A short course on: Preconditioned Krylov subspace methods

Yousef Saad University of Minnesota Dept. of Computer Science and Engineering

Universite du Littoral, Jan 19-30, 2005

Outline

Part 1

- Introd., discretization of PDEs
- Sparse matrices and sparsity
- Basic iterative methods (Relax-

ation..)

Part 2

- Projection methods
- Krylov subspace methods

Part 3

- Preconditioned iterations
- Preconditioning techniques
- Parallel implementations

Part 4

- Eigenvalue problems
- Applications –

2

INTRODUCTION - MOTIVATION

Origins of Eigenvalue Problems

- Structural Engineering [$Ku = \lambda Mu$]
- Electronic structure calculations [Shrödinger equation..]
- Stability analysis [e.g., electrical networks, mechanical system,..]
- Bifurcation analysis [e.g., in ¤uid ¤ow]

► Large sparse eigenvalue problems are among the most demanding calculations (in terms of CPU time) in scienti£c computing.

New application in information technology

- Search engines (google) rank web-sites in order to improve searches
- The google toolbar on some browsers (http://toolbar.google.com)
- gives a measure of relevance of a page.
- The problem can be formulated as a Markov chain Seek the dominant eigenvector
- Algorithm used: power method
- **For details see:**

http://www.iprcom.com/papers/pagerank/index.html

The Problem

We consider the eigenvalue problem

$$Ax = \lambda x$$
 or $Ax = \lambda Bx$

Typically: B is symmetric (semi) positive de£nite, A is symmetric or nonsymmetric

Requirements vary:

- Compute a few λ_i 's with smallest or largest real parts;
- Compute all λ_i 's in a certain region of $\mathbb C$;
- Compute a few of the dominant eigenvalues;
- Compute all λ_i 's.

Types of problems

- * Standard Hermitian (or symmetric real) $Ax = \lambda x$, $A^H = A$
- * Standard non-Hermitian $Ax = \lambda x$, $A^H \neq A$

* Generalized

$$Ax = \lambda Bx$$

Several distinct sub-cases (B SPD, B SSPD, B singular with large null space, both A and B singular, etc..)

* Quadratic

$$(A+\lambda B+\lambda^2 C)x=0$$

* Nonlinear

$$A(\lambda)x=0$$

Calais February 7, 2005

EIGENVALUE PROBLEMS – BASICS

DENSE MATRIX CASE

- Background on eigenvalues/ eigenvectors/ Jordan form
- The Schur form
- Perturbation analysis, condition numbers..
- Power method, subspace iteration algorithms
- The QR algorithm
- Practical QR algorithms: use of Hessenberg form and shifts
- The symmetric eigenvalue problem.

Basic de£nitions and properties

A complex scalar λ is called an eigenvalue of a square matrix A if there exists a nonzero vector u in \mathbb{C}^n such that $Au = \lambda u$. The vector u is called an *eigenvector* of A associated with λ . The set of all eigenvalues of A is the 'spectrum' of A. Notation: $\Lambda(A)$.

 $\lambda \in \Lambda(A)$ iff the columns of $A - \lambda I$ are linearly dependent.

 \blacktriangleright ... equivalent to saying that its rows are linearly dependent. So: there is a nonzero vector w such that

 $w^H(A - \lambda I) = 0$

 $\blacktriangleright w^H$ is called a left eigenvector of A (u is a right eigenvector)

 $\blacktriangleright \lambda \in \Lambda(A) \text{ iff } \det(A - \lambda I) = 0$

Calais February 7, 2005

Basic de£nitions and properties (cont.)

► An eigenvalue is a root of the Characteristic polynomial:

$$p_A(\lambda) = \det(A - \lambda I)$$

 \blacktriangleright So there are *n* eigenvalues (counted with their multiplicities).

The multiplicity of these eigenvalues as roots of p_A are called algebraic multiplicities.

► The geometric multiplicity of an eigenvalue λ_i is the number of linearly independent eigenvectors associated with λ_i .

\blacktriangleright Geometric multiplicity is \leq algebraic multiplicity.

► An eigenvalue is simple if its (algebraic) multiplicity is one.

It is semi-simple if its geometric and algebraic multiplicities are equal.

Example: Consider

$$A=egin{pmatrix} 1 & 2 & -4 \ 0 & 1 & 2 \ 0 & 0 & 2 \end{pmatrix}$$

What are the eigenvalues of A? their algebraic multiplicities? their geometric multiplicities? Is one a semi-simple eigenvalue?

Same questions if a_{33} is replaced by one.

Two matrices A and B are similar if there exists a nonsingular matrix X such that

$$B = XAX^{-1}$$

De£nition: A is diagonalizable if it is similar to a diagonal matrix

THEOREM: A matrix is diagonalizable iff it has n linearly independent eigenvectors
 THEOREM (Schur form): Any matrix is unitarily similar to a triangular matrix, i.e., for any A there exists a unitary matrix Q and an upper triangular matrix R such that

 Any Hermitian matrix is unitarily similar to a real diagonal matrix, (i.e. its Schur form is real diagonal).

12

Special case: symmetric / Hermitian matrices

Consider the Schur form of a real symmetric matrix *A*:

 $A = QRQ^H$

Since $A^H = A$ then $R = R^H \triangleright$

Eigenvalues of *A* **are real**

In addition, Q can be taken to be real when A is real.

 $(A - \lambda I)(u + iv) = 0 \rightarrow (A - \lambda I)u = 0$ and $(A - \lambda I)v = 0$

Can select eigenvectors to be real.

There is an orthonormal basis of eigenvectors of A

The min-max theorem

Label eigenvalues increasingly:

$$\lambda_1 \geq \lambda_2 \geq \cdots \lambda_n$$

The eigenvalues of a Hermitian matrix A are characterized by the

relation

$$\lambda_k = \max_{S, ext{ dim}(S) = k} \quad \min_{x \in S, x
eq 0} \; \; rac{(Ax, x)}{(x, x)}$$

Consequence:

$$\lambda_1 = \max_{x
eq 0} (Ax,x)/(x,x) \qquad \lambda_n = \min_{x
eq 0} (Ax,x)/(x,x)$$

Calais February 7, 2005

A matrix A with m negative, z zero, and p positive eigenvalues, has inertia [m, z, p].

Sylvester's Law of inertia: If X is an $n \times n$ nonsingular matrix, then A and $X^T A X$ have the same inertia.

Example: Suppose that $A = LDL^T$ where L is unit lower triangular, and D diagonal. How many negative eigenvalues does A have?

Example: Assume that A is tridiagonal. How many operations are required to determine the number of negative eigenvalues of A?

Example: Devise an algorithm based on the inertia theorem to compute the *i*-th eigenvalue of a tridiagonal matrix.

Calais February 7, 2005

Perturbation analysis

► General questions: If A is perturbed how does an eigenvalue change? How about an eigenvector?

