, Rutishauser ’62, YS ’84,85, Sorensen ’89,...]

e Shift-and-invert and other preconditioners. [Use Arnoldi or Lanc-
zos for (A — oI)™ 1]

e Davidson’s method and variants, Generalized Davidosn’s method

[Morgan and Scott, 89], Jacobi-Davidsion

e Emerning method: Automatic Multilevel Substructuring (AMLS).
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Projection Methods for Eigenvalue Problems

General formulation:

Projection method onto K orthogonal to L

w Given: Two subspaces K and L of same dimension.

» Find: A, @ such that

~

AeC,a € Ky AM—Aa LL

Two types of methods:

Orthogonal projection methods: situation when L = K.

Oblique projection methods: When L # K.
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Rayleigh-Ritz projection

Given: a subspace X known to contain good approximations to

eigenvectors of A.
Question: How to extract good approximations to eigenvalues/

eigenvectors from this subspace?

Answer: I Rayleigh Ritz process.

Let @ = [q1,...,qm] @an orthonormal basis of X. Then write an

approximation in the form w = Qy and obtain y by writing
QH(A - AXDa =0

» QT AQy = \y
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Procedure:

1. Obtain an orthonormal basis of X

2. Compute C = QH AQ (an m X m matrix)

3. Obtain Schur factorization of C, C = YRY
4. Compute U = QY

Property: if X is (exactly) invariant, then procedure will yield exact

eigenvalues and eigenvectors.

Proof: Since X is invariant, (A—XI)u = Qz foracertain z. Q7 Qz =

0 implies z = 0 and therefore (A — AI)u = 0.

w Can use this procedure in conjunction with the subspace ob-

tained from subspace iteration algorithm
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Subspace Iteration

w Original idea: projection technique onto a subspace if the form
Y = AKX

»w In practice: Replace A* by suitable polynomial [Chebyshev]

e Easy to implement (in symmetric case);
Advantages:

e Easy to analyze;

Disadvantage: Slow.

w Often used with polynomial acceleration: A*X replaced by C;,(A)X.
Typically C}. = Chebyshev polynomial.



Algorithm: Subspace Iteration with Projection

1. Start: Choose an initial system of vectors X = [xg,...,Zm)]

and an initial polynomial C.
2. Iterate: Until convergence do:
(a) Compute Z = Cr(A)Xo1a-
(b) Orthonormalize Z into Z.

(c) Compute B = Z"AZ and use the QR algorithm to

compute the Schur vectors Y = [yy,..., Y| Of B.
(d) Compute X,,c., = Z2Y.

(e) Test for convergence. If satisEed stop. Else select a new

polynomial C}, and continue.



THEOREM: Let Sy = span{xi,xs,...,x,} and assume that S is
such that the vectors {Px;};—1....m are linearly independent where
P is the spectral projector associated with A{,...,A,,. Let P, the
orthogonal projector onto the subspace Sy = span{X}. Then for
each eigenvector u; of A,z = 1,...,m, there exists a unique vector
s; In the subspace S, such that Ps; = u;. Moreover, the following
Inequality is satisfed

>\m-|—1

1

k
I = P)uslls < llus — sz-nz( +ek) , A

where ¢, tends to zero as k tends to In£nity.
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KRYLOV SUBSPACE METHODS




KRYLOV SUBSPACE METHODS

Principle: Projection methods on Krylov subspaces, i.e., on

K,,(A,v;) = span{v;, Avy,---, A™ v}

e probably the most important class of projection methods [for lin-

ear systems and for eigenvalue problems]

e many variants exist depending on the subspace L.

Properties of K,,,. Let u = deg. of minimal polynom. of v. Then,

e K., = {p(A)v|p = polynomial of degree < m — 1}
o K,, = K, for all m > pu. Moreover, K, is invariant under A.

edim(K,,) = miff u > m.
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ARNOLDI’S ALGORITHM

w Goal: to compute an orthogonal basis of K,,.

w [nput: Initial vector vy, with ||v¢||]2 = 1 and m.

ALGORITHM : 6. Arnoldi’s procedure

Forjg =1,...,mdo

Compute w := Avw;

h: = (w,v;
Fori=1,...,7,do i i (W, 0i)
w = w — hi,jvi
hji1,5 = [|lwl2; Vi1 = w/hj;
End
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Result of Arnoldi’s algorithm
Let

H, = H,, = r r T T
r T X

r T X
r x

Tr x
ax

1. V,, = [vq, V2, ..., v,,,] Orthonormal basis of K,,.
2. Avm — m—l—lﬁm = VinH,, + hm—l—l,mvm—l—le%’q’

3. viAv,, = H,, = H,,— last row.
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Appliaction to eigenvalue problems

w Write approximate eigenvector as u = V,,y + Galerkin condition
(A=AD)Vyy L Ky — VEA - XDV,y =0
w Approximate eigenvalues are eigenvalues of H,,
Hmyj — S‘jyj

Associated approximate eigenvectors are

~

Uj = VmYj

Typically a few of the outermost eigenvalues will converge £rst.
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Restarted Arnoldi

In practice: Memory requirement of algorithm implies restarting is

necessary

ALGORITHM : 7. Restarted Arnoldi (computesrightmost eigenpair)
Start: Choose an initial vector v; and a dimension m.

