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Outline

Part 1

• Introd., discretization of PDEs

• Sparse matrices and sparsity

• Basic iterative methods (Relax-

ation..)

Part 2

• Projection methods

• Krylov subspace methods

Part 3

• Preconditioned iterations

• Preconditioning techniques

• Parallel implementations

Part 4

• Eigenvalue problems

• Applications –
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INTRODUCTION - MOTIVATION
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Origins of Eigenvalue Problems

• Structural Engineering [Ku = λMu]

• Electronic structure calculations [Shrödinger equation..]

• Stability analysis [e.g., electrical networks, mechanical system,..]

• Bifurcation analysis [e.g., in ¤uid ¤ow]

II Large sparse eigenvalue problems are among the most demand-

ing calculations (in terms of CPU time) in scienti£c computing.
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New application in information technology

II Search engines (google) rank web-sites in order to improve searches

II The google toolbar on some browsers (http://toolbar.google.com)

- gives a measure of relevance of a page.

II The problem can be formulated as a Markov chain – Seek the

dominant eigenvector

II Algorithm used: power method

II For details see:

http://www.iprcom.com/papers/pagerank/index.html
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The Problem

We consider the eigenvalue problem

Ax = λx or Ax = λBx

Typically: B is symmetric (semi) positive de£nite, A is symmetric

or nonsymmetric

Requirements vary:

• Compute a few λi ’s with smallest or largest real parts;

• Compute all λi’s in a certain region of C ;

• Compute a few of the dominant eigenvalues;

• Compute all λi’s.
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Types of problems

* Standard Hermitian (or symmetric real) Ax = λx , AH = A

* Standard non-Hermitian Ax = λx , AH 6= A

* Generalized

Ax = λBx

Several distinct sub-cases (B SPD,B SSPD,B singular with large

null space, both A and B singular, etc..)

* Quadratic

(A+ λB + λ2C)x = 0

* Nonlinear

A(λ)x = 0
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EIGENVALUE PROBLEMS – BASICS

DENSE MATRIX CASE

• Background on eigenvalues/ eigenvectors/ Jordan form

• The Schur form

• Perturbation analysis, condition numbers..

• Power method, subspace iteration algorithms

• The QR algorithm

• Practical QR algorithms: use of Hessenberg form and shifts

• The symmetric eigenvalue problem.
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Basic de£nitions and properties

A complex scalar λ is called an eigenvalue of a square matrix A

if there exists a nonzero vector u in Cn such that Au = λu. The

vector u is called an eigenvector of A associated with λ. The set of

all eigenvalues of A is the ‘spectrum’ of A. Notation: Λ(A).

II λ ∈ Λ(A) iff the columns of A− λI are linearly dependent.

II ... equivalent to saying that its rows are linearly dependent. So:

there is a nonzero vector w such that

wH(A− λI) = 0

II wH is called a left eigenvector of A (u is a right eigenvector)

II λ ∈ Λ(A) iff det(A− λI) = 0
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Basic de£nitions and properties (cont.)

II An eigenvalue is a root of the Characteristic polynomial:

pA(λ) = det(A− λI)

II So there are n eigenvalues (counted with their multiplicities).

II The multiplicity of these eigenvalues as roots of pA are called

algebraic multiplicities.

II The geometric multiplicity of an eigenvalue λi is the number of

linearly independent eigenvectors associated with λi.
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II Geometric multiplicity is ≤ algebraic multiplicity.

II An eigenvalue is simple if its (algebraic) multiplicity is one.

II It is semi-simple if its geometric and algebraic multiplicities are

equal.

Example: Consider

A =















1 2 −4

0 1 2

0 0 2















What are the eigenvalues of A? their algebraic multiplicities? their

geometric multiplicities? Is one a semi-simple eigenvalue?

Same questions if a33 is replaced by one.
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II Two matrices A and B are similar if there exists a nonsingular

matrix X such that

B = XAX−1

II De£nition: A is diagonalizable if it is similar to a diagonal matrix

II THEOREM: A matrix is diagonalizable iff it has n linearly

independent eigenvectors

II THEOREM (Schur form): Any matrix is unitarily similar to a

triangular matrix, i.e., for any A there exists a unitary matrix Q

and an upper triangular matrix R such that

A = QRQH

II Any Hermitian matrix is unitarily similar to a real diagonal matrix,

(i.e. its Schur form is real diagonal).
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Special case: symmetric / Hermitian matrices

II Consider the Schur form of a real symmetric matrix A:

A = QRQH

Since AH = A then R = RH II

Eigenvalues of A are real

In addition, Q can be taken to be real when A is real.

(A− λI)(u+ iv) = 0→ (A− λI)u = 0 and (A− λI)v = 0

II Can select eigenvectors to be real.

There is an orthonormal basis of eigenvectors of A
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The min-max theorem

Label eigenvalues increasingly:

λ1 ≥ λ2 ≥ · · ·λn

The eigenvalues of a Hermitian matrix A are characterized by the

relation

λk = max
S, dim(S)=k

min
x∈S,x6=0

(Ax, x)

(x, x)

II Consequence:

λ1 = max
x6=0

(Ax, x)/(x, x) λn = min
x6=0

(Ax, x)/(x, x)
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The Law of interia

II A matrix A with m negative, z zero, and p positive eigenvalues,

has inertia [m, z, p].

Sylvester’s Law of inertia: If X is an n × n nonsingular matrix,

then A and XTAX have the same inertia.

Example: Suppose thatA = LDLT whereL is unit lower triangular,

and D diagonal. How many negative eigenvalues does A have?

Example: Assume that A is tridiagonal. How many operations are

required to determine the number of negative eigenvalues of A?

Example: Devise an algorithm based on the inertia theorem to com-

pute the i-th eigenvalue of a tridiagonal matrix.
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Perturbation analysis

II General questions: If A is perturbed how does an eigenvalue

change? How about an eigenvector?

II Also: sensitivity of an eigenvalue to perturbations

THEOREM [Gerschgorin]

∀ λ ∈ Λ(A), ∃ i such that |λ− aii| ≤
j=n
∑

j=1
j 6=i

|aij| .

II In words: An eigenvalue λ of A is located in one of the closed

discs D(aii, ρi) with ρi = ∑

j 6= i |aij| .
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Gerschgorin’s theorem - example

II Find a region of the complex plane where the eigenvalues of the

following matrix are located:

A =





















1 −1 0 0

0 2 0 1

−1 −2 −3 1

1
2

1
2

0 −4





















II Re£nement: if disks are all disjoint then each of them contains

one eigenvalue

II Re£nement: can combine row and column version of the theorem

(column version obtained by applying theorem to AH).
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Bauer-Fike theorem

THEOREM [Bauer-Fike] Let λ̃, ũ be an approximate eigenpair with

‖ũ‖2 = 1, and let r = Aũ − λ̃ũ (’residual vector’). Assume A is

diagonalizable: A = XDX−1, with D diagonal. Then

∃ λ ∈ Λ(A) such that |λ− λ̃| ≤ cond2(X)‖r‖2 .

II Very restrictive result - also not too sharp in general.

II Alternative formulation. If E is a perturbation to A then for any

eigenvalue λ̃ of A+ E there is an eigenvalue λ of A such that:

|λ− λ̃| ≤ cond2(X)‖E‖2 .

♦Prove this result from the previous one.
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Conditioning of Eigenvalues

II Assume that λ is a simple eigenvalue with right and left eigenvec-

tors u and wH respectively. Consider the matrices:

A(t) = A+ tE

II Eigenvalue λ(t), eigenvector u(t).

II Conditioning of λ of A relative to E is the |dλ(t)/dt| at t = 0.

II Write

A(t)u(t) = λ(t)u(t)

II then multiply both sides to the left by wH

wH(A+ tE)u(t) = λ(t)wHu(t) →

λ(t)wHu(t) = wHAu(t) + twHEu(t)

= λwHu(t) + twHEu(t).
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Hence,
λ(t)− λ

t
wHu(t) = wHEu(t)

II Take the limit at t = 0,

λ′(0) =
wHEu

wHu

II Note: the left and right eigenvectors associated with a simple

eigenvalue cannot be orthogonal to each other.

Actual conditioning of an eigenvalue, given a perturbation “in the

direction of E” is the modulus of the above quantity.

II In practice, one only has an estimate of ‖E‖ for some norm

|λ′(0)| ≤
‖Eu‖2‖w‖2

|(u,w)|
≤ ‖E‖2

‖u‖2‖w‖2

|(u,w)|
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De£nition. The condition number of a simple eigenvalue λ of an

arbitrary matrix A is de£ned by

cond(λ) =
1

cos θ(u,w)

in which u andwH are the right and left eigenvectors, respectively,

associated with λ.