► Also: sensitivity of an eigenvalue to perturbations

THEOREM [Gerschgorin] $\forall \ \lambda \in \Lambda(A), \quad \exists \ i \quad \text{such that} \quad |\lambda - a_{ii}| \leq \sum_{\substack{j=1 \ j \neq i}}^{j=n} |a_{ij}| \ .$

▶ In words: An eigenvalue λ of A is located in one of the closed discs $D(a_{ii}, \rho_i)$ with $\rho_i = \sum_{j \neq i} |a_{ij}|$.

Gerschgorin's theorem - example

Find a region of the complex plane where the eigenvalues of the following matrix are located:

Re£nement: if disks are all disjoint then each of them contains one eigenvalue

Refinement: can combine row and column version of the theorem (column version obtained by applying theorem to A^H).

Bauer-Fike theorem

THEOREM [Bauer-Fike] Let $\tilde{\lambda}, \tilde{u}$ be an approximate eigenpair with $\|\tilde{u}\|_2 = 1$, and let $r = A\tilde{u} - \tilde{\lambda}\tilde{u}$ ('residual vector'). Assume A is diagonalizable: $A = XDX^{-1}$, with D diagonal. Then

 $\exists \ \lambda \in \ \Lambda(A) \quad ext{such that} \quad |\lambda - ilde{\lambda}| \leq ext{cond}_2(X) \|r\|_2 \ .$

Very restrictive result - also not too sharp in general.

Alternative formulation. If *E* is a perturbation to *A* then for any eigenvalue $\tilde{\lambda}$ of A + E there is an eigenvalue λ of *A* such that:

 $|\lambda - ilde{\lambda}| \leq \operatorname{cond}_2(X) \|E\|_2$.

♦ Prove this result from the previous one.
Calais February 7, 2005
18

Conditioning of Eigenvalues

Assume that λ is a simple eigenvalue with right and left eigenvectors u and w^H respectively. Consider the matrices:

$$A(t) = A + tE$$

Eigenvalue $\lambda(t)$, eigenvector u(t).

b Conditioning of λ of A relative to E is the $|d\lambda(t)/dt|$ at t = 0.

▶ Write

$$A(t)u(t)=\lambda(t)u(t)$$

b then multiply both sides to the left by w^H

$$egin{aligned} &w^H(A+tE)u(t) &=\lambda(t)w^Hu(t) &
ightarrow \ \lambda(t)w^Hu(t) &= w^HAu(t)+tw^HEu(t) \ &=\lambda w^Hu(t)+tw^HEu(t). \end{aligned}$$

Hence,

$$rac{\lambda(t)-\lambda}{t}w^{H}u(t) = w^{H}Eu(t)$$

Take the limit at t = 0,

$$\lambda'(0) = rac{w^H E u}{w^H u}$$

► Note: the left and right eigenvectors associated with a simple eigenvalue cannot be orthogonal to each other.

Actual conditioning of an eigenvalue, given a perturbation "in the direction of E" is the modulus of the above quantity.

▶ In practice, one only has an estimate of ||E|| for some norm $|\lambda'(0)| \leq \frac{||Eu||_2 ||w||_2}{|(u,w)|} \leq ||E||_2 \frac{||u||_2 ||w||_2}{|(u,w)|}$ **De£nition.** The condition number of a simple eigenvalue λ of an arbitrary matrix A is de£ned by

$$\operatorname{cond}(\lambda) = rac{1}{\cos heta(u,w)}$$

in which u and w^H are the right and left eigenvectors, respectively, associated with λ .

Example: Consider the matrix

$$A = egin{pmatrix} -149 & -50 & -154 \ 537 & 180 & 546 \ -27 & -9 & -25 \end{pmatrix}$$

▶ $\Lambda(A) = \{1, 2, 3\}$. Right and left eigenvectors associated with $\lambda_1 = 1$:

$$u = egin{pmatrix} 0.3162 \ -0.9487 \ 0.0 \end{pmatrix}$$
 and $w = egin{pmatrix} 0.6810 \ 0.2253 \ 0.6967 \end{pmatrix}$

 $\operatorname{cond}(\lambda_1) \approx 603.64$

Perturbing a_{11} to -149.01 yields the spectrum:

 $\{0.2287, 3.2878, 2.4735\}.$

▶ as expected..

For Hermitian (also normal matrices) every simple eigenvalue is well-conditioned, since $cond(\lambda) = 1$.

The power method

Basic idea is to generate the sequence of vectors $A^k v_0$ where $v_0 \neq 0$ – then normalize.

Most commonly used normalization: ensure that the largest component of the approximation is equal to one.

ALGORITHM : 1The Power Method1. Choose a nonzero initial vector $v^{(0)}$.2. For k = 1, 2, ..., until convergence, Do:3. $v^{(k)} = \frac{1}{\alpha_k} A v^{(k-1)}$ where4. $\alpha_k = \operatorname{argmax}_{i=1,...,n} |(Av^{(k-1)})_i|$ 5. EndDo

▶ $\operatorname{argmax}_{i=1,..,n} |\mathbf{x}_i| \equiv$ the component x_i with largest modulus Calais February 7, 2005

Convergence of the power method

THEOREM Assume that there is one and only one eigenvalue λ_1 of A of largest modulus and that λ_1 is semi-simple. Then either the initial vector v_0 has no component in the invariant subspace associated with λ_1 or the sequence of vectors generated by the algorithm converges to an eigenvector associated with λ_1 and α_k converges to λ_1 .

Proof in the diagonalizable case.

 \triangleright v_k is = vector $A^k v_0$ normalized by a certain scalar $\hat{\alpha}_k$ in such a way that its largest component is 1.

b Decompose the initial vector v_0 as $v_0 = \sum_{i=1}^p \gamma_i u_i$ where the u_i 's are the eigenvectors associated with the λ_i 's, $i = 1, \ldots, n$. Calais February 7, 2005 \blacktriangleright Note that $A^k u_i = \lambda_i^p u_i$

$$egin{aligned} v_k &= rac{1}{scaling} \, imes \, \sum\limits_{i=1}^n \lambda_i^k \gamma_i u_i \ &= rac{1}{scaling} \, imes \, \left[\lambda_1^k \gamma_1 u_1 + \sum\limits_{i=2}^n \lambda_i^k \gamma_i^k u_i
ight] \ &= rac{1}{scaling'} \, imes \, \left[u_1 + \sum\limits_{i=2}^n \left(rac{\lambda_i}{\lambda_1}
ight)^k rac{\gamma_i}{\gamma_1} u_i
ight] \end{aligned}$$

Second term inside bracket converges to zero. QED

▶ Proof suggests that the convergence factor is given by $\rho_D = \frac{|\lambda_2|}{|\lambda_1|}$

where λ_2 is the second largest eigenvalue in modulus.