Iterate: Perform m steps of Arnoldi’s algorithm.

(m)
1 -

1
2
3. Restart: Compute the approximate eigenvector u{™
4 associated with the rightmost eigenvalue A
5

If satisEed stop, else set v; = u§m> and goto 2.
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Example:

Small Markov Chain matrix [ Mark(10) , dimension = 55]. Restarted
Arnoldi procedure for computing the eigenvector associated with

the eigenvalue with algebraically largest real part. We use m = 10.

m R(N) S (A) |Res. Norm
10/0.9987435899D+00| 0.0 | 0.246D-01
20/0.9999523324D+00 0.0 | 0.144D-02
30/0.1000000368D+01| 0.0 | 0.221D-04
40/0.1000000025D+01 | 0.0 | 0.508D-06
50/ 0.9999999996D+00 0.0 | 0.138D-07
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Restarted Arnoldi (cont.)

w Can be generalized to more than *one* eigenvector :

w However: often does not work well — (hard to £nd good coef£-

cients p;’s)

w Alternative : compute eigenvectors (actually Schur vectors) one

at a time.

w Implicit dezation.
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Hermitian case: The Lanczos Algorithm

w The Hessenberg matrix becomes tridiagonal :
A=A" and V?*AV, =H, — H,=H!

w \We can write

a; B2
B2 a3 (3
Bz a3 Py

H,, = (2)

IBm (87773

»w Consequence: three term recurrence

Bi+1vj+1 = Avj — ayv; — Bjvj
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ALGORITHM : 8. Lanczos

Choose an initial vector v; of norm unity. Set 3; = 0,v9 =0
Forg =1,2,...,m Do:
Wy = A’Uj — ,ijj_l

aj = (wj, vj)

Bii1 = ||w;||2- If Bj11 = 0 then Stop
V1 3= Wj/ Bt

1

2

3

4

S. Wj 1= Wj — OV
6

7

8. EndDo

Hermitian matrix + Arnoldi — Hermitian Lanczos

w In theory v;’s de£ned by 3-term recurrence are orthogonal.

w However: in practice severe loss of orthogonality;
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Observation [Paige, 1981]: Loss of orthogonality starts suddenly,

when the £rst eigenpair has converged. It is a sign of loss
of linear indedependence of the computed eigenvectors. When
orthogonality is lost, then several the copies of the same eigenvalue

start appearing.
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Reorthogonalization

w Full reorthogonalization — reorthogonalize v;,, against all previ-

ous v;’s every time.

w Partial reorthogonalization — reorthogonalize v, ; against all pre-

vious v;’s only when needed [Parlett & Simon]

w Selective reorthogonalization — reorthogonalize v, ; against com-

puted eigenvectors [Parlett & Scott]

w No reorthogonalization — Do not reorthogonalize - but take mea-

sures to deal with 'spurious’ eigenvalues. [Cullum & Willoughby]
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LANCZOS BIORTHOGONALIZATION




The Lanczos biorthogonalization (AH # A)

ALGORITHM : 9. The Lanczos Bi-Orthogonalization Procedure

1. Choose vy, w; such that (v, w,) = 1. SetB3; =6 =0, wg =v9 =0
2. Fory =1,2,...,m Do:

3. = (Avj, w;) [a; = (Av; — Bvj_1,w;) ]

4. i = Avj — ayv; — Bjvji [0 = (Avj — Bjvj1) — a;v;]

5. Wiy = AMw; — ajw; — djw; i = (AT w; — djw;—1) — ajwj]
6. 11 = |(Djr1,Wj11)|Y2 1f 541 = 0 Stop

7. Bivr = (Vi1 Wit1) /511

8. wji1 = Wjt1/Bj

9. vt = 041/0541

10. EndDo
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w Builds a pair of biorthogonal bases for the two subspaces

Km(A,v;) and K,,(A", w)

» Many choices for 4,41, ;41 in lines 7 and 8. Only constraint:
dj+18i+1 = ()41, Wjt1)

Let
841 52

02 O ,33

5m—1 Omn—1 Bm

O, Oy

» v, € Kn(A,v) and w; € K, (AT, wy).
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w If 6,,vy,, z; are, respectively an eigenvalue of T,,,, with associated
right and left eigenvectors y; and z; respectively, then correspond-