Example: Consider the matrix

A =

















−149 −50 −154

537 180 546

−27 −9 −25

















II Λ(A) = {1, 2, 3}. Right and left eigenvectors associated with

λ1 = 1:

u =

















0.3162

−0.9487

0.0

















and w =

















0.6810

0.2253

0.6967
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So:

cond(λ1) ≈ 603.64

II Perturbing a11 to −149.01 yields the spectrum:

{0.2287, 3.2878, 2.4735}.

II as expected..

II For Hermitian (also normal matrices) every simple eigenvalue is

well-conditioned, since cond(λ) = 1.
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The power method

II Basic idea is to generate the sequence of vectors Akv0 where

v0 6= 0 – then normalize.

II Most commonly used normalization: ensure that the largest com-

ponent of the approximation is equal to one.

ALGORITHM : 1 The Power Method
1. Choose a nonzero initial vector v(0).

2. For k = 1, 2, . . . , until convergence, Do:

3. v(k) = 1
αk
Av(k−1) where

4. αk = argmaxi=1,...,n|(Av
(k−1))i|

5. EndDo

II argmaxi=1,..,n|xi| ≡ the component xi with largest modulus
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Convergence of the power method

THEOREM Assume that there is one and only one eigenvalue λ1

of A of largest modulus and that λ1 is semi-simple. Then either

the initial vector v0 has no component in the invariant subspace

associated with λ1 or the sequence of vectors generated by the

algorithm converges to an eigenvector associated with λ1 and αk

converges to λ1.

Proof in the diagonalizable case.

II vk is = vector Akv0 normalized by a certain scalar α̂k in such a

way that its largest component is 1.

II Decompose the initial vector v0 as v0 = ∑p
i=1 γiui where the ui’s

are the eigenvectors associated with the λi’s, i = 1, . . . , n.
Calais February 7, 2005 24

24



II Note that Akui = λpiui

vk =
1

scaling
×

n∑

i=1
λkiγiui

=
1

scaling
×




λk1γ1u1 +

n∑

i=2
λkiγ

k
i ui






=
1

scaling′
×







u1 +

n∑

i=2







λi

λ1







k γi

γ1

ui








II Second term inside bracket converges to zero. QED

II Proof suggests that the convergence factor is given by

ρD =
|λ2|

|λ1|

where λ2 is the second largest eigenvalue in modulus.

Example: Consider a ‘Markov Chain’ matrix of size n = 55. Dom-

inant eigenvalues are λ = 1 and λ = −1 II the power method

applied directly to A fails. (Why?)
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II We can consider instead the matrix I + A The eigenvalue λ = 1

is then transformed into the (only) dominant eigenvalue λ = 2

Iteration Norm of diff. Res. norm Eigenvalue

20 0.639D-01 0.276D-01 1.02591636

40 0.129D-01 0.513D-02 1.00680780

60 0.192D-02 0.808D-03 1.00102145

80 0.280D-03 0.121D-03 1.00014720

100 0.400D-04 0.174D-04 1.00002078

120 0.562D-05 0.247D-05 1.00000289

140 0.781D-06 0.344D-06 1.00000040

161 0.973D-07 0.430D-07 1.00000005
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The Shifted Power Method

II In previous example shifted A into B = A + I before applying

power method. We could also iterate with B(σ) = A + σI for any

positive σ

Example: With σ = 0.1 we get the following improvement.

Iteration Norm of diff. Res. Norm Eigenvalue

20 0.273D-01 0.794D-02 1.00524001

40 0.729D-03 0.210D-03 1.00016755

60 0.183D-04 0.509D-05 1.00000446

80 0.437D-06 0.118D-06 1.00000011

88 0.971D-07 0.261D-07 1.00000002
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II Question: What is the best shift-of-origin σ to use?

When all eigenvalues are real and such that

λ1 > λ2 ≥ λ2 ≥ · · · ≥ λn,

then the value of σ which yields the best convergence factor is:

σopt =
λ2 + λn

2
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Inverse Iteration

Observation: The eigenvectors of A and A−1 are identical.

II Idea: use the power method on A−1.

II Will compute the eigenvalues closest to zero.

II Shift-and-invert Use power method on (A− σI)−1 . II will com-

pute eigenvalues closest to σ.

II Advantages: fast convergence in general.

II Drawbacks: need to factor A (or A− σI) into LU..
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Subspace iteration

II Generalizes the power method

ALGORITHM : 2 Orthogonal iteration

1. Start: Q0 = [q1, . . . , qm]

2. Iterate: Until convergence do,

3. X := AQk−1

4. X = QkR (QR factorization)

5. EndDo

II Normalization in step 4 is similar to the scaling used in the power

method.

II Improvement: normalize only once in a while.
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ALGORITHM : 3 Subspace Iteration with Projection

Start: Choose Q0 = [q0, . . . , qm]

Iterate: For k = 1, . . . , until convergence do:

Compute Ẑ = AQk−1.

Ẑ = ZRZ (QR factorization)

B = ZHAZ

Compute the Schur factorization B = Y RY H

Qk = ZY

EndDo

II Again: no need to orthogonalize + project at each step.

II Assume |λ1| ≥ |λ2| ≥ · · · |λm| >|λm+1| ≥ · · · ≥ |λn|, then

convergence rate for λ1 is (generally)

|λm+1/λ1|
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The QR algorithm

II The most common method for solving small (dense) eigenvalue

problems. The basic algorithm:

ALGORITHM : 4 QR without shifts

1. Until Convergence Do:

2. Compute the QR factorization A = QR

3. Set A := RQ

4. EndDo

II “Until Convergence” means “Until A becomes close enough to

an upper triangular matrix”
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II Note: Anew = RQ = QH(QR)Q = QHAQ

II Anew is similar to A throughout the algorithm .

II Above basic algorithm is never used in practice. Two variations:

(1) use shift of origin and

(2) Transform A into Hessenberg form..
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Practical QR: Shifts of origin

Observation: (from theory): Last row converges fastest. Conver-

gence is dictated by |λn|
|λn−1|

II We will now consider only the real symmetric case.

II Eigenvalues are real.

II A(k) remains symmetric throughout process.

II As k goes to in£nity the last column and row (except a(k)
nn) con-

verge to zero quickly.,,

II and a(k)
nn converges to lowest eigenvalue.
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A(k) =




































. . . . . a

. . . . . a

. . . . . a

. . . . . a

. . . . . a

a a a a a a




































II Idea: Apply QR algorithm to A(k) − µI with µ = a(k)
nn. Note:

eigenvalues of A(k) − µI are shifted by µ, and eigenvectors are the

same.
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ALGORITHM : 5 QR with shifts

1. Until row ain, 1 ≤ i < n converges to zero DO:

2. Obtain next shift (e.g. µ = ann)

3. A− µI = QR

5. Set A := RQ+ µI

6. EndDo

II Convergence is cubic at the limit! [for symmetric case]
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II Result of algorithm:

A(k) =




































. . . . . 0

. . . . . 0

. . . . . 0

. . . . . 0

. . . . . 0

0 0 0 0 0 λn




































II Next step: de¤ate, i.e., apply above algorithm to (n−1)× (n−1)

upper triangular matrix.
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Practical QR: Use of the Hessenberg Form

Recall: Upper Hessenberg matrix is such that

aij = 0 for j < i− 1

Observation: The QR algorithm preserves Hessenberg form (tridi-

agonal form in symmetric case). Results in substantial savings.

II 1-st step: reduce A to Hessenberg form. Then (2nd step) apply

QR algorithm to resulting matrix.

II It is easy to adapt the Householder factorization to reduce a ma-

trix into Hessenberg form – [similarity transformation]

II Consider the £rst step only on a 6× 6 matrix.
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II
We want H1AH

T
1 = H1AH1

to have the form:

































? ? ? ? ? ?

? ? ? ? ? ?

0 ? ? ? ? ?

0 ? ? ? ? ?

0 ? ? ? ? ?

0 ? ? ? ? ?

































II Choose a w in H1 = I − 2wwT so that (H1A)[2 : n, 1] = 0

II Apply to left B = H1A. Then apply to right A1 = BH1.

Observation: the Householder matrix H1 which transforms the

column A(:, 1) into e1 works only on rows 2 to n. When applying

HT
1 to the right of B = H1A, only columns 2 to n will be altered

II 1st column retains the same pattern (zeros below row 2)
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QR for Hessenberg matrices

II Need the “implicit Q theorem”

Suppose that QTAQ is an unreduced upper Hessenberg matrix.