Example: Consider a 'Markov Chain' matrix of size n = 55. Dominant eigenvalues are $\lambda = 1$ and $\lambda = -1$ \blacktriangleright the power method applied directly to *A* fails. (Why?) Calais February 7, 2005

We can consider instead the matrix I + A The eigenvalue $\lambda = 1$

is then transformed into the (only) dominant eigenvalue $\lambda=2$

Iteration	Norm of diff.	Res. norm	Eigenvalue
20	0.639D-01	0.276D-01	1.02591636
40	0.129D-01	0.513D-02	1.00680780
60	0.192D-02	0.808D-03	1.00102145
80	0.280D-03	0.121D-03	1.00014720
100	0.400D-04	0.174D-04	1.00002078
120	0.562D-05	0.247D-05	1.00000289
140	0.781D-06	0.344D-06	1.00000040
161	0.973D-07	0.430D-07	1.00000005

The Shifted Power Method

▶ In previous example shifted *A* into B = A + I before applying power method. We could also iterate with $B(\sigma) = A + \sigma I$ for any positive σ

Example: With $\sigma = 0.1$ we get the following improvement.

Iteration	Norm of diff.	Res. Norm	Eigenvalue
20	0.273D-01	0.794D-02	1.00524001
40	0.729D-03	0.210D-03	1.00016755
60	0.183D-04	0.509D-05	1.00000446
80	0.437D-06	0.118D-06	1.00000011
88	0.971D-07	0.261D-07	1.0000002

\blacktriangleright Question: What is the best shift-of-origin σ to use?

When all eigenvalues are real and such that

$$oldsymbol{\lambda}_1 > oldsymbol{\lambda}_2 \geq oldsymbol{\lambda}_2 \geq \cdots \geq oldsymbol{\lambda}_n,$$

then the value of σ which yields the best convergence factor is:

$$\sigma_{opt} = rac{\lambda_2 + \lambda_n}{2}$$

Inverse Iteration

<u>Observation</u>: The eigenvectors of A and A^{-1} are identical.

b Idea: use the power method on A^{-1} .

▶ Will compute the eigenvalues closest to zero.

Shift-and-invert Use power method on $(A - \sigma I)^{-1}$. Will compute eigenvalues closest to σ .

► Advantages: fast convergence in general.

b Drawbacks: need to factor A (or $A - \sigma I$) into LU..

29

Subspace iteration

Generalizes the power method

ALGORITHM : 2 . Orthogonal iteration

- **1.** Start: $Q_0 = [q_1, \ldots, q_m]$
- 2. Iterate: Until convergence do,
- $3. X := AQ_{k-1}$
- 4. $X = Q_k R$ (QR factorization)
- 5. EndDo

Normalization in step 4 is similar to the scaling used in the power method.

Improvement: normalize only once in a while.

Calais February 7, 2005

ALGORITHM : 3 Subspace Iteration with Projection

Start: Choose $Q_0 = [q_0, \ldots, q_m]$

Iterate: For k = 1, ..., until convergence do:

Compute $\hat{Z} = AQ_{k-1}$.

 $\hat{Z} = ZR_Z$ (QR factorization)

 $B = Z^H A Z$

Compute the Schur factorization $B = YRY^H$

 $Q_k = ZY$

EndDo

Again: no need to orthogonalize + project at each step.

▶ Assume $|\lambda_1| \ge |\lambda_2| \ge \cdots |\lambda_m| > |\lambda_{m+1}| \ge \cdots \ge |\lambda_n|$, then convergence rate for λ_1 is (generally)

$$|\lambda_{m+1}/\lambda_1|$$
 Calais

The QR algorithm

The most common method for solving small (dense) eigenvalue problems. The basic algorithm:

ALGORITHM : 4 . **QR without shifts**

- 1. Until Convergence Do:
- **2.** Compute the QR factorization A = QR
- $3. \qquad \textbf{Set } A := RQ$
- 4. EndDo

"Until Convergence" means "Until A becomes close enough to an upper triangular matrix"

32

▶ Note: $A_{new} = RQ = Q^H(QR)Q = Q^HAQ$

 \blacktriangleright A_{new} is similar to A throughout the algorithm .

▶ Above basic algorithm is never used in practice. Two variations:

(1) use shift of origin and

(2) Transform A into Hessenberg form..

Practical QR: Shifts of origin

<u>Observation:</u> (from theory): Last row converges fastest. Convergence is dictated by $\frac{|\lambda_n|}{|\lambda_{n-1}|}$

We will now consider only the real symmetric case.

Eigenvalues are real.

 \blacktriangleright $A^{(k)}$ remains symmetric throughout process.

As k goes to infinity the last column and row (except $a_{nn}^{(k)}$) converge to zero quickly.,,

b and $a_{nn}^{(k)}$ converges to lowest eigenvalue.

▶ Idea: Apply QR algorithm to $A^{(k)} - \mu I$ with $\mu = a_{nn}^{(k)}$. Note: eigenvalues of $A^{(k)} - \mu I$ are shifted by μ , and eigenvectors are the same.

ALGORITHM : 5 . **QR with shifts**

1. Until row a_{in} , $1 \le i < n$ converges to zero DO:

2. Obtain next shift (e.g.
$$\mu = a_{nn}$$
)

$$3. \qquad A-\mu I=QR$$

5. Set
$$A := RQ + \mu I$$

6. EndDo

Convergence is cubic at the limit! [for symmetric case]

Next step: de¤ate, i.e., apply above algorithm to $(n-1) \times (n-1)$ upper triangular matrix.

Practical QR: Use of the Hessenberg Form

Recall: Upper Hessenberg matrix is such that

$$a_{ij} = 0$$
 for $j < i - 1$

Observation: The QR algorithm preserves Hessenberg form (tridiagonal form in symmetric case). Results in substantial savings.

▶ 1-st step: reduce A to Hessenberg form. Then (2nd step) apply QR algorithm to resulting matrix.

It is easy to adapt the Householder factorization to reduce a matrix into Hessenberg form – [similarity transformation]

\blacktriangleright Consider the £rst step only on a 6×6 matrix.

We want $H_1 A H_1^T = H_1 A H_1$	
to have the form:	

(*	*	*	*	*	*)
*	*	*	*	*	*
0	*	*	*	*	*
0	*	*	*	*	*
0	*	*	*	*	*
0	*	*	*	*	*)

b Choose a w in $H_1 = I - 2ww^T$ so that $(H_1A)[2:n,1] = 0$

Apply to left $B = H_1A$. Then apply to right $A_1 = BH_1$.

Observation: the Householder matrix H_1 which transforms the column A(:, 1) into e_1 works only on rows 2 to n. When applying H_1^T to the right of $B = H_1A$, only columns 2 to n will be altered **b** 1st column retains the same pattern (zeros below row 2)

Calais February 7, 2005

QR for Hessenberg matrices

Need the "implicit Q theorem"

Suppose that $Q^T A Q$ is an unreduced upper Hessenberg matrix. Then columns 2 to n of Q are determined uniquely (up to signs) by the £rst column of Q.

Implication: In order to compute $A_{i+1} = Q_i^T A Q_i$ we can:

Compute the £rst column of Q_i [easy: = scalar $\times A(:, 1)$]

b Choose other columns so Q_i = unitary, and A_{i+1} = Hessenberg.