Ing approximations for A are

Ritz value | Right Ritz vector Left Ritz vector
9]' mej Wij

[Note: terminology is abused slightly - Ritz values and vectors nor-

mally refer to Hermitian cases.]
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Advantages and disadvantages

Advantages:

w Nice three-term recurrence — requires little storage in theory.

w Computes left and a right eigenvectors at the same time

Disadvantages:

w Algorithm can breakdown or nearly breakdown.
w Convergence not too well understood. Erratic behavior

w Not easy to take advantage of the tridiagonal form of T;,,.
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Look-ahead Lanczos

Algorithm breaks down when:
(Dj41,Wj1) = 0

Three distinct situations.

w ‘lucky breakdown’ when either 9,4, or w;; IS zero. In this case,

eigenvalues of T,,, are eigenvalues of A.

w (D41, Wjr1) = 0butof 9,41 # 0, w41 7# 0 — serious breakdown.
Often possible to bypass the step (+ a few more) and continue the

algorithm. If this is not possible then we get an ...

» ... Incurable break-down. [very rare]
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Look-ahead Lanczos algorithms I deal with the second case. See

Parlett 80, Freund and Nachtigal ’90.... Main idea: when break-down
occurs, skip the computation of v;, 1, w;y; and deEne v a2, wjyo
from v;,w;. For example by orthogonalizing A%v; ... Can defne

v;+1 Somewhat arbitrarily as v, = Av;. Similarly for w;, ;.

w Drawbacks: (1) projected problem no longer tridiagonal (2) dif£-

cult to know what constitutes near-breakdown.
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DEFLATION




w Very useful in practice.

w Different forms: locking (subspace iteration), selective orthogo-

nalization (Lanczos), Schur deration, ...
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A little background

Consider Schur canonical form

A =URU*"
where U is a (complex) upper triangular matrix.
w Vector columns uq, ..., u, called Schur vectors.

w Note: Schur vectors depend on each other, and on the order of
the eigenvalues



Wiedlandt Deration: Assume we have computed a right eigenpair
A1, u1. Wielandt deration considers eigenvalues of

Al — A — 0"l.L1’UH

Note:
A(Al) = {Al — O, Az, c oo An}
Wielandt deration preserves w4 as an eigenvector as well all the left

eigenvectors not associated with ;.

»w An interesting choice for v is to take simply v = u4. In this case

Wielandt dercation preserves Schur vectors as well.



w It is possible to apply this procedure successively:

ALGORITHM : 10. Explicit Decation
A() —_ A

Fory =0...u — 1 Do:

Compute a dominant eigenvector of A;

— H
Defne Aj_|_1 = Aj — o;Uu;U;

J
End

a k~ WD PF

w Computed uq, us., .. form a set of Schur vectors for A.

w Alternative: implicit deration (within a procedure such as Arnoldi).



Decated Arnoldi: When £rst eigenvector converges, we freeze
it as the £rst vector of V,,, = [vy,v2,...,v,]. Arnoldi starts
working at column v,. Orthogonalization is still done against
v1, ..., v; at step 3. Each new converged eigenvector will be

added to the ‘locked’ set of eigenvectors.
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Fork =1,....NEV do: /* Eigenvalue loop */

l.Forjy =k, k+ 1,...,m do: /* Arnoldi loop*/

e Compute w := Av;.
e Orthonormalize w against vy, v2,...,v; — V41
2. Compute next approximate eigenpair A, .

3. Orthonormalize w against vy, ..., v; » Result = s = approximate

Schur vector.
4. DefEne vy := s.
5. If approximation not satisfactory go to 1.

6. Else defne h;; = (Avg,v;) , t =1, .., k,



Thus, for k& = 2:

* * * *
* * * * *

* * * * * *
* * * * * *

w Similar techniques in Subspace iteration [G. Stewart’s SRRIT]



Example:| Matrix Mark(10) — small Markov chain matrix (N = 55).

w First eigenpair by iterative Arnoldi with m = 10.

m Re(N) Im(A) |Res. Norm
10/0.9987435899D+00| 0.0 0.246D-01
2010.9999523324D+00| 0.0 0.144D-02
30/0.1000000368D+01| 0.0 0.221D-04
4010.1000000025D+01| 0.0 0.508D-06
50/0.9999999996D+00| 0.0 0.138D-07




w Computing the next 2 eigenvalues of Mark(10).