Then columns 2 to n of Q are determined uniquely (up to signs)

by the £rst column of Q.

Implication: In order to compute Ai+1 = QT
i AQi we can:

II Compute the £rst column of Qi [easy: = scalar ×A(:, 1)]

II Choose other columns so Qi = unitary, and Ai+1 = Hessenberg.
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Example: With n = 6 : A =



























∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗

0 0 ∗ ∗ ∗

0 0 0 ∗ ∗



























1. Choose G1 =

G(1, 2, θ1) so that

(G1A)21 = 0

II A1 = GT
1AG1 =



























∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

+ ∗ ∗ ∗ ∗

0 0 ∗ ∗ ∗

0 0 0 ∗ ∗
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2. Choose G2 =

G(2, 3, θ2) so that

(G2A1)31 = 0

II A2 = GT
2A1G2 =



























∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗

0 + ∗ ∗ ∗

0 0 0 ∗ ∗



























3. Choose G3 =

G(3, 4, θ3) so that

(G3A2)42 = 0

II A3 = GT
3A2G3 =



























∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗

0 0 ∗ ∗ ∗

0 0 + ∗ ∗
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4. Choose G4 =

G(4, 5, θ4) so that

(G4A3)53 = 0

II A4 = GT
4A3G4 =



























∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗

0 0 ∗ ∗ ∗

0 0 0 ∗ ∗



























II Process known as “Bulge chasing”

II Similar idea for the symmetric (tridiagonal) case
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The QR algorithm for symmetric matrices

II Most important method used : reduce to tridiagonal form and

apply the QR algorithm with shifts.

II Householder transformation to Hesseenberg form yields a tridi-

agonal matrix because

HAHT = A1

is symmetric and also of Hessenberg form II it is tridiagonal sym-

metric.

Tridiagonal form is preserved by QR similarity transformation

Calais February 7, 2005 44

44



Practical method

II How to implement the QR algorithm with shifts?

II It is best to use Givens rotations – can do a shifted QR step

without explicitly shifting the matrix..

II Two most popular shifts:

s = ann and s = smallest e.v. of A(n− 1 : n, n− 1 : n)
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THE SINGULAR VALUE DECOMPOSITION

• The SVD – existence - properties.

• Pseudo-inverses and the SVD

• Use of SVD for least-squares problems

• Applications of the SVD
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The Singular Value Decomposition (SVD)

For any real n ×m matrix A there exists orthogonal matrices U ∈

Rn×n and V ∈ Rm×m such that

A = UΣV T

where Σ is a diagonal matrix with nonnegative diagonal entries.

σ11 ≥ σ22 ≥ · · ·σpp ≥ 0 with p = min(m,n)

II The σii are called singular values of A. Denoted simply by σi.

Proof: [one among many!] Let σ1 = ‖A‖2 = maxx,‖x‖2=1 ‖Ax‖2

There exists a pair of unit vectors v1, u1 such that

Av1 = σ1u1
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II Complete v1 into an orthonormal basis of Rm

V ≡ [v1, V2] = m×m unitary

II Complete u1 into an orthonormal basis of Rm

U ≡ [u1, U2] = n× n unitary

II Then, it is easy to show that

AV = U ×








σ1 wT

0 B







→ UTAV =








σ1 wT

0 B







≡ A1

II Observe that
∥
∥
∥
∥
∥
∥
∥

A1






σ1

w






∥
∥
∥
∥
∥
∥
∥2
≥ σ2

1 + ‖w‖
2 =

√

σ2
1 + ‖w‖

2

∥
∥
∥
∥
∥
∥
∥






σ1

w






∥
∥
∥
∥
∥
∥
∥2

II This shows that w must be zero [why?]

II Complete the proof by an induction argument.
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Case 1:

=

V

UA

T

Σ

Case 2:

A U Σ
V

=

T

Calais February 7, 2005 49

49



The “thin” SVD

II Consider the Case-1. It can be rewritten as

A = [U1U2]








Σ1

0







V T

Which gives:

A = U1Σ1 V
T

where U1 is n×m (same shape as A), and Σ1 and V are m×m

II referred to as the “thin” SVD. Important in practice.

♦Show how to obtain the thin SVD from the QR factorization of A

and the SVD of an m×m matrix
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Some properties. Assume that

σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and σr+1 = · · · = σp = 0

Then:

• rank(A) = r = number of nonzero singular values.

• Ran(A) = span{u1, u2, . . . , ur}

• Null(A) = span{vr+1, vr+2, . . . , vm}

• The matrix A admits the SVD expansion:

A =
r∑

i=1
σiuiv

T
i
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Properties of the SVD (continued)

• ‖A‖2 = σ1 = largest singular value

• ‖A‖F =
(
∑r
i=1 σ

2
i

)1/2

• When A is an n × n nonsingular matrix then ‖A−1‖2 = 1/σn =

inverse of smallest s.v.

Let k < r and

Ak =
k∑

i=1
σiuiv

T
i

then

min
rank(B)=k

‖A−B‖2 = ‖A−Ak‖2 = σk+1
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De£ne the r × r matrix

Σ1 = diag(σ1, . . . , σr)

II Let A ∈ Rn×m and consider now ATA (which is of size m×m)

ATA = V ΣTΣV T → ATA = V








Σ2
1 0

0 0








︸ ︷︷ ︸

m×m

V T

II This gives the spectral decomposition ofATA. Similarly, U gives

the eigenvectors of AAT .

AAT = U








Σ2
1 0

0 0








︸ ︷︷ ︸

n×n

UT

Important: ATA = V D1V
T and AAT = UD2U

T give the SVD

factors U, V up to signs!
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♦Compute the singular value decomposition the matrix:

A =








1 0 2 0

0 0 −2 1








♦Find the matrixB of rank 1 which is the closest to the above matrix

in the 2-norm sense.

♦What is the pseudo-inverse of A? What is the pseudo-inverse of

B?

♦Find the vector x of smallest norm which minimizes ‖b − Ax‖2

with b = (1, 1)T

♦Find the vector x of smallest norm which minimizes ‖b − Bx‖2

with b = (1, 1)T
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Pseudo-inverse of an arbitrary matrix

The pseudo-inverse of A is given by

A† = V








Σ−1
1 0

0 0







UT

Moore-Penrose conditions: The pseudo inverse of a matrix is uniquely

determined by these four conditions:
(1) AXA = A (2) XAX = X

(3) (AX)H = AX (4) (XA)H = XA

II In the full-rank overdetermined case, A† = (ATA)−1AT
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Least-squares problems and the SVD

II SVD can give much information about solving overdetermined

and underdetermined linear systems –

Let A be an n ×m matrix and A = UΣV its SVD with r =

rank(A), V = [v1, . . . , vm] U = [u1, . . . , un]. Then

xLS =
r∑

i=1

uTi b

σi
vi

minimizes ‖b−Ax]‖2 and has the smallest 2-norm among all

possible minimizers. In addition,

ρLS ≡ ‖b−AxLS‖2 = ‖z‖2 with z = [ur+1, . . . , un]
Tb
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Least-squares problems and pseudo-inverses

II A restatement of the £rst part of the previous result:

Consider the general linear least-squares problem

min
x ∈ S

‖x‖2 S = {x ∈ Rm | ‖b−Ax‖2 min}

This problem always has a unique solution given by

x = A†b
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Ill-conditioned systems and the SVD

II Let A be n× n (square matrix) and A = UΣV T its SVD

II Solution of Ax = b is x = A−1b = ∑n
i=1

uTi b

σi
vi

II When A is very ill-conditioned, it may have many small

singular values. The division by these small σi’s will amplify any

noise in the data. Result: solution may be meaningless.

II Remedy: use regularization, i.e., truncate the SVD by only

keeping the σ′is that are larger than a threshold τ .

II This gives the truncated SVD solution (SVD regularization:)

xTSV D =
∑

σi≥τ

uTi b

σi
vi

II Many applications [e.g., Image processing,..]
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Numerical rank and the SVD

II Assume that the original matrix A is exactly of rank k.

II The computed SVD ofA will be the SVD of a nearby matrixA+E.

II Easy to show that |σ̂i − σi| ≤ α σ1eps

II Result: zero singular values will yield small computed singular

values

II Determining the “numerical rank:” treat singular values below a

certain threshold δ as zero. Practical problem : need to set δ.
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LARGE SPARSE EIGENVALUE PROBLEMS
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General Tools for Solving Large Eigen-Problems

II Projection techniques – Arnoldi, Lanczos, Subspace Iteration;

II Preconditioninings: shift-and-invert, Polynomials, ...