			(*	*	*	*	*
2. Choose G_2 =			*	*	*	*	*
$G(2,3, heta_2)$ so that	•	$\boldsymbol{A}_2 = \boldsymbol{G}_2^T \boldsymbol{A}_1 \boldsymbol{G}_2 =$	0	*	*	*	*
$(G_2A_1)_{31}=0$			0	+	*	*	*
			0	0	0	*	*)
			(*	*	*	*	*
3. Choose G_3 =			*	*	*	*	*
$G(3,4, heta_3)$ so that	•	$A_3=G_3^TA_2G_3=$	0	*	*	*	*
$(G_3A_2)_{42}=0$			0	0	*	*	*
			0	0	+	*	*)

Process known as "Bulge chasing"

Similar idea for the symmetric (tridiagonal) case

The QR algorithm for symmetric matrices

Most important method used : reduce to tridiagonal form and apply the QR algorithm with shifts.

Householder transformation to Hesseenberg form yields a tridiagonal matrix because

 $HAH^T = A_1$

is symmetric and also of Hessenberg form ▶ it is tridiagonal symmetric.

Tridiagonal form is preserved by QR similarity transformation

Practical method

How to implement the QR algorithm with shifts?

It is best to use Givens rotations – can do a shifted QR step without explicitly shifting the matrix..

Two most popular shifts:

 $s = a_{nn}$ and s = smallest e.v. of A(n - 1 : n, n - 1 : n)

THE SINGULAR VALUE DECOMPOSITION

- The SVD existence properties.
- Pseudo-inverses and the SVD
- Use of SVD for least-squares problems
- Applications of the SVD

The Singular Value Decomposition (SVD)

For any real $n \times m$ matrix A there exists orthogonal matrices $U \in \mathbb{R}^{n \times n}$ and $V \in \mathbb{R}^{m \times m}$ such that

$$A = U \Sigma V^T$$

where Σ is a diagonal matrix with nonnegative diagonal entries.

$$\sigma_{11} \geq \sigma_{22} \geq \cdots \sigma_{pp} \geq 0$$
 with $p = \min(m, n)$

b The σ_{ii} are called singular values of A. Denoted simply by σ_i .

Proof:[one among many!]Let $\sigma_1 = \|A\|_2 = \max_{x, \|x\|_2 = 1} \|Ax\|_2$ There exists a pair of unit vectors v_1, u_1 such that

$$Av_1 = \sigma_1 u_1$$

Calais February 7, 2005

\blacktriangleright Complete v_1 into an orthonormal basis of \mathbb{R}^m

 $V \equiv [v_1, V_2] = m imes m$ unitary

\blacktriangleright Complete u_1 into an orthonormal basis of \mathbb{R}^m

 $U \equiv [u_1, U_2] = n \times n$ unitary

▶ Then, it is easy to show that

$$AV = U imes egin{pmatrix} oldsymbol{\sigma}_1 & oldsymbol{w}^T \ 0 & B \end{pmatrix} ext{ } o & U^T AV = egin{pmatrix} oldsymbol{\sigma}_1 & oldsymbol{w}^T \ 0 & B \end{pmatrix} \equiv A_1$$

Observe that

$$\left\|oldsymbol{A}_1inom{\sigma_1}{oldsymbol{w}}
ight\|_2 \geq oldsymbol{\sigma}_1^2 + \|oldsymbol{w}\|^2 = \sqrt{oldsymbol{\sigma}_1^2 + \|oldsymbol{w}\|^2} \left\|inom{\sigma_1}{oldsymbol{w}}
ight\|_2$$

▶ This shows that w must be zero [why?]

Complete the proof by an induction argument. Calais February 7, 2005

48

The "thin" SVD

Consider the Case-1. It can be rewritten as

$$oldsymbol{A} = [oldsymbol{U}_1 oldsymbol{U}_2] inom{\Sigma_1}{0} oldsymbol{V}^T$$

Which gives:

$$A = U_1 \Sigma_1 \ V^T$$

where U_1 is n imes m (same shape as A), and Σ_1 and V are m imes m

referred to as the "thin" SVD. Important in practice.

 \diamond Show how to obtain the thin SVD from the QR factorization of Aand the SVD of an $m \times m$ matrix Some properties. Assume that

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$$
 and $\sigma_{r+1} = \cdots = \sigma_p = 0$

Then:

- rank(A) = r = number of nonzero singular values.
- $Ran(A) = span\{u_1, u_2, \ldots, u_r\}$
- $Null(A) = span\{v_{r+1}, v_{r+2}, \ldots, v_m\}$
- The matrix A admits the SVD expansion:

$$A = {\mathop{ imes}\limits_{i = 1}^r {{\sigma _i}{u_i}v_i^T}}$$

Properties of the SVD (continued)

- $\|A\|_2 = \sigma_1$ = largest singular value
- $\|A\|_F = \left(\sum_{i=1}^r \sigma_i^2\right)^{1/2}$

• When A is an $n \times n$ nonsingular matrix then $\|A^{-1}\|_2 = 1/\sigma_n$ = inverse of smallest s.v.

Let
$$k < r$$
 and $A_k = \sum\limits_{i=1}^k \sigma_i u_i v_i^T$ then $\min_{rank(B)=k} \|A-B\|_2 = \|A-A_k\|_2 = \sigma_{k+1}$

De£ne the r imes r matrix

$$\Sigma_1 = ext{diag}(\pmb{\sigma}_1, \dots, \pmb{\sigma}_r)$$

Let $A \in \mathbb{R}^{n \times m}$ and consider now $A^T A$ (which is of size $m \times m$)

$$egin{aligned} A^TA = V\Sigma^T\Sigma V^T & o & A^TA = V \ egin{pmatrix} \Sigma_1^2 & 0 \ 0 & 0 \ m imes m \end{pmatrix} V^T \ egin{pmatrix} 0 & 0 \ m imes m \end{pmatrix} \end{array}$$

This gives the spectral decomposition of $A^T A$. Similarly, U gives the eigenvectors of AA^T .

$$oldsymbol{A}oldsymbol{A}^T = oldsymbol{U} \; \left(egin{array}{ccc} \Sigma_1^2 & 0 \ 0 & 0 \ \end{array}
ight) oldsymbol{U}^T \ egin{array}{ccc} oldsymbol{0} & oldsymbol{0} \ n imes n \end{array} oldsymbol{U}^T \end{array}$$

Important: $A^T A = V D_1 V^T$ and $A A^T = U D_2 U^T$ give the SVD factors U, V up to signs!

Compute the singular value decomposition the matrix:

$$m{A}=egin{pmatrix} m{1} & m{0} & m{2} & m{0} \ m{0} & m{0} & -m{2} & m{1} \end{pmatrix}$$

 \diamond Find the matrix *B* of rank 1 which is the closest to the above matrix in the 2-norm sense.

 \diamond What is the pseudo-inverse of *A*? What is the pseudo-inverse of *B*?