Eig. | Mat-Vec’s Re(N) SIm(A) Res. Norm

2 60/ 0.9370509474, 0.0 | 0.870D-03
69/0.9371549617, 0.0 | 0.175D-04
7810.9371501442| 0.0 | 0.313D-06
87/0.9371501564, 0.0 | 0.490D-08

3 96/0.8112247133| 0.0 | 0.210D-02
104 /0.8097553450, 0.0 | 0.538D-03
112 /0.8096419483 0.0 | 0.874D-04

152/0.8095717167, 0.0 | 0.444D-07




PRECONDITIONING - DAVIDSON’S METHOD




Preconditioning eigenvalue problems

w Goal: To extract good approximations to add to a subspace in a

projection process. Result: faster convergence.

w Best known technique: Shift-and-invert; Work with
B=(A—-o0oI)"1

w Some success with polynomial preconditioning [Chebyshev iter-

ation / least-squares polynomials]. Work with
B = p(A)

w Above preconditioners preserve eigenvectors. Other methods

(Davidson) use a more general preconditioner M.
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Shift-and-invert preconditioning

Main idea: to use Arnoldi, or Lanczos, or subspace iteration for the

matrix B = (A — oI)~'. The matrix B need not be computed

explicitly. Each time we need to apply B to a vector we solve a

system with B.

w Factor B = A — oI = LU. Then each solution Bx = y requires

solving Lz =yand Ux = z.
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How to deal with complex shifts?

w If Ais complex need to work in complex arithmetic.

w If A is real, it is desirable that Arnoldi/ Lanczos algorithms work

with a real matrix.

» Idea: Instead of using B = (A — oI) ! use
By =Re(A—ol)™' = [(A-o)7 +(A-5D)7]

B.=SmA—-ol)'=_[(A—ocl)™ —(A—0aI)™"

w Little difference between the two.

w Result: (B = 0(A —oI) (A — &I)|with 8 = Sm(o).
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Preconditioning by polynomials

Malin idea:

Iterate with p(A) instead of A in Arnoldi or Lanczos,..

w Used very early on in subspace iteration [Rutishauser, 1959.]

w Usually not as reliable as Shift-and-invert techniques but less

demanding in terms of storage.
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Question: How to £nd a good polynomial (dynamically)?

1 I Use of Chebyshev polynomials over ellipses

2 IUse polynomials based on Leja points

Approaches: 3 I Least-squares polynomials over polygons

4 IPonnomiaIs from previous Arnoldi decomposi-

tions
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Polynomial £lters and implicit restart

w Goal: to apply polynomial £Iter of the form

p(t) = (t — 0:)(t — 0)...(t—8,)

by exploiting the Arnoldi procedure.

Assume AV, = V., Hp, + BimVm 1€l
and consider £rst factor: (t — 6,)
(A—60.1)Vy, = Vi (Hy, — 011) + ,Bmvmﬂe%;
Let H,,, — 611 = Q. R;. Then,
(A—60,1)V,, = Vp,Q1R1 + Bivmire., —
(A —6:1)(VQ1) = (ViaQ1)R1Q1 + Brvmiie, Q1 —
A(VinQ1) = (ViQ1)(R1Q1 + 611) + Brmvmiier Q1
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Notation: R1Q1—|—911 = Hg), (bfgrl,,)_|_1 T = B%Ql; Vle =
V)

» AV = VOHO 4 4 (6, )T
» Note that H(Y is upper Hessenberg.

w Similar to an Arnoldi decompaosition.

Observe: I

w R.Q:+ 601 = matrix resulting from one step of the QR algorithm

with shift 8, applied to H,,.
» First column of VY is a multiple of (A — 6,1)v;.

» The columns of V(1) are orthonormal.
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Can now apply second shift in same way:

(A—=6:D)VV =VIO(H = 051) + v (b)) —

m—+1

Similar process: (H{Y — 6,I) = Q2 R, then x Q- to the right:

(A — 6.1V VQ; = (VIVQ2) (R2Q2) + vimi1 (B2, )T Q2

Av(2) — V(2)H(2) + ’Um+1(bm+1 T

Now:
First column of V() = scalar X (A — 0,I)v"

=scalar x(A — 0:1)(A — 6,1)v,
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» Note that B2 )T = el Q1Q2 = [0,0,---,0,q1, g2, q3]

w Let: V,,,_ 5 = [61,...,Dm_2] COnsist of £rst m — 2 columns of V()

and H,,_» = leading principal submatrix of H,,. Then

AVm—2 — Vm—2I:Im—2 + Bm—lﬁm—lefz with

Bnabm1 = @ompr + G, 00 (Onalla =1

w Result: An Arnoldi process of m — 2 steps with the initial vector
p(A)v;.

w In other words: We know how to apply polynomial £ltering via a

form of the Arnoldi process, combined with the QR algorithm.
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The Davidson approach

Goal: to use a more general preconditioner to introduce good new

components to the subspace.

w ldeal new vector would be eigenvector itself!

w Next best thing: an approximation to (A — pI)~'r where

r = (A — pnl)z, current residual.

w Approximation written in the form M ~1r. Note that M can vary at

every step if needed.
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ALGORITHM : 11. Davidson’s method (Real symmetric case)