II De¤ation and restarting techniques

Good computational codes combine these three ingredients
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A few popular solution Methods

• Subspace Iteration [Now less popular – sometimes used for vali-

dation]

• Arnoldi’s method (or Lanczos) with polynomial acceleration [Stiefel

’58, Rutishauser ’62, YS ’84,’85, Sorensen ’89,...]

• Shift-and-invert and other preconditioners. [Use Arnoldi or Lanc-

zos for (A− σI)−1.]

• Davidson’s method and variants, Generalized Davidosn’s method

[Morgan and Scott, 89], Jacobi-Davidsion

• Emerning method: Automatic Multilevel Substructuring (AMLS).
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Projection Methods for Eigenvalue Problems

General formulation:

Projection method onto K orthogonal to L

II Given: Two subspaces K and L of same dimension.

II Find: λ̃, ũ such that

λ̃ ∈ C , ũ ∈ K; (λ̃I −A)ũ ⊥ L

Two types of methods:

Orthogonal projection methods: situation when L = K.

Oblique projection methods: When L 6= K.
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Rayleigh-Ritz projection

Given: a subspace X known to contain good approximations to

eigenvectors of A.

Question: How to extract good approximations to eigenvalues/

eigenvectors from this subspace?

Answer: Rayleigh Ritz process.

Let Q = [q1, . . . , qm] an orthonormal basis of X. Then write an

approximation in the form ũ = Qy and obtain y by writing

QH(A− λ̃I)ũ = 0

II QHAQy = λ̃y
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Procedure:

1. Obtain an orthonormal basis of X

2. Compute C = QHAQ (an m×m matrix)

3. Obtain Schur factorization of C, C = Y RY H

4. Compute Ũ = QY

Property: if X is (exactly) invariant, then procedure will yield exact

eigenvalues and eigenvectors.

Proof: SinceX is invariant, (A−λ̃I)u = Qz for a certain z. QHQz =

0 implies z = 0 and therefore (A− λ̃I)u = 0.

II Can use this procedure in conjunction with the subspace ob-

tained from subspace iteration algorithm
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Subspace Iteration

II Original idea: projection technique onto a subspace if the form

Y = AkX

II In practice: Replace Ak by suitable polynomial [Chebyshev]

Advantages:
• Easy to implement (in symmetric case);

• Easy to analyze;

Disadvantage: Slow.

II Often used with polynomial acceleration: AkX replaced byCk(A)X.

Typically Ck = Chebyshev polynomial.
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Algorithm: Subspace Iteration with Projection

1. Start: Choose an initial system of vectors X = [x0, . . . , xm]

and an initial polynomial Ck.

2. Iterate: Until convergence do:

(a) Compute Ẑ = Ck(A)Xold.

(b) Orthonormalize Ẑ into Z.

(c) Compute B = ZHAZ and use the QR algorithm to

compute the Schur vectors Y = [y1, . . . , ym] of B.

(d) Compute Xnew = ZY .

(e) Test for convergence. If satis£ed stop. Else select a new

polynomial C ′k′ and continue.
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THEOREM: Let S0 = span{x1, x2, . . . , xm} and assume that S0 is

such that the vectors {Pxi}i=1,...,m are linearly independent where

P is the spectral projector associated with λ1, . . . , λm. Let Pk the

orthogonal projector onto the subspace Sk = span{Xk}. Then for

each eigenvector ui of A, i = 1, . . . ,m, there exists a unique vector

si in the subspace S0 such that Psi = ui. Moreover, the following

inequality is satis£ed

‖(I − Pk)ui‖2 ≤ ‖ui − si‖2







∣
∣
∣
∣
∣
∣
∣
∣

λm+1

λi

∣
∣
∣
∣
∣
∣
∣
∣

+ εk







k

, (1)

where εk tends to zero as k tends to in£nity.
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KRYLOV SUBSPACE METHODS
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KRYLOV SUBSPACE METHODS

Principle: Projection methods on Krylov subspaces, i.e., on

Km(A, v1) = span{v1, Av1, · · · , A
m−1v1}

• probably the most important class of projection methods [for lin-

ear systems and for eigenvalue problems]

• many variants exist depending on the subspace L.

Properties of Km. Let µ = deg. of minimal polynom. of v. Then,

•Km = {p(A)v|p = polynomial of degree ≤ m− 1}

•Km = Kµ for all m ≥ µ. Moreover, Kµ is invariant under A.

• dim(Km) = m iff µ ≥ m.
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ARNOLDI’S ALGORITHM

II Goal: to compute an orthogonal basis of Km.

II Input: Initial vector v1, with ‖v1‖2 = 1 and m.

ALGORITHM : 6 Arnoldi’s procedure

For j = 1, ...,m do

Compute w := Avj

For i = 1, . . . , j, do







hi,j := (w, vi)

w := w − hi,jvi

hj+1,j = ‖w‖2; vj+1 = w/hj+1,j

End
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Result of Arnoldi’s algorithm
Let

Hm =

































x x x x x

x x x x x

x x x x

x x x

x x

x

































Hm =



























x x x x x

x x x x x

x x x x

x x x

x x



























1. Vm = [v1, v2, ..., vm] orthonormal basis of Km.

2. AVm = Vm+1Hm = VmHm + hm+1,mvm+1e
T
m

3. V T
mAVm = Hm ≡ Hm− last row.
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Appliaction to eigenvalue problems

II Write approximate eigenvector as ũ = Vmy + Galerkin condition

(A− λ̃I)Vmy ⊥ Km→ V H
m (A− λ̃I)Vmy = 0

II Approximate eigenvalues are eigenvalues of Hm

Hmyj = λ̃jyj

Associated approximate eigenvectors are

ũj = Vmyj

Typically a few of the outermost eigenvalues will converge £rst.
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Restarted Arnoldi

In practice: Memory requirement of algorithm implies restarting is

necessary

ALGORITHM : 7 Restarted Arnoldi (computes rightmost eigenpair)

1. Start: Choose an initial vector v1 and a dimension m.

2. Iterate: Perform m steps of Arnoldi’s algorithm.

3. Restart: Compute the approximate eigenvector u(m)
1

4. associated with the rightmost eigenvalue λ(m)
1 .

5. If satis£ed stop, else set v1 ≡ u
(m)
1 and goto 2.
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Example:

Small Markov Chain matrix [ Mark(10) , dimension = 55]. Restarted

Arnoldi procedure for computing the eigenvector associated with

the eigenvalue with algebraically largest real part. We use m = 10.

m <(λ) =(λ) Res. Norm

10 0.9987435899D+00 0.0 0.246D-01

20 0.9999523324D+00 0.0 0.144D-02

30 0.1000000368D+01 0.0 0.221D-04

40 0.1000000025D+01 0.0 0.508D-06

50 0.9999999996D+00 0.0 0.138D-07

Calais February 7, 2005 75

75



Restarted Arnoldi (cont.)

II Can be generalized to more than *one* eigenvector :

v(new)
1 =

p
∑

i=1
ρiu

(m)
i

II However: often does not work well – (hard to £nd good coef£-

cients ρi’s)

II Alternative : compute eigenvectors (actually Schur vectors) one

at a time.

II Implicit de¤ation.
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Hermitian case: The Lanczos Algorithm

II The Hessenberg matrix becomes tridiagonal :

A = AH and V H
m AVm = Hm → Hm = HH

m

II We can write

Hm =

































α1 β2

β2 α2 β3

β3 α3 β4

. . .

. . .

βm αm

































(2)

II Consequence: three term recurrence

βj+1vj+1 = Avj − αjvj − βjvj−1
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ALGORITHM : 8 Lanczos

1. Choose an initial vector v1 of norm unity. Set β1 ≡ 0, v0 ≡ 0

2. For j = 1, 2, . . . ,m Do:

3. wj := Avj − βjvj−1

4. αj := (wj, vj)

5. wj := wj − αjvj

6. βj+1 := ‖wj‖2. If βj+1 = 0 then Stop

7. vj+1 := wj/βj+1

8. EndDo

Hermitian matrix + Arnoldi→ Hermitian Lanczos

II In theory vi’s de£ned by 3-term recurrence are orthogonal.

II However: in practice severe loss of orthogonality;

Calais February 7, 2005 78

78



Observation [Paige, 1981]: Loss of orthogonality starts suddenly,

when the £rst eigenpair has converged. It is a sign of loss

of linear indedependence of the computed eigenvectors. When

orthogonality is lost, then several the copies of the same eigenvalue

start appearing.
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Reorthogonalization

II Full reorthogonalization – reorthogonalize vj+1 against all previ-

ous vi’s every time.