 \diamondsuit Find the vector x of smallest norm which minimizes $\|b - Ax\|_2$ with $b = (1,1)^T$

 \Diamond Find the vector x of smallest norm which minimizes $||b - Bx||_2$ with $b = (1, 1)^T$ Calais February 7, 2005

Pseudo-inverse of an arbitrary matrix

The pseudo-inverse of A is given by

$$A^\dagger = Vegin{pmatrix} \Sigma_1^{-1} & 0 \ 0 & 0 \end{pmatrix} U^T$$

Moore-Penrose conditions: The pseudo inverse of a matrix is uniquely

determined by these four conditions:

- (1) AXA = A (2) XAX = X
- (3) $(AX)^H = AX$ (4) $(XA)^H = XA$

▶ In the full-rank overdetermined case, $A^{\dagger} = (A^T A)^{-1} A^T$

Least-squares problems and the SVD

SVD can give much information about solving overdetermined and underdetermined linear systems –

Let A be an $n \times m$ matrix and $A = U\Sigma V$ its SVD with $r = rank(A), V = [v_1, \dots, v_m] U = [u_1, \dots, u_n]$. Then $x_{LS} = \sum_{i=1}^r rac{u_i^T b}{\sigma_i} v_i$

minimizes $||b - Ax]||_2$ and has the smallest 2-norm among all possible minimizers. In addition,

$$ho_{LS} \equiv \|b - A x_{LS}\|_2 = \|z\|_2$$
 with $z = [u_{r+1}, \dots, u_n]^T b$

Least-squares problems and pseudo-inverses

► A restatement of the £rst part of the previous result:

Consider the general linear least-squares problem

$$\min_{x \in S} \|x\|_2 \qquad S = \{x \in \mathbb{R}^m \mid \|b - Ax\|_2 \min\}$$

This problem always has a unique solution given by

$$x = A^{\dagger}b$$

Ill-conditioned systems and the SVD

b Let A be $n \times n$ (square matrix) and $A = U\Sigma V^T$ its SVD

Solution of
$$Ax = b$$
 is $x = A^{-1}b = \sum_{i=1}^n rac{u_i^T b}{\sigma_i} v_i$

Many applications [e.g., Image processing,..] Calais February 7, 2005

Numerical rank and the SVD

\blacktriangleright Assume that the original matrix A is exactly of rank k.

- **The computed SVD of** A will be the SVD of a nearby matrix A + E.
- **Easy to show that** $|\hat{\sigma}_i \sigma_i| \leq \alpha \sigma_1 \text{eps}$

Result: zero singular values will yield small computed singular values

Determining the "numerical rank:" treat singular values below a certain threshold δ as zero. Practical problem : need to set δ .

LARGE SPARSE EIGENVALUE PROBLEMS

General Tools for Solving Large Eigen-Problems

- Projection techniques Arnoldi, Lanczos, Subspace Iteration;
- Preconditioninings: shift-and-invert, Polynomials, ...
- Department of the Departmen

Good computational codes combine these three ingredients

A few popular solution Methods

- Subspace Iteration [Now less popular sometimes used for validation]
- Arnoldi's method (or Lanczos) with polynomial acceleration [Stiefel '58, Rutishauser '62, YS '84,'85, Sorensen '89,...]
- Shift-and-invert and other preconditioners. [Use Arnoldi or Lanc-zos for $(A \sigma I)^{-1}$.]
- Davidson's method and variants, Generalized Davidosn's method [Morgan and Scott, 89], Jacobi-Davidsion
- Emerning method: Automatic Multilevel Substructuring (AMLS).

Projection Methods for Eigenvalue Problems

General formulation:

Projection method onto K orthogonal to L

\blacktriangleright Given: Two subspaces K and L of same dimension.

Find: $\tilde{\lambda}, \tilde{u}$ such that $\tilde{\lambda} \in \mathbb{C}, \tilde{u} \in K; \quad (\tilde{\lambda}I - A)\tilde{u} \perp L$

Two types of methods:

Orthogonal projection methods: situation when L = K.

Oblique projection methods: When $L \neq K$.

Rayleigh-Ritz projection

Given: a subspace X known to contain good approximations to eigenvectors of A.

Question: How to extract good approximations to eigenvalues/ eigenvectors from this subspace?

Answer: Rayleigh Ritz process.

Let $Q = [q_1, \ldots, q_m]$ an orthonormal basis of X. Then write an approximation in the form $\tilde{u} = Qy$ and obtain y by writing

$$Q^H(A- ilde{\lambda}I) ilde{u}=0$$

 $\blacktriangleright Q^H A Q y = ilde{\lambda} y$

Procedure:

- **1.** Obtain an orthonormal basis of X
- 2. Compute $C = Q^H A Q$ (an $m \times m$ matrix)
- 3. Obtain Schur factorization of C, $C = YRY^H$
- 4. Compute $ilde{U} = QY$

Property: if X is (exactly) invariant, then procedure will yield exact eigenvalues and eigenvectors.

<u>Proof:</u> Since X is invariant, $(A - \tilde{\lambda}I)u = Qz$ for a certain z. $Q^HQz = 0$ implies z = 0 and therefore $(A - \tilde{\lambda}I)u = 0$.

Can use this procedure in conjunction with the subspace obtained from subspace iteration algorithm

Subspace Iteration

• Original idea: projection technique onto a subspace if the form $Y = A^k X$

In practice: Replace A^k by suitable polynomial [Chebyshev]

Advantages: • Easy to implement (in symmetric case); • Easy to analyze;

Disadvantage: Slow.

▶ Often used with polynomial acceleration: $A^k X$ replaced by $C_k(A) X$. Typically C_k = Chebyshev polynomial.

Algorithm: Subspace Iteration with Projection

- 1. Start: Choose an initial system of vectors $X = [x_0, \dots, x_m]$ and an initial polynomial C_k .
- **2.** Iterate: Until convergence do:
 - (a) Compute $\hat{Z} = C_k(A) X_{old}$.
 - (b) Orthonormalize \hat{Z} into Z.
 - (c) Compute $B = Z^H A Z$ and use the QR algorithm to compute the Schur vectors $Y = [y_1, \dots, y_m]$ of B.
 - (d) Compute $X_{new} = ZY$.
 - (e) Test for convergence. If satis£ed stop. Else select a new polynomial $C'_{k'}$ and continue.

THEOREM: Let $S_0 = span\{x_1, x_2, ..., x_m\}$ and assume that S_0 is such that the vectors $\{Px_i\}_{i=1,...,m}$ are linearly independent where P is the spectral projector associated with $\lambda_1, ..., \lambda_m$. Let \mathcal{P}_k the orthogonal projector onto the subspace $S_k = span\{X_k\}$. Then for each eigenvector u_i of A, i = 1, ..., m, there exists a unique vector s_i in the subspace S_0 such that $Ps_i = u_i$. Moreover, the following inequality is satis£ed

$$\|(I - \mathcal{P}_k)u_i\|_2 \le \|u_i - s_i\|_2 \left(\left|\frac{\lambda_{m+1}}{\lambda_i}\right| + \epsilon_k\right)^k, \tag{1}$$

where ϵ_k tends to zero as k tends to in£nity.