1. Choose an initial unit vector v,. Set V; = [vq].
2. Until convergence Do:
3. Forjy =1,...,m Do:
4. w = Av;.
5. Update H; = V' AV
6. Compute the smallest eigenpair u, y of H;.
1. z:=Vy r:=Az — uz
8. Test for convergence. If satisEed Return
9. If j <m computet:= M;'r
10. compute V;; := ORTHN ([V;, t])
11. EndIf
12. Setwv; :=zandgoto3
13. EndDo
14. EndDo
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w Note: Traditional Davidson uses diagonal preconditioning: M; =

D—O'jI.

w Will work only for some matrices

Other options: I

w Shift-and-invert using ILU [negatives: expensive + hard to paral-

lelize.]
w Filtering (by averaging)
w Filtering by using smoothers (multigrid style)

w |terative solves [See Jacobi-Davidson]
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CONVERGENCE THEORY




The Lanczos Algorithm in the Hermitian Case

Assume eigenvalues sorted increasingly

AL S A< <Ay
w Orthogonal projection method onto K,,;

w To derive error bounds, use the Courant characterization

- . (Au,u)  (Auy,uy)

A1 = min — 7
u € K, u#0 (’U,, 'u/) (’U,]_, ul)
~ Au,u A, w;
Aj = min L ):(~J’~J)
w faf’...zzi-o_l (u, u) (uj, uj;)
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w Bounds for A\; easy to £nd — similar to linear systems.

w Ritz values approximate eigenvalues of A inside out:
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A-priori error bounds

Theorem [Kaniel, 1966]:

tan / (v, uq) 1

Trn—1(1 + 271)
A2—A

where v; = ey and /(vy,uq) = acute angle between v; and w;.

0 <A™ — X < (Av — )

+ results for other eigenvalues. [Kaniel, Paige, YS]

Theorem [YS,1980]

(m) tan / (05, u;) 17

0 <A™ — X, < Ax — A1) |
- S (A 1) | Tr—i(1 4+ 27;)

(m)
Jip=di o m) A A

where ~; = ;s
i AN—Xip1 7 1<t A;-m)—)\i

Calais February 7, 2005




Theory for nonhermitian case

w More difEcult. No convincing results on ‘global convergence’.
w Can get a general a-priori — a-posteriori error bound

Let P be the orthogonal projector onto K and

Q be the (oblique) projector onto K and orthogonally to L.

\QX,/ o QazeK,w—QmJ_
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Approximate problem amounts to solving
O(Ax — Ax) =0, * € K orinoperatorform QAPxz = Ax
w Set A, = QAP

THEOREM. Lety = || Q(A—AI)(I—7P)||2. Then the residual norms
of the pairs A\, Pu and A, u for the linear operator A,, satisfy,

respectively

[(Am — A Pu|lz < v[[(I — P)ull

[(Am — ADull2 < VIA2 + 42 (T = P)ullz -

Calais February 7, 2005




How to estimate ||(I — P)u;||27?

» Assume that A is diagonizable and expand v, in the eigen-basis

— NN ey

» Assume o; # 0, ||uj||2 = 1 for all 3. Then:

(I = Pl < &el™

where
&= X % and €™ = min max |p(A;)|
b iy ‘ fp <bn 3 77 ¢
p(A;)=1
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Particular case : = 1

w Assume: A(A)\{\1} is C anellipse E(c,e,a).

I mA(z)

Crn1 ()
"G ()
where C,,_1 = Chebyshev polynomial of degree m — 1 of the £rst

kind.

egm)
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HARMONIC RITZ VALUES




Harmonic Ritz values: Literature

e Morgan ‘91 [Hermitian case]

e Freund '93 [Non-Hermitian case, Starting point: GMRES]
e Morgan 93 [Nonhermitian case]

e Paige, Parlett, Van der Vorst ’95.

e Chapman & VY.S. '95. [use in Derated GMRES]

e Many publications in the 40s and 50s (Intermediate eigenvalue

problems, Lehman intervals, etc..)
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Harmonic Ritz values (continued)

Main idea: Itake L = AK in projection process

w In context of Arnoldi’s method. Write w = V,,,y then:

(A —A)V,,y L {AV,,}

Using AV,,, = V,,..H,, »

HEVE v, H.,y— AVy,y =0

=m  m+1

Notation: H,, = H,,— last row. Then

HYH,y — A\H7y =0
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or

(HHHm—I—h €me )y—)\HH

m—+1,m

Remark: I

Assume H,, is nonsingular and multiply both sides by H_*. Then,
the problem is equivalent to

(Hp, + zme)y = Ay
with z,, = h? H He,..

m+1lm~ " m

w Modifed from H,, only in the last column.
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Implementation within Davidson framework

w Slight varation to standard Davidson: Introduce z; = Mi—lfri to
subspace. Proceed as in FGMRES: v;11 = Orthn(Az;, V;).

w From Gram-Schmidt process:

Jj+1
AZj = 'Zl hz-j’vi
1=

» Hence the relation

AZ, = Vm—l—le
Approximation: A\, u = Z,,y
Galerkin Condition: » 1. AZ,, gives the generalized problem

HYH,, y=XHIVHE 7 4

m  m-+1
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Davidson’s algorithm and two variants

DAVIDSON’s ALGORITHM. 1

Start: select v;.