II Partial reorthogonalization – reorthogonalize vj+1 against all pre-

vious vi’s only when needed [Parlett & Simon]

II Selective reorthogonalization – reorthogonalize vj+1 against com-

puted eigenvectors [Parlett & Scott]

II No reorthogonalization – Do not reorthogonalize - but take mea-

sures to deal with ’spurious’ eigenvalues. [Cullum & Willoughby]
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LANCZOS BIORTHOGONALIZATION
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The Lanczos biorthogonalization (AH 6= A)

ALGORITHM : 9 The Lanczos Bi-Orthogonalization Procedure

1. Choose v1, w1 such that (v1, w1) = 1. Set β1 = δ1 ≡ 0, w0 = v0 ≡ 0

2. For j = 1, 2, . . . ,m Do:

3. αj = (Avj, wj) [ αj = (Avj − βjvj−1, wj) ]

4. v̂j+1 = Avj − αjvj − βjvj−1 [ v̂j+1 = (Avj − βjvj−1)− αjvj ]

5. ŵj+1 = AHwj − ᾱjwj − δjwj−1[ ŵj+1 = (AHwj − δjwj−1)− ᾱjwj]

6. δj+1 = |(v̂j+1, ŵj+1)|
1/2. If δj+1 = 0 Stop

7. βj+1 = (v̂j+1, ŵj+1)/δj+1

8. wj+1 = ŵj+1/β̄j+1

9. vj+1 = v̂j+1/δj+1

10. EndDo
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II Builds a pair of biorthogonal bases for the two subspaces

Km(A, v1) and Km(A
H, w1)

II Many choices for δj+1, βj+1 in lines 7 and 8. Only constraint:

δj+1βj+1 = (v̂j+1, ŵj+1)

Let

Tm =



























α1 β2

δ2 α2 β3

. . .

δm−1 αm−1 βm

δm αm



























.

II vi ∈ Km(A, v1) and wj ∈ Km(AT , w1).
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If the algorithm does not break down before step m, then

the vectors vi, i = 1, . . . ,m, and wj, j = 1, . . . ,m, are

biorthogonal, i.e.,

(vj, wi) = δij 1 ≤ i, j ≤ m .

Moreover, {vi}i=1,2,...,m is a basis of Km(A, v1) and

{wi}i=1,2,...,m is a basis of Km(AH, w1) and

AVm = VmTm + δm+1vm+1e
H
m,

AHWm =WmT
H
m + β̄m+1wm+1e

H
m,

WH
mAVm = Tm .

Calais February 7, 2005 84

84



II If θj, yj, zj are, respectively an eigenvalue of Tm, with associated

right and left eigenvectors yj and zj respectively, then correspond-

ing approximations for A are

Ritz value Right Ritz vector Left Ritz vector

θj Vmyj Wmzj

[Note: terminology is abused slightly - Ritz values and vectors nor-

mally refer to Hermitian cases.]
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Advantages and disadvantages

Advantages:

II Nice three-term recurrence – requires little storage in theory.

II Computes left and a right eigenvectors at the same time

Disadvantages:

II Algorithm can breakdown or nearly breakdown.

II Convergence not too well understood. Erratic behavior

II Not easy to take advantage of the tridiagonal form of Tm.
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Look-ahead Lanczos

Algorithm breaks down when:

(v̂j+1, ŵj+1) = 0

Three distinct situations.

II ‘lucky breakdown’ when either v̂j+1 or ŵj+1 is zero. In this case,

eigenvalues of Tm are eigenvalues of A.

II (v̂j+1, ŵj+1) = 0 but of v̂j+1 6= 0, ŵj+1 6= 0→ serious breakdown.

Often possible to bypass the step (+ a few more) and continue the

algorithm. If this is not possible then we get an ...

II ... Incurable break-down. [very rare]
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Look-ahead Lanczos algorithms deal with the second case. See

Parlett 80, Freund and Nachtigal ’90.... Main idea: when break-down

occurs, skip the computation of vj+1, wj+1 and de£ne vj+2, wj+2

from vj, wj. For example by orthogonalizing A2vj ... Can de£ne

vj+1 somewhat arbitrarily as vj+1 = Avj. Similarly for wj+1.

II Drawbacks: (1) projected problem no longer tridiagonal (2) dif£-

cult to know what constitutes near-breakdown.
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DEFLATION
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De¤ation

II Very useful in practice.

II Different forms: locking (subspace iteration), selective orthogo-

nalization (Lanczos), Schur de¤ation, ...
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A little background

Consider Schur canonical form

A = URUH

where U is a (complex) upper triangular matrix.

II Vector columns u1, . . . , un called Schur vectors.

II Note: Schur vectors depend on each other, and on the order of

the eigenvalues

91



Wiedlandt De¤ation: Assume we have computed a right eigenpair

λ1, u1. Wielandt de¤ation considers eigenvalues of

A1 = A− σu1v
H

Note:

Λ(A1) = {λ1 − σ, λ2, . . . , λn}

Wielandt de¤ation preserves u1 as an eigenvector as well all the left

eigenvectors not associated with λ1.

II An interesting choice for v is to take simply v = u1. In this case

Wielandt de¤ation preserves Schur vectors as well.
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II It is possible to apply this procedure successively:

ALGORITHM : 10 Explicit De¤ation

1. A0 = A

2. For j = 0 . . . µ− 1 Do:

3. Compute a dominant eigenvector of Aj

4. De£ne Aj+1 = Aj − σjuju
H
j

5. End

II Computed u1, u2., .. form a set of Schur vectors for A.

II Alternative: implicit de¤ation (within a procedure such as Arnoldi).
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De¤ated Arnoldi: When £rst eigenvector converges, we freeze

it as the £rst vector of Vm = [v1, v2, . . . , vm]. Arnoldi starts

working at column v2. Orthogonalization is still done against

v1, ..., vj at step j. Each new converged eigenvector will be

added to the ‘locked’ set of eigenvectors.
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For k = 1, . . . .NEV do: /* Eigenvalue loop */

1. For j = k, k + 1, ...,m do: /* Arnoldi loop*/

• Compute w := Avj.

• Orthonormalize w against v1, v2, . . . , vj → vj+1

2. Compute next approximate eigenpair λ̃, ũ.

3. Orthonormalize ũ against v1, . . . , vj II Result = s̃ = approximate

Schur vector.

4. De£ne vk := s̃.

5. If approximation not satisfactory go to 1.

6. Else de£ne hi,k = (Avk, vi) , i = 1, .., k,
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Thus, for k = 2:

Vm =







v1, v2
︸ ︷︷ ︸

Locked

,
active

︷ ︸︸ ︷

v3, . . . , vm








Hm =




















∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗




















II Similar techniques in Subspace iteration [G. Stewart’s SRRIT]
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Example: Matrix Mark(10) – small Markov chain matrix (N = 55).

II First eigenpair by iterative Arnoldi with m = 10.

m <e(λ) =m(λ) Res. Norm

10 0.9987435899D+00 0.0 0.246D-01

20 0.9999523324D+00 0.0 0.144D-02

30 0.1000000368D+01 0.0 0.221D-04

40 0.1000000025D+01 0.0 0.508D-06

50 0.9999999996D+00 0.0 0.138D-07
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II Computing the next 2 eigenvalues of Mark(10).

Eig. Mat-Vec’s <e(λ) =m(λ) Res. Norm

2 60 0.9370509474 0.0 0.870D-03

69 0.9371549617 0.0 0.175D-04

78 0.9371501442 0.0 0.313D-06

87 0.9371501564 0.0 0.490D-08

3 96 0.8112247133 0.0 0.210D-02

104 0.8097553450 0.0 0.538D-03

112 0.8096419483 0.0 0.874D-04
... ... ... ...
... ... ... ...

152 0.8095717167 0.0 0.444D-07
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PRECONDITIONING - DAVIDSON’S METHOD
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Preconditioning eigenvalue problems

II Goal: To extract good approximations to add to a subspace in a

projection process. Result: faster convergence.

II Best known technique: Shift-and-invert; Work with

B = (A− σI)−1

II Some success with polynomial preconditioning [Chebyshev iter-

ation / least-squares polynomials]. Work with

B = p(A)

II Above preconditioners preserve eigenvectors. Other methods

(Davidson) use a more general preconditioner M .
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Shift-and-invert preconditioning

Main idea: to use Arnoldi, or Lanczos, or subspace iteration for the

matrix B = (A − σI)−1. The matrix B need not be computed

explicitly. Each time we need to apply B to a vector we solve a

system with B.

II Factor B = A− σI = LU . Then each solution Bx = y requires

solving Lz = y and Ux = z.
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How to deal with complex shifts?