KRYLOV SUBSPACE METHODS

KRYLOV SUBSPACE METHODS

Principle: Projection methods on Krylov subspaces, i.e., on

$$K_m(A,v_1)= {\sf span}\{v_1,Av_1,\cdots,A^{m-1}v_1\}$$

- probably the most important class of projection methods [for linear systems and for eigenvalue problems]
- many variants exist depending on the subspace L.

Properties of K_m . Let $\mu = \deg$. of minimal polynom. of v. Then,

- $K_m = \{p(A)v | p = \text{polynomial of degree} \le m-1\}$
- $K_m = K_\mu$ for all $m \ge \mu$. Moreover, K_μ is invariant under A.
- $ullet dim(K_m)=m ext{ iff } \mu \geq m.$

Calais February 7, 2005

ARNOLDI'S ALGORITHM

b Goal: to compute an orthogonal basis of K_m .

IDENTIFY and Provide Arrow IDENTIFY and ProvideArrow IDENTIFY and ProvideArrow IDENTIFY and ProvideA

ALGORITHM : 6 Arnoldi's procedure

For
$$j = 1, ..., m$$
 do
Compute $w := Av_j$
For $i = 1, ..., j$, do $\begin{cases} h_{i,j} := (w, v_i) \\ w := w - h_{i,j}v_i \end{cases}$
 $h_{j+1,j} = \|w\|_2; \quad v_{j+1} = w/h_{j+1,j}$
End

Calais February 7, 2005

Result of Arnoldi's algorithm

Let		(x	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}							
								(\boldsymbol{x})	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	$oldsymbol{x}$	
		\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}		~	~	~	~	~	
$\overline{H}_m =$		\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}		\mathbf{x}	\boldsymbol{x}	x	\boldsymbol{x}	\boldsymbol{x}		
		ũ	æ	~	~	$H_m =$		\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}		
			\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}				~ ~				
					r	\boldsymbol{r}				\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	
					Ŵ	æ					\boldsymbol{x}	\boldsymbol{x}	
						$oldsymbol{x}$)						,	

1. $V_m = [v_1, v_2, ..., v_m]$ orthonormal basis of K_m .

2. $AV_m = V_{m+1}\overline{H}_m = V_mH_m + h_{m+1,m}v_{m+1}e_m^T$

3. $V_m^T A V_m = H_m \equiv \overline{H}_m - \text{last row.}$
Appliaction to eigenvalue problems

Write approximate eigenvector as $\tilde{u} = V_m y$ + Galerkin condition

$$(A- ilde{\lambda}I)V_my \ \perp \ \mathcal{K}_m o V_m^H(A- ilde{\lambda}I)V_my = 0$$

\blacktriangleright Approximate eigenvalues are eigenvalues of H_m

$$H_m y_j = ilde{\lambda}_j y_j$$

Associated approximate eigenvectors are

$$ilde{u}_j = V_m y_j$$

Typically a few of the outermost eigenvalues will converge £rst.

In practice: Memory requirement of algorithm implies restarting is necessary

ALGORITHM : 7 . Restarted Arnoldi (computes rightmost eigenpair)

- 1. Start: Choose an initial vector v_1 and a dimension m.
- 2. Iterate: Perform m steps of Arnoldi's algorithm.
- 3. Restart: Compute the approximate eigenvector $u_1^{(m)}$
- 4. associated with the rightmost eigenvalue $\lambda_1^{(m)}$.
- 5. If satisfied stop, else set $v_1 \equiv u_1^{(m)}$ and goto 2.

Small Markov Chain matrix [Mark(10), dimension = 55]. Restarted Arnoldi procedure for computing the eigenvector associated with the eigenvalue with algebraically largest real part. We use m = 10.

m	$\Re(\lambda)$	$\Im(\lambda)$	Res. Norm
10	0.9987435899D+00	0.0	0.246D-01
20	0.9999523324D+00	0.0	0.144D-02
30	0.100000368D+01	0.0	0.221D-04
40	0.100000025D+01	0.0	0.508D-06
50	0.9999999996D+00	0.0	0.138D-07

Restarted Arnoldi (cont.)

Can be generalized to more than *one* eigenvector :

$$v_1^{(new)} = { extstyle \sum\limits_{i=1}^p {{
ho}_i} u_i^{(m)}}$$

However: often does not work well – (hard to £nd good coef£cients ρ_i 's)

Alternative : compute eigenvectors (actually Schur vectors) one at a time.

▶ Implicit de¤ation.

Hermitian case: The Lanczos Algorithm

The Hessenberg matrix becomes tridiagonal :

$$A=A^H$$
 and $V_m^HAV_m=H_m$ $ightarrow H_m=H_m^H$

▶ We can write

Consequence: three term recurrence

$$eta_{j+1}v_{j+1}=Av_j-lpha_jv_j-eta_jv_{j-1}$$

Calais February 7, 2005

(2)

ALGORITHM : 8 Lanczos

1. Choose an initial vector v_1 of norm unity. Set $\beta_1 \equiv 0, v_0 \equiv 0$

2. For j = 1, 2, ..., m Do:

$$3. \quad w_j := Av_j - \beta_j v_{j-1}$$

 $4. \quad \alpha_j := (w_j, v_j)$

$$5. w_j := w_j - \alpha_j v_j$$

6. $\beta_{j+1} := \|w_j\|_2$. If $\beta_{j+1} = 0$ then Stop

7.
$$v_{j+1}:=w_j/eta_{j+1}$$

8. EndDo

 $\textbf{Hermitian matrix + Arnoldi} \rightarrow \textbf{Hermitian Lanczos}$

ln theory v_i 's de£ned by 3-term recurrence are orthogonal.

However: in practice severe loss of orthogonality;

Calais February 7, 2005

Observation [Paige, 1981]: Loss of orthogonality starts suddenly, when the £rst eigenpair has converged. It is a sign of loss of linear indedependence of the computed eigenvectors. When orthogonality is lost, then several the copies of the same eigenvalue start appearing.

Reorthogonalization

- Full reorthogonalization reorthogonalize v_{j+1} against all previous v_i 's every time.
- Partial reorthogonalization reorthogonalize v_{j+1} against all previous v_i 's only when needed [Parlett & Simon]
- Selective reorthogonalization reorthogonalize v_{j+1} against computed eigenvectors [Parlett & Scott]
- No reorthogonalization Do not reorthogonalize but take measures to deal with 'spurious' eigenvalues. [Cullum & Willoughby]

LANCZOS BIORTHOGONALIZATION

The Lanczos biorthogonalization $(A^H \neq A)$

ALGORITHM : 9 The Lanczos Bi-Orthogonalization Procedure

- 1. Choose v_1, w_1 such that $(v_1, w_1) = 1$. Set $eta_1 \equiv \delta_1 \equiv 0$, $w_0 = v_0 \equiv 0$
- **2.** For j = 1, 2, ..., m Do:
- **3.** $\alpha_j = (Av_j, w_j)$ **[** $\alpha_j = (Av_j \beta_j v_{j-1}, w_j)$ **]**