Fory; =1,...,m Do:
Update V¥ AV;.
Compute Ritz pair @, A
Compute r = Ad — Au
z = M1y
viy1 = ORTHN (z,V;)

EndDo

DAVIDSON’S ALGORITHM. 2

Start: select r.

Forjy; =1,...,m Do:
z = M1y
v; = ORTHN (z,V;_)
Compute w = Av; and
Update V¥ AV;.
Compute Ritz pair @, A
Compute r = Ad — Au

EndDo

w Difference: start with a preconditioning operation instead of a

matvec. In general minor differences.
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HARMONIC DAVIDSON

Start: select r. Set vy = r/||r||2.
Forg =1,...,m Do:

z; = M~ 'r

Compute w = Az; and

vjy1 = ORTHN (w, Vj, h.;);

_ gH _ gHyH 7. .
Update G = H; H;, and S = H; V.1, Z;

~

Compute Ritz pair u, X :
Gy = 5\Sy, u = Z,
Compute r = Aé — Au

EndDo

w Arnoldi part identical with that of FGMRES.
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Relation with GMRES (Freund ’91)

The Harmonic Ritz values are the roots of the ‘GMRES’ polyno-
mial:
m — ] s A
Ym =arg = min_ = ||%(A)ro]

Proof. GMRES condition is:

Bv, — AV,,y L {AV,}
Ym(A)vy L {AV,,,}
(A= XNI)Viy: L {AV,,}
» Same condition as that of Harmonic Ritz projection. » \; = Ritz
harmonic value, u; = V,,,y; = Ritz Harmonic vector.
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Harmonic values and interior eigenvalues

Let 2 = A~ '@ and rewrite the condition [A — A4 L AK as:
AN T—AY2 1L z2€lL

w Orthogonal projection method for A—1.

w | Note: This is NOT shift-and-invert in disguise|.

w Space of approximants is the same as for standard projection.

» Interesting consequence for Hermitian case.
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Harmonic Ritz projection in the Hermitian Case

Order eigenvalues increasingly:

AL S A S s S Ay

w Recall: Ritz values approximate eigenvalues of A inside out:

IIIIIIIIIIIIIII
lllllllllllllll

» Defne: KO ={x €¢ K | x L @,u,...9,—1} (KY = K).
Then

(Az,z)
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w Apply principle to Harmonic Ritz values »

~ ~

ATPSATE ATEAY — M > A A<

w Careful: treat positive and negative eigenvalues separately. Re-

sult: [Paige, Parlett, Van der Vorst '95]

— — 0 + +
ST S VU

AT AN

Ay
Assume for simplicity that A is SPD.

» Defne: KO ={x €¢ K | Az L Auy, Aty,...Ad;_ 1} (K® =

K). Then

Yy—1 (Az,x)
Ai — MaXy ¢ K; (Ax,Ax)
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Alternative Projections

w Eigenvalue problems are really non-linear systems of equations..

ldea: £nd p such (A — pI)V is nearly rank-de£cient

Leads to
det[VH(A — pI)2 (A — uI)V] =0

Assume p = real. Using AV,, = V,,..H —— quadratic problem
(HLH,, — p(Hm + HT) + p?I)y =0
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Alternative formulations

e det (VH(A — pI)V) = 0 — orthog. projection
e det ((AV)”(A — puI)V) = 0 — Harmonic projection

® 0min (A — puI)V) = 0 — SVD projection



Markov — chain Pb. N =1024; m =15

10 T T T T T T
*——k Restarted Arnoldi
v - =V Restarted Harmonic Krylov
10° O—-—:%  Restarted Krylov SVD i

dual
'_\
o

=
o

log 10 of resi

10

10

10

Numbers of iterations
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Iog10 of residual
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Introduction via Newton’s metod

Assumptions: M = A+ E and Az = uz
Goal: to £nd an improved eigenpair (¢ + 1, z + v).

w Write A(z +v) = (1 + n)(z + v) and neglect second order terms

+ rearrange w»
(M — pul)v —nz=—r with r=(A— ul)z

w Unknowns: n and v.
w Underdertermined system. Need one constraint.

w Add the condition: wv = 0 for some vector w.