II If A is complex need to work in complex arithmetic.

II If A is real, it is desirable that Arnoldi/ Lanczos algorithms work

with a real matrix.

II Idea: Instead of using B = (A− σI)−1 use

B+ = <e(A− σI)−1 = 1
2

[

(A− σI)−1 + (A− σ̄I)−1
]

or

B− = =m(A− σI)−1 = 1
2i

[

(A− σI)−1 − (A− σ̄I)−1
]

II Little difference between the two.

II Result: B− = θ(A− σI)−1(A− σ̄I) with θ = =m(σ).
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Preconditioning by polynomials

Main idea:

Iterate with p(A) instead of A in Arnoldi or Lanczos,..

II Used very early on in subspace iteration [Rutishauser, 1959.]

II Usually not as reliable as Shift-and-invert techniques but less

demanding in terms of storage.
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Question: How to £nd a good polynomial (dynamically)?

Approaches:

1 Use of Chebyshev polynomials over ellipses

2 Use polynomials based on Leja points

3 Least-squares polynomials over polygons

4 Polynomials from previous Arnoldi decomposi-

tions
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Polynomial £lters and implicit restart

II Goal: to apply polynomial £lter of the form

p(t) = (t− θ1)(t− θ2) . . . (t− θq)

by exploiting the Arnoldi procedure.

Assume AVm = VmHm + βmvm+1e
T
m

and consider £rst factor: (t− θ1)

(A− θ1I)Vm = Vm(Hm − θ1I) + βmvm+1e
T
m

Let Hm − θ1I = Q1R1. Then,

(A− θ1I)Vm = VmQ1R1 + βmvm+1e
T
m →

(A− θ1I)(VmQ1) = (VmQ1)R1Q1 + βmvm+1e
T
mQ1 →

A(VmQ1) = (VmQ1)(R1Q1 + θ1I) + βmvm+1e
T
mQ1
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Notation: R1Q1+θ1I ≡ H(1)
m ; (b

(1)
m+1)

T ≡ eTmQ1; VmQ1 =

V (1)
m

II AV (1)
m = V (1)

m H(1)
m + vm+1(b

(1)
m+1)

T

II Note that H(1)
m is upper Hessenberg.

II Similar to an Arnoldi decomposition.

Observe:

II R1Q1+θ1I ≡matrix resulting from one step of the QR algorithm

with shift θ1 applied to Hm.

II First column of V (1)
m is a multiple of (A− θ1I)v1.

II The columns of V (1)
m are orthonormal.

Calais February 7, 2005 107

107



Can now apply second shift in same way:

(A− θ2I)V
(1)
m = V (1)

m (H(1)
m − θ2I) + vm+1(b

(1)
m+1)

T →

Similar process: (H (1)
m − θ2I) = Q2R2 then ×Q2 to the right:

(A− θ2I)V
(1)
m Q2 = (V (1)

m Q2)(R2Q2) + vm+1(b
(1)
m+1)

TQ2

AV (2)
m = V (2)

m H(2)
m + vm+1(b

(2)
m+1)

T

Now:
First column of V (2)

m = scalar ×(A− θ2I)v
(1)
1

= scalar ×(A− θ2I)(A− θ1I)v1
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II Note that (b
(2)
m+1)

T = eTmQ1Q2 = [0, 0, · · · , 0, q1, q2, q3]

II Let: V̂m−2 = [v̂1, . . . , v̂m−2] consist of £rst m− 2 columns of V (2)
m

and Ĥm−2 = leading principal submatrix of Hm. Then

AV̂m−2 = V̂m−2Ĥm−2 + β̂m−1v̂m−1e
T
m with

β̂m−1v̂m−1 ≡ q1vm+1 + h(2)
m−1,m−2v

(2)
m−1 ‖v̂m−1‖2 = 1

II Result: An Arnoldi process of m− 2 steps with the initial vector

p(A)v1.

II In other words: We know how to apply polynomial £ltering via a

form of the Arnoldi process, combined with the QR algorithm.
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The Davidson approach

Goal: to use a more general preconditioner to introduce good new

components to the subspace.

II Ideal new vector would be eigenvector itself!

II Next best thing: an approximation to (A− µI)−1r where

r = (A− µI)z, current residual.

II Approximation written in the formM−1r. Note thatM can vary at

every step if needed.
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ALGORITHM : 11 Davidson’s method (Real symmetric case)

1. Choose an initial unit vector v1. Set V1 = [v1].

2. Until convergence Do:

3. For j = 1, . . . ,m Do:

4. w := Avj.

5. Update Hj ≡ V T
j AVj

6. Compute the smallest eigenpair µ, y of Hj.

7. z := Vjy r := Az − µz

8. Test for convergence. If satis£ed Return

9. If j < m compute t :=M−1
j r

10. compute Vj+1 := ORTHN([Vj, t])

11. EndIf

12. Set v1 := z and go to 3

13. EndDo

14. EndDo
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II Note: Traditional Davidson uses diagonal preconditioning: Mj =

D − σjI.

II Will work only for some matrices

Other options:

II Shift-and-invert using ILU [negatives: expensive + hard to paral-

lelize.]

II Filtering (by averaging)

II Filtering by using smoothers (multigrid style)

II Iterative solves [See Jacobi-Davidson]
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CONVERGENCE THEORY
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The Lanczos Algorithm in the Hermitian Case

Assume eigenvalues sorted increasingly

λ1 ≤ λ2 ≤ · · · ≤ λn

II Orthogonal projection method onto Km;

II To derive error bounds, use the Courant characterization

λ̃1 = min
u ∈ K, u6=0

(Au, u)

(u, u)
=

(Aũ1, ũ1)

(ũ1, ũ1)

λ̃j = min{

u ∈ K, u6=0
u ⊥ũ1,...,ũj−1

(Au, u)

(u, u)
=

(Aũj, ũj)

(ũj, ũj)
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II Bounds for λ1 easy to £nd – similar to linear systems.

II Ritz values approximate eigenvalues of A inside out:

λ1 λ2

λ̃1 λ̃2

λn−1 λn

λ̃n−1 λ̃n
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A-priori error bounds

Theorem [Kaniel, 1966]:

0 ≤ λ(m)
1 − λ1 ≤ (λN − λ1)







tan 6 (v1, u1)

Tm−1(1 + 2γ1)







2

where γ1 =
λ2−λ1
λN−λ2

; and 6 (v1, u1) = acute angle between v1 and u1.

+ results for other eigenvalues. [Kaniel, Paige, YS]

Theorem [YS,1980]

0 ≤ λ
(m)
i − λi ≤ (λN − λ1)





κ

(m)
i

tan 6 (vi, ui)

Tm−i(1 + 2γi)







2

where γi =
λi+1−λi
λN−λi+1

, κ
(m)
i = ∏

j<i
λ

(m)
j −λN

λ
(m)
j −λi
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Theory for nonhermitian case

II More dif£cult. No convincing results on ‘global convergence’.

II Can get a general a-priori – a-posteriori error bound

Let P be the orthogonal projector onto K and

Q be the (oblique) projector onto K and orthogonally to L.

L

PQ xx

x

K
Px ∈ K, x− Px ⊥ K
Qx ∈ K, x−Qx ⊥ L

Calais February 7, 2005 117

117



Analysis

Approximate problem amounts to solving

Q(Ax− λx) = 0, x ∈ K or in operator form QAPx = λx

II Set Am ≡ QAP

THEOREM. Let γ = ‖Q(A−λI)(I−P)‖2. Then the residual norms

of the pairs λ,Pu and λ, u for the linear operator Am satisfy,

respectively

‖(Am − λI)Pu‖2 ≤ γ‖(I − P)u‖2

‖(Am − λI)u‖2 ≤
√

|λ|2 + γ2 ‖(I − P)u‖2 .
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How to estimate ‖(I − P)ui‖2?

II Assume that A is diagonizable and expand v1 in the eigen-basis

v1 =
∑N
j=1αjuj

II Assume αi 6= 0, ‖uj‖2 = 1 for all j. Then:

‖(I − P)ui‖2 ≤ ξiε
(m)
i

where

ξi =
∑

j 6=i

∣
∣
∣
∣
∣
∣
∣
∣

αj

αi

∣
∣
∣
∣
∣
∣
∣
∣

and ε
(m)
i = min{

p ∈Pm−1
p(λi)=1

max
j 6= i

|p(λj)|
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Particular case i = 1

II Assume: Λ(A)\{λ1} is ⊂ an ellipse E(c, e, a).