4.
$$\hat{v}_{j+1} = Av_j - \alpha_j v_j - \beta_j v_{j-1}$$
 [$\hat{v}_{j+1} = (Av_j - \beta_j v_{j-1}) - \alpha_j v_j$]

5.
$$\hat{w}_{j+1} = A^H w_j - \bar{\alpha}_j w_j - \delta_j w_{j-1} \hat{w}_{j+1} = (A^H w_j - \delta_j w_{j-1}) - \bar{\alpha}_j w_j$$

6.
$$\delta_{j+1} = |(\hat{v}_{j+1}, \hat{w}_{j+1})|^{1/2}$$
. If $\delta_{j+1} = 0$ Stop

7.
$$eta_{j+1} = (\hat{v}_{j+1}, \hat{w}_{j+1}) / \delta_{j+1}$$

8.
$$w_{j+1} = \hat{w}_{j+1} / ar{eta}_{j+1}$$

9.
$$v_{j+1}=\hat{v}_{j+1}/\delta_{j+1}$$

10. EndDo

Builds a pair of biorthogonal bases for the two subspaces

$$\mathcal{K}_m(A,v_1) \hspace{0.1in} ext{and} \hspace{0.1in} \mathcal{K}_m(A^H,w_1)$$

Many choices for $\delta_{j+1}, \beta_{j+1}$ in lines 7 and 8. Only constraint: $\delta_{j+1}\beta_{j+1} = (\hat{v}_{j+1}, \hat{w}_{j+1})$

Let

$$T_m = egin{pmatrix} lpha_1 & eta_2 & & \ \delta_2 & lpha_2 & eta_3 & & \ & \ddots & \ddots & \ & & \delta_{m-1} & lpha_{m-1} & eta_m & \ & & & \delta_m & lpha_m \end{pmatrix} \,.$$

 $\blacktriangleright v_i \in \mathcal{K}_m(A,v_1)$ and $w_j \in \mathcal{K}_m(A^T,w_1)$.

If the algorithm does not break down before step m, then the vectors $v_i, i = 1, \ldots, m$, and $w_j, j = 1, \ldots, m$, are biorthogonal, i.e.,

$$(v_j,w_i)=\delta_{ij} \hspace{1em} 1\leq i, \hspace{1em} j\leq m \; .$$

Moreover, $\{v_i\}_{i=1,2,...,m}$ is a basis of $\mathcal{K}_m(A,v_1)$ and $\{w_i\}_{i=1,2,...,m}$ is a basis of $\mathcal{K}_m(A^H,w_1)$ and

$$egin{aligned} &AV_m = V_m T_m + \delta_{m+1} v_{m+1} e_m^H, \ &A^H W_m = W_m T_m^H + areta_{m+1} w_{m+1} e_m^H, \ &W_m^H A V_m = T_m ~~. \end{aligned}$$

If θ_j, y_j, z_j are, respectively an eigenvalue of T_m , with associated right and left eigenvectors y_j and z_j respectively, then corresponding approximations for A are

Ritz value	Right Ritz vector	Left Ritz vector
$oldsymbol{ heta}_{j}$	$oldsymbol{V}_moldsymbol{y}_j$	$oldsymbol{W}_moldsymbol{z}_j$

[Note: terminology is abused slightly - Ritz values and vectors normally refer to Hermitian cases.]

Advantages and disadvantages

Advantages:

▶ Nice three-term recurrence – requires little storage in theory.

Computes left and a right eigenvectors at the same time

Disadvantages:

- Algorithm can breakdown or nearly breakdown.
- **Convergence not too well understood. Erratic behavior**
- **Not easy to take advantage of the tridiagonal form of** T_m .

Look-ahead Lanczos

Algorithm breaks down when:

$$(\hat{v}_{j+1},\hat{w}_{j+1})=0$$

Three distinct situations.

- ▶ 'lucky breakdown' when either \hat{v}_{j+1} or \hat{w}_{j+1} is zero. In this case, eigenvalues of T_m are eigenvalues of A.
- ($\hat{v}_{j+1}, \hat{w}_{j+1}$) = 0 but of $\hat{v}_{j+1} \neq 0$, $\hat{w}_{j+1} \neq 0 \rightarrow$ serious breakdown. Often possible to bypass the step (+ a few more) and continue the algorithm. If this is not possible then we get an ...
- Incurable break-down. [very rare]

Look-ahead Lanczos algorithms deal with the second case. See Parlett 80, Freund and Nachtigal '90.... Main idea: when break-down occurs, skip the computation of v_{j+1}, w_{j+1} and de£ne v_{j+2}, w_{j+2} from v_j, w_j . For example by orthogonalizing A^2v_j ... Can de£ne v_{j+1} somewhat arbitrarily as $v_{j+1} = Av_j$. Similarly for w_{j+1} .

Drawbacks: (1) projected problem no longer tridiagonal (2) dif£cult to know what constitutes near-breakdown.

DEFLATION

▶ Very useful in practice.

▶ Different forms: locking (subspace iteration), selective orthogonalization (Lanczos), Schur de¤ation, ...

A little background

Consider Schur canonical form

$$A = URU^H$$

where U is a (complex) upper triangular matrix.

• Vector columns u_1, \ldots, u_n called Schur vectors.

Note: Schur vectors depend on each other, and on the order of the eigenvalues **Wiedlandt De**^aation: Assume we have computed a right eigenpair λ_1, u_1 . Wielandt de^aation considers eigenvalues of

$$A_1 = A - \sigma u_1 v^H$$

Note:

$$\Lambda(A_1) = \{ oldsymbol{\lambda}_1 - \sigma, oldsymbol{\lambda}_2, \dots, oldsymbol{\lambda}_n \}$$

Wielandt de¤ation preserves u_1 as an eigenvector as well all the left eigenvectors not associated with λ_1 .

An interesting choice for v is to take simply $v = u_1$. In this case Wielandt depation preserves Schur vectors as well.

▶ It is possible to apply this procedure successively:

ALGORITHM : 10 . Explicit Degation

- **1.** $A_0 = A$
- **2.** For $j = 0 \dots \mu 1$ Do:
- 3. Compute a dominant eigenvector of A_j

4. Define
$$A_{j+1} = A_j - \sigma_j u_j u_j^H$$

5. End

\blacktriangleright Computed $u_1, u_2, ...$ form a set of Schur vectors for A.

Alternative: implicit de¤ation (within a procedure such as Arnoldi).

<u>Depated Arnoldi:</u> When £rst eigenvector converges, we freeze it as the £rst vector of $V_m = [v_1, v_2, \dots, v_m]$. Arnoldi starts working at column v_2 . Orthogonalization is still done against v_1, \dots, v_j at step j. Each new converged eigenvector will be added to the 'locked' set of eigenvectors. For $k = 1, \dots, NEV$ do: /* Eigenvalue loop */

1. For j = k, k + 1, ..., m do: /* Arnoldi loop*/

- Compute $w := Av_j$.
- Orthonormalize w against $v_1, v_2, \ldots, v_j \rightarrow v_{j+1}$
- 2. Compute next approximate eigenpair $\tilde{\lambda}, \tilde{u}$.
- 3. Orthonormalize \tilde{u} against $v_1, \ldots, v_j \models \text{Result} = \tilde{s} = \text{approximate}$ Schur vector.
- 4. Define $v_k := \tilde{s}$.
- 5. If approximation not satisfactory go to 1.
- 6. Else de£ne $h_{i,k} = (Av_k, v_i)$, i = 1, ..., k,

Thus, for k = 2:

$$V_m = egin{bmatrix} active \ v_1, v_2, v_3, \dots, v_m \end{bmatrix}$$

Similar techniques in Subspace iteration [G. Stewart's SRRIT]

Example: Matrix Mark(10) – small Markov chain matrix (N = 55).