In matrix form:
M —pl —2z\ (v —7
RFEEN RIS
w Eliminate v from second equation:

" o [ = L Zan)
0 wH(M — pI)~'2)\n) \wH(M — pI)~r

w Solution: [Olsen’s method]

wH(M — pI)~1r

- wH (M — pl)=1z v=—(M—pl)=(r —nz)

N

w When M = A, corresponds to Newton’s method for solving
(A—Alu =0

wlu = Constant



Note: Another way to characterize the solution is:

v=—(M — pl)lr +n(M — uI)"'z, mnsuchthat wlv =0

»w Involves inverse of (M — AI). Jacobi-Davidson rewrites solution

using projectors.

w Let P, be a projector in the direction of z which leaves r invariant.

It IS of the form

ZSH

P, =1—
sHz

where s L r. Similarly let P, any projector which leaves v In-

changed. Then the Olsen’s solution can be written as

[P.(M — pI)P,Jv=—r wlv=0

The two solutions are mathematically equivalent.
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The Jacobi-Davidson approach

w In orthogonal projection methods (e.g. Arnoldi) we have r L z

w Also it is natural to take w = z. Assume ||z||2 = 1

With the above assumptions, Olsen’s correction equation is mathe-

matically equivalent to £nding v such that :

(I — zz"Y(M — pI)(I — zz"Hv = —r vl =z

» Main attraction: can use iterative method for the solution of the

correction equation. (M -solves not explicitly required).
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Automatic Multi-Level Substructuring

Origin: Extention of substructuring for eigenvalue problems.

Background: Domain decomposition. Let A € C ™"*", Hermitian

B FE
E* C
Note: B is block-diagonal

A = ( ) B € ¢ (n—p)x(n—p)

w B= block-diagonal - represents local matrices -

w E represent coupling - C operates on interface variables.
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The problem Au = Au, can be written as:
B E\ /(4P uP
= )\
E* C)\a° T
Basic idea of the method for two levels

First step: I eliminate the blocks E, E*.

I —B'E
U =

B 0

0 S

) — U*AUz(
0 I

) . §S=C - E*B'E.

Original problem is equivalentto U*AUu = A\U*Uu —

P R B

» with Mg =1+ E*B*E
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Second step: I neglect the coupling in right-hand side matrix:

PO B T b
u = A\ u —
0 S MS S’lU:’l’]Ms’w

w Compute a few of the smallest eigenvalues of above problem.

Third step: I Build a 'good’ subspace to approximate to eigenfunc-

tions of original problem. For projection, use basis the form

. vi\ . R 0 .
v,-:( ) 1=1,...,mp; w; = 17=1,...,mg;,
0 ’UJj

where mp < (n — p) and mg < p.
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Then use this subspace for a Rayleigh-Ritz projection applied to

PP R R )

(Note: not the original problem.)

Final step: Iexploit recursion —

NOTE: algorithm does only one shot of descent - ascent (no iterative

Improvement).
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Spectral Schur complements

w Can interpret AMLS in terms of Schur complements. Start with
B E)\(uP uB
e ollus) =2
E* C)\u® u®
» For A ¢ A(B) defne S(A\)=C — E*(B—-\XI)"'E

When A & A(B)then A € A(A) < X € A(S(N)), i.e., iff

S(A)u® = Au®

Observation: I The Schur complement problem solved by AMLS

can be viewed as the problem resulting from £rst order approxima-

tion of S(A) around A = 0. |
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The standard expansion of the resolvent

(B—A)T'=B"1'Y ABH)r= ¥ AkBF 1,
k=0 k=0

around A\ = 0, leads to the series

S(A)=C—E*(B'+AB?>+XB3+...)E= s—k";" NE*B - 1E

=1

w Zeroth order approximation [~ shift-and-invert with zero shift]

Su® = \u®

w First order approximation [AMLS]
Su® = A\(I + E*B2E)u®

w Second order approximation [See Bekas and YS ’04]

Su® = A(I + E*B72E + AE*B3E)u®
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Approximating the eigenvectors

Let X, u® be an eigenpair of the nonlinear eigenvalue problem i.e.,

such that: S(A\)u® = Au® Then, X is an eigenvalue of A with

associated eigenvector:
—(B — \I)"'Eu® )

b

0 I S

S Uu
U(A)

u

w AMLS approximates the exact prolongator U () by U (0) = U,

w It then adds approximate eigenvectors from B to construct a

subspace of approximants to perform a projection process.
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w the space of approximants is spanned by the family of vectors:

) 17 )-vel)

J
in which v are eigenvectors of B associated with the smallest eigen-

values

w When X\ is small, then U()\) = U(0) — some simple bounds can
obtained for the distance between this space of approximants and

exact eigenvectors of A.
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Electronic structures and Shrodinger’s equation

w Determining matter’s electronic structure can be a major chal-

lenge: [a macroscopic amount contains =~ 102 electrons and nuclei]

w Solution via the many-body Shrodinger equation:

HY = EV
w The Hamiltonian H is very complex:

hzvzz h2V2 1 ZiZj€2 Zf,;62 1 62
R I T e
i 2M; i 2m 24,5 |Rz — RJ| 1,] |Rz — ’l"jl 2 1,j |’I“z' — ’I“jl

w Involves sums over all electrons / nuclei and their pairs in terms

Involving Laplaceans, distances betweens electrons /nuclei.
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Several approximations/theories used

w Born-Oppenheimer approximation: Neglects motion of nuclei [heav-

ler than electrons]

w Many electrons — one electron systems: each electron sees only

the average potential from other electrons/ nuclei.

Density Functional Theory: observable gquantities uniquely deter-
mined by ground state charge density. Consequence: Kohn-Sham

equations
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Kohn-Sham: I

[ h* p(r')

rc

—— V2 +v(r) + | dr’ + 0 U(r) = EY(r)

2m lr — /| op

» vy = external potential, E,. = exchange-correlation enery

w Local Density Approximation: exchange-correlation energy FE,.

IS a simple known funtion

w Pseudopotentials: replace effect of core (inner shell) electrons of

the system by an effective potential
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» In the end:
— 22V + Vietlp(r), 7] ¥ (r) = E¥(r)
With
Wot — ‘/tion + VH + Vccc

e Vy = Hartree potential
» | ocal

e V,..=Exchange & Correlation potential
e V,,, = lonic potential » Non-Local

w Electron Density:
p(r) == [¥,(r)|?

w Above problem can be viewed as a nonlinear eigenvalue problem.
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The three potential terms

w Hartree Potential Vg is solution of the Poisson equation:

V2Vy = —4wp(r)
w Solve using Conjugate Gradient method once p is known.

w Potential V,. (exchange & correlation) is approximated by a po-
tential induced by a local density. [Local Density Approximation].

Valid for slowly varying p(r).

w Potential V;,, IS more complex: In matrix terms: a small-rank

matrix localized around each atom.
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Self Consistency

2 . )
L. l_zh—mvz + Viotlp(7), "“” V,(r) = E;¥Y;(r),t =1,...,27°"
2. plr) = 0 Wy (r) P
3. V2‘/H — —4:71'[)("") — ‘/tot — VH + Var:c -+ ‘/ion

w Both V. and Vg, depend on p.

w The potentials and charge densities must be self-consistent: Can

be viewed as a nonlinear eigenvalue problem
w Preferred approach: Broyden-type quasi-Newton technique
w Typically, a small number of iterations are required

w Not represented above: time stepping. |
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Resources

w ARPACK:
http://www.caam.rice.edu/software/ARPACK/indexold.html

w “Templates for the Solution of Algebraic Eigenvalue Problems: A
Practical Guide”, Zhaojun Bai, James Demmel, Jack Dongarra, Axel
Ruhe, and Henk van der Vorst, SIAM, 2000.

w Matrix Algorithms, Vol 2, G. W. Stewart, SIAM, 2001

w Numerical Methods for Large Eigenvalue Problems, Y. Saad, avail-

able from

http://www.cs.umn.edu/~saad/books.html
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e The slides for this talk can be downloaded from my web site:

URL: http://www.cs.umn.edu/~saad
e Follow the “Teaching” icon [w Calais lecture notes]

e Will include all matlab scripts used for demonstrations

e My e-mail address:

e-mail: saad@cs.umn.edu
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MERCI DE VOTRE ATTENTION!
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The Test — Durée: 20mn

Quel nombre de couleurs trouveriez-vous si vous appliquiez
I’algorithme gourmand de coloriage a une matrice a 5 points [disc.

du Laplacien a 2-D - grille rectangulaire - point de depart = 1]

Montrez les tableaux AA, JA, IA utilisés pour stocker la ma-

trice creuse suivante en format CSR (compressed sparse row)?
1 2 0 O

3 4 0 5
0O 0 6 7
8 9 0 0

Lalgorithme “steepest descent” converge-t-il quand A # AT?
Quel (s) algorithmes de projection a une dimension convergent tou-

jours quand A est telle que A + AT est SDP?



A quelle methode de projection correspond l'algorithme du

gradient conjugué?

Quelles relations d’orthogonalite sont satisfaites par les residus
preconditiones z; de l'algorithme du gradient conjugue precondi-

tioné?

Quelle est la matrice de preconditionnement SSOR (w = 1)

pour une matrice A quelconque?

A guelle methode de projection correspond l'algorithme des

valeurs de Ritz harmoniques?

Quelle methode utiliseriez-vous pour calculer toutes les valeurs

propres d’une matrice symmetrique dense ?
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