Re(z)

Im(z) 

c−a c+ac+ecc−e

ε(m)
1 ≤

Cm−1

(
a
e

)

|Cm−1

(

λ1−c
e

)

|

where Cm−1 = Chebyshev polynomial of degree m− 1 of the £rst

kind.
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HARMONIC RITZ VALUES
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Harmonic Ritz values: Literature

• Morgan ’91 [Hermitian case]

• Freund ’93 [Non-Hermitian case, Starting point: GMRES]

• Morgan ’93 [Nonhermitian case]

• Paige, Parlett, Van der Vorst ’95.

• Chapman & Y.S. ’95. [use in De¤ated GMRES]

• Many publications in the 40s and 50s (Intermediate eigenvalue

problems, Lehman intervals, etc..)
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Harmonic Ritz values (continued)

Main idea: take L = AK in projection process

II In context of Arnoldi’s method. Write ũ = Vmy then:

(A− λ̃I)Vmy ⊥ {AVm}

Using AVm = Vm+1Hm II

HH
mV

H
m+1

[

Vm+1Hmy − λ̃Vmy
]

= 0

Notation: Hm = Hm− last row. Then

HH
mHmy − λ̃H

H
my = 0
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or
(

HH
mHm + h2

m+1,meme
H
m

)

y = λ̃HH
my

Remark:

Assume Hm is nonsingular and multiply both sides by H−H
m . Then,

the problem is equivalent to
(

Hm + zme
H
m

)

y = λ̃y

with zm = h2
m+1,mH

−H
m em.

II Modi£ed from Hm only in the last column.
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Implementation within Davidson framework

II Slight varation to standard Davidson: Introduce zi = M−1
i ri to

subspace. Proceed as in FGMRES: vj+1 = Orthn(Azj, Vj).

II From Gram-Schmidt process:

Azj =
j+1
∑

i=1
hijvi

II Hence the relation

AZm = Vm+1H̄m

Approximation: λ, ũ = Zmy

Galerkin Condition: r ⊥ AZm gives the generalized problem

H̄H
mH̄m y = λ H̄H

mV
H
m+1Zm y
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Davidson’s algorithm and two variants

DAVIDSON’s ALGORITHM. 1

Start: select v1.

For j = 1, . . . ,m Do:

Update V H
j AVj.

Compute Ritz pair ũ, λ̃

Compute r = Aũ− λ̃u

z =M−1r

vj+1 = ORTHN(z, Vj)

EndDo

DAVIDSON’S ALGORITHM. 2

Start: select r.

For j = 1, . . . ,m Do:

z =M−1r

vj = ORTHN(z, Vj−1)

Compute w = Avj and

Update V H
j AVj.

Compute Ritz pair ũ, λ̃

Compute r = Aũ− λ̃u

EndDo

II Difference: start with a preconditioning operation instead of a

matvec. In general minor differences.
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HARMONIC DAVIDSON

Start: select r. Set v1 = r/‖r‖2.

For j = 1, . . . ,m Do:

zj =M−1r

Compute w = Azj and

vj+1 = ORTHN(w, Vj, h:,j);

Update G = HH
j Hj, and S = HH

j V
H
j+1Zj ;

Compute Ritz pair ũ, λ̃ :

Gy = λ̃Sy, ũ = Zjy

Compute r = Aũ− λ̃u

EndDo

II Arnoldi part identical with that of FGMRES.
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Relation with GMRES (Freund ’91)

The Harmonic Ritz values are the roots of the ‘GMRES’ polyno-

mial:

ψm = arg min
ψ ∈Pm, ψ(0)=1

= ‖ψ(A)r0‖2

Proof. GMRES condition is:

βv1 −AVmy ⊥ {AVm}

ψm(A)v1 ⊥ {AVm}

(A− λ̃iI)Vmyi ⊥ {AVm}

II Same condition as that of Harmonic Ritz projection. II λ̃i = Ritz

harmonic value, ũi = Vmyi = Ritz Harmonic vector.
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Harmonic values and interior eigenvalues

Let z̃ = A−1ũ and rewrite the condition [A− λ̃I]ũ ⊥ AK as:

[λ̃−1I −A−1]z̃ ⊥ L z̃ ∈ L

II Orthogonal projection method for A−1.

II Note: This is NOT shift-and-invert in disguise .

II Space of approximants is the same as for standard projection.

II Interesting consequence for Hermitian case.
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Harmonic Ritz projection in the Hermitian Case

Order eigenvalues increasingly:

λ1 ≤ λ2 ≤ · · · ≤ λn

II Recall: Ritz values approximate eigenvalues of A inside out:

λ1 λ2

λ̃1 λ̃2

λn−1 λn

λ̃n−1 λ̃n

II De£ne: K (i) = {x ∈ K | x ⊥ ũ1, ũ2, . . . ũi−1} (K(1) ≡ K).

Then

λ̃i = minx ∈ Ki

(Ax,x)
(x,x)
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II Apply principle to Harmonic Ritz values II

λ̃−1
1 ≤ λ−1

1 ; λ̃−1
n ≥ λ−1

n −→ λ̃1 ≥ λ1; λ̃n ≤ λn

II Careful: treat positive and negative eigenvalues separately. Re-

sult: [Paige, Parlett, Van der Vorst ’95]

λ−1λ−2

λ̃−1λ̃−2

λ+
1 λ+

2

λ̃+
1 λ̃+

2

•
0

Assume for simplicity that A is SPD.

II De£ne: K (i) = {x ∈ K | Ax ⊥ Aũ1, Aũ2, . . . Aũi−1} (K(i) ≡

K). Then

λ̃−1
i = maxx ∈ Ki

(Ax,x)
(Ax,Ax)
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Alternative Projections

II Eigenvalue problems are really non-linear systems of equations..

Idea: £nd µ such (A− µI)V is nearly rank-de£cient

Leads to

det[V H(A− µI)H(A− µI)V ] = 0

Assume µ = real. Using AVm = Vm+1H̄ −→ quadratic problem

(H̄T
mH̄m − µ(Hm +HT

m) + µ2I)y = 0
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Alternative formulations

• det
(

V H(A− µI)V
)

= 0→ orthog. projection

• det
(

(AV )H(A− µI)V
)

= 0→ Harmonic projection

• σmin ((A− µI)V ) = 0→ SVD projection
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JACOBI – DAVIDSON
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Introduction via Newton’s metod

Assumptions: M = A+ E and Az ≈ µz

Goal: to £nd an improved eigenpair (µ+ η, z + v).

II Write A(z+ v) = (µ+ η)(z+ v) and neglect second order terms

+ rearrange II

(M − µI)v − ηz = −r with r ≡ (A− µI)z

II Unknowns: η and v.

II Underdertermined system. Need one constraint.

II Add the condition: wHv = 0 for some vector w.

140



In matrix form:







M − µI −z

wH 0















v

η







=








−r

0








II Eliminate v from second equation:







M − µI −z

0 wH(M − µI)−1z















v

η







=








−r

wH(M − µI)−1r








II Solution: [Olsen’s method]

η =
wH(M − µI)−1r

wH(M − µI)−1z
v = −(M − µI)−1(r − ηz)

II When M = A, corresponds to Newton’s method for solving






(A− λI)u = 0

wTu = Constant
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Note: Another way to characterize the solution is:

v = −(M − µI)−1r + η(M − µI)−1z, η such that wHv = 0

II Involves inverse of (M − λI). Jacobi-Davidson rewrites solution

using projectors.

II Let Pz be a projector in the direction of z which leaves r invariant.

It is of the form

Pz = I −
zsH

sHz

where s ⊥ r. Similarly let Pw any projector which leaves v in-

changed. Then the Olsen’s solution can be written as

[Pz(M − µI)Pw]v = −r wHv = 0

The two solutions are mathematically equivalent.

Calais February 7, 2005 142

142



The Jacobi-Davidson approach

II In orthogonal projection methods (e.g. Arnoldi) we have r ⊥ z

II Also it is natural to take w ≡ z. Assume ‖z‖2 = 1

With the above assumptions, Olsen’s correction equation is mathe-

matically equivalent to £nding v such that :

(I − zzH)(M − µI)(I − zzH)v = −r v ⊥ z

II Main attraction: can use iterative method for the solution of the

correction equation. (M -solves not explicitly required).
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Automatic Multi-Level Substructuring

Origin: Extention of substructuring for eigenvalue problems.

Background: Domain decomposition. Let A ∈ C n×n, Hermitian

Γ

Ω
Ω1

2
→ A =








B E

E∗ C








B ∈ C (n−p)×(n−p)

Note: B is block-diagonal

II B= block-diagonal - represents local matrices -

II E represent coupling - C operates on interface variables.
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The problem Au = λu, can be written as:







B E

E∗ C















ũB

ũS







= λ








ũB

ũS








Basic idea of the method for two levels

First step: eliminate the blocks E,E∗.

U =








I −B−1E

0 I







→ U∗AU =








B 0

0 S







; S = C − E∗B−1E.

Original problem is equivalent to U ∗AUu = λU∗Uu→







B 0

0 S







u = λ








I −B−1E

−E∗B−1 MS







u ;

II with MS = I + E∗B−2E
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Second step: neglect the coupling in right-hand side matrix:








B 0

0 S







u = λ








I 0

0 MS







u →







Bv = µ v

Sw = η MSw

II Compute a few of the smallest eigenvalues of above problem.

Third step: Build a ’good’ subspace to approximate to eigenfunc-

tions of original problem. For projection, use basis the form






v̂i =





vi

0




 i = 1, . . . ,mB; ŵj =








0

wj








j = 1, . . . ,mS







,

where mB < (n− p) and mS < p.

Calais February 7, 2005 146

146



Then use this subspace for a Rayleigh-Ritz projection applied to







B 0

0 S















uB

uS







= λ








I −B−1E

−E∗B−1 MS















uB

uS








(Note: not the original problem.)

Final step: exploit recursion –

NOTE: algorithm does only one shot of descent - ascent (no iterative

improvement).
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Spectral Schur complements

II Can interpret AMLS in terms of Schur complements. Start with







B E

E∗ C















uB

uS







= λ








uB

uS








II For λ /∈ Λ(B) de£ne S(λ) = C − E ∗(B − λI)−1E

When λ /∈ Λ(B) then λ ∈ Λ(A)↔ λ ∈ Λ(S(λ)), i.e., iff

S(λ)uS = λuS

Observation: The Schur complement problem solved by AMLS

can be viewed as the problem resulting from £rst order approxima-

tion of S(λ) around λ = 0.
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The standard expansion of the resolvent

(B − λI)−1 = B−1 ∞∑

k=0
(λB−1)k =

∞∑

k=0
λkB−k−1,

around λ = 0, leads to the series

S(λ) = C−E∗
(

B−1 + λB−2 + λ2B−3 + . . .
)

E = S−
∞∑

k=1
λkE∗B−k−1E

II Zeroth order approximation [≈ shift-and-invert with zero shift]

SuS = λuS

II First order approximation [AMLS]

SuS = λ(I + E∗B−2E)uS

II Second order approximation [See Bekas and YS ’04]

SuS = λ(I + E∗B−2E + λE∗B−3E)uS
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Approximating the eigenvectors

Let λ, uS be an eigenpair of the nonlinear eigenvalue problem i.e.,

such that: S(λ)uS = λuS Then, λ is an eigenvalue of A with

associated eigenvector:







−(B − λI)−1EuS

uS







=








I −(B − λI)−1E

0 I








︸ ︷︷ ︸

U(λ)








0

uS








II AMLS approximates the exact prolongator U(λ) by U(0) ≡ U ;

II It then adds approximate eigenvectors from B to construct a

subspace of approximants to perform a projection process.
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II the space of approximants is spanned by the family of vectors:













vBi
0














,














−B−1EuSj

uSj







= U(0)








0

uS














,

in which vBi are eigenvectors ofB associated with the smallest eigen-

values

II When λ is small, then U(λ) ≈ U(0)→ some simple bounds can

obtained for the distance between this space of approximants and

exact eigenvectors of A.
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AN APPLICATION
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Electronic structures and Shrödinger’s equation

II Determining matter’s electronic structure can be a major chal-

lenge: [a macroscopic amount contains≈ 1023 electrons and nuclei]

II Solution via the many-body Shrödinger equation:

HΨ = EΨ

II The Hamiltonian H is very complex:

H = −
∑

i

h̄2∇2
i

2Mi

−
∑

j

h̄2∇2
j

2m
+
1

2

∑

i,j

ZiZje
2

|~Ri − ~Rj|
−

∑

i,j

Zie
2

|~Ri − ~rj|
+
1

2

∑

i,j

e2

|~ri − ~rj|

II Involves sums over all electrons / nuclei and their pairs in terms

involving Laplaceans, distances betweens electrons /nuclei.
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Several approximations/theories used

II Born-Oppenheimer approximation: Neglects motion of nuclei [heav-

ier than electrons]

II Many electrons→ one electron systems: each electron sees only

the average potential from other electrons/ nuclei.

Density Functional Theory: observable quantities uniquely deter-

mined by ground state charge density. Consequence: Kohn-Sham

equations
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Kohn-Sham:






−
h2

2m
∇2 + v0(r) +

∫ ρ(r′)

|r − r′|
dr′ +

δExc

δρ







Ψ(r) = EΨ(r)

II v0 = external potential, Exc = exchange-correlation enery

II Local Density Approximation: exchange-correlation energy Exc

is a simple known funtion

II Pseudopotentials: replace effect of core (inner shell) electrons of

the system by an effective potential
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II In the end:
[

− h2

2m
∇2 + Vtot[ρ(r), r]

]

Ψ(r) = EΨ(r)

With

Vtot = Vion + VH + Vxc

• VH = Hartree potential

• Vxc = Exchange & Correlation potential
II Local

• Vion = Ionic potential II Non-Local

II Electron Density:

ρ(r) = ∑occup
i |Ψi(r)|

2

II Above problem can be viewed as a nonlinear eigenvalue problem.
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The three potential terms

II Hartree Potential VH is solution of the Poisson equation:

∇2VH = −4πρ(r)

II Solve using Conjugate Gradient method once ρ is known.

II Potential Vxc (exchange & correlation) is approximated by a po-

tential induced by a local density. [Local Density Approximation].

Valid for slowly varying ρ(r).

II Potential Vion is more complex: In matrix terms: a small-rank

matrix localized around each atom.
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Self Consistency







1.
[

− h2

2m
∇2 + Vtot[ρ(r), r]

]

Ψi(r) = EiΨi(r), i = 1, ..., ioccup

2. ρ(r) = ∑occup
i |Ψi(r)|

2

3. ∇2VH = −4πρ(r) → Vtot = VH + Vxc + Vion

II Both Vxc and VH, depend on ρ.

II The potentials and charge densities must be self-consistent: Can

be viewed as a nonlinear eigenvalue problem

II Preferred approach: Broyden-type quasi-Newton technique

II Typically, a small number of iterations are required

II Not represented above: time stepping.
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Resources

II ARPACK:

http://www.caam.rice.edu/software/ARPACK/indexold.html

II “Templates for the Solution of Algebraic Eigenvalue Problems: A

Practical Guide”, Zhaojun Bai, James Demmel, Jack Dongarra, Axel

Ruhe, and Henk van der Vorst, SIAM, 2000.

II Matrix Algorithms, Vol 2, G. W. Stewart, SIAM, 2001

II Numerical Methods for Large Eigenvalue Problems, Y. Saad, avail-

able from

http://www.cs.umn.edu/∼saad/books.html
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The end

• The slides for this talk can be downloaded from my web site:

URL: http://www.cs.umn.edu/∼saad

• Follow the “Teaching” icon [II Calais lecture notes]

• Will include all matlab scripts used for demonstrations

• My e-mail address:

e-mail: saad@cs.umn.edu
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MERCI DE VOTRE ATTENTION!
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The Test – Durée: 20mn

1. Quel nombre de couleurs trouveriez-vous si vous appliquiez

l’algorithme gourmand de coloriage a une matrice a 5 points [disc.

du Laplacien a 2-D - grille rectangulaire - point de depart = 1]

2. Montrez les tableaux AA, JA, IA utilisés pour stocker la ma-

trice creuse suivante en format CSR (compressed sparse row)?




















1 2 0 0

3 4 0 5

0 0 6 7

8 9 0 0





















3. L’algorithme “steepest descent” converge-t-il quand A 6= AT?

Quel (s) algorithmes de projection a une dimension convergent tou-

jours quand A est telle que A+AT est SDP?
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4. A quelle methode de projection correspond l’algorithme du

gradient conjugué?

5. Quelles relations d’orthogonalite sont satisfaites par les residus

preconditiones zj de l’algorithme du gradient conjugue precondi-

tioné?

6. Quelle est la matrice de preconditionnement SSOR (ω = 1)

pour une matrice A quelconque?

7. A quelle methode de projection correspond l’algorithme des

valeurs de Ritz harmoniques?

8. Quelle methode utiliseriez-vous pour calculer toutes les valeurs

propres d’une matrice symmetrique dense ?
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