First eigenpair by iterative Arnoldi with m = 10.

m	$\Re e(\lambda)$	$\Im m(\lambda)$	Res. Norm
10	0.9987435899D+00	0.0	0.246D-01
20	0.9999523324D+00	0.0	0.144D-02
30	0.100000368D+01	0.0	0.221D-04
40	0.100000025D+01	0.0	0.508D-06
50	0.9999999996D+00	0.0	0.138D-07

Computing the next 2 eigenvalues of Mark(10).

Eig.	Mat-Vec's	$\Re e(\lambda)$	$\Im m(\lambda)$	Res. Norm
2	60	0.9370509474	0.0	0.870D-03
	69	0.9371549617	0.0	0.175D-04
	78	0.9371501442	0.0	0.313D-06
	87	0.9371501564	0.0	0.490D-08
3	96	0.8112247133	0.0	0.210D-02
	104	0.8097553450	0.0	0.538D-03
	112	0.8096419483	0.0	0.874D-04
		1	I	1
		1	I	1
	152	0.8095717167	0.0	0.444D-07

PRECONDITIONING - DAVIDSON'S METHOD

Preconditioning eigenvalue problems

▶ Goal: To extract good approximations to add to a subspace in a projection process. Result: faster convergence.

Best known technique: Shift-and-invert; Work with

$$B = (A - \sigma I)^{-1}$$

Some success with polynomial preconditioning [Chebyshev iter-

ation / least-squares polynomials]. Work with

$$B = p(A)$$

Above preconditioners preserve eigenvectors. Other methods (Davidson) use a more general preconditioner M.

Calais February 7, 2005

<u>Main idea:</u> to use Arnoldi, or Lanczos, or subspace iteration for the matrix $B = (A - \sigma I)^{-1}$. The matrix B need not be computed explicitly. Each time we need to apply B to a vector we solve a system with B.

Factor $B = A - \sigma I = LU$. Then each solution Bx = y requires solving Lz = y and Ux = z.

How to deal with complex shifts?

 \blacktriangleright If A is complex need to work in complex arithmetic.

▶ If A is real, it is desirable that Arnoldi/ Lanczos algorithms work with a real matrix.

▶ Idea: Instead of using $B = (A - \sigma I)^{-1}$ use $B_+ = \Re e(A - \sigma I)^{-1} = \frac{1}{2} \left[(A - \sigma I)^{-1} + (A - \overline{\sigma} I)^{-1} \right]$

or

$$B_{-} = \Im m (A - \sigma I)^{-1} = rac{1}{2i} ig[(A - \sigma I)^{-1} - (A - ar{\sigma} I)^{-1} ig]$$

Little difference between the two.

▶ Result:
$$B_- = \theta (A - \sigma I)^{-1} (A - \bar{\sigma} I)$$
 with $\theta = \Im m(\sigma)$.

Calais February 7, 2005

Preconditioning by polynomials

Main idea:

Iterate with p(A) instead of A in Arnoldi or Lanczos,...

Used very early on in subspace iteration [Rutishauser, 1959.]

Usually not as reliable as Shift-and-invert techniques but less demanding in terms of storage. **<u>Question:</u>** How to £nd a good polynomial (dynamically)?

Polynomial £lters and implicit restart

Goal: to apply polynomial £lter of the form

$$p(t) = (t - heta_1)(t - heta_2)\dots(t - heta_q)$$

by exploiting the Arnoldi procedure.

Assume $AV_m = V_m H_m + \beta_m v_{m+1} e_m^T$

and consider £rst factor: $(t - heta_1)$

$$(A- heta_1I)V_m=V_m(H_m- heta_1I)+eta_mv_{m+1}e_m^T$$

Let $H_m - heta_1 I = Q_1 R_1$. Then,

Calais Februar	7, 2005		105
----------------	----------------	--	-----

Notation: $R_1 Q_1 + \theta_1 I \equiv H_m^{(1)};$ $(b_{m+1}^{(1)})^T \equiv e_m^T Q_1;$ $V_m Q_1 = V_m^{(1)}$

$$AV_m^{(1)} = V_m^{(1)}H_m^{(1)} + v_{m+1}(b_{m+1}^{(1)})^T$$

Note that $H_m^{(1)}$ is upper Hessenberg.

Similar to an Arnoldi decomposition.

Observe:

► $R_1Q_1 + \theta_1I \equiv$ matrix resulting from one step of the QR algorithm with shift θ_1 applied to H_m .

First column of $V_m^{(1)}$ is a multiple of $(A - \theta_1 I)v_1$.

b The columns of $V_m^{(1)}$ are orthonormal.

Can now apply second shift in same way:

$$(A - \theta_2 I) V_m^{(1)} = V_m^{(1)} (H_m^{(1)} - \theta_2 I) + v_{m+1} (b_{m+1}^{(1)})^T \rightarrow$$

Similar process: $(H_m^{(1)} - \theta_2 I) = Q_2 R_2$ then $\times Q_2$ to the right:
 $(A - \theta_2 I) V_m^{(1)} Q_2 = (V_m^{(1)} Q_2) (R_2 Q_2) + v_{m+1} (b_{m+1}^{(1)})^T Q_2$

$$AV_m^{(2)} = V_m^{(2)} H_m^{(2)} + v_{m+1} (b_{m+1}^{(2)})^T$$

Now:

First column of $V_m^{(2)}$

= scalar
$$\times (A - \theta_2 I)v_1^{(1)}$$

= scalar $\times (A - \theta_2 I)(A - \theta_1 I)v_1$
Note that
$$(b_{m+1}^{(2)})^T = e_m^T Q_1 Q_2 = [0, 0, \cdots, 0, q_1, q_2, q_3]$$

▶ Let: $\hat{V}_{m-2} = [\hat{v}_1, \dots, \hat{v}_{m-2}]$ consist of £rst m - 2 columns of $V_m^{(2)}$ and \hat{H}_{m-2} = leading principal submatrix of H_m . Then

$$egin{aligned} A\hat{V}_{m-2}&=~\hat{V}_{m-2}\hat{H}_{m-2}+\hat{eta}_{m-1}\hat{v}_{m-1}e_m^T & ext{with}\ \hat{eta}_{m-1}\hat{v}_{m-1}&\equiv~q_1v_{m+1}+h_{m-1,m-2}^{(2)}v_{m-1}^{(2)} & \|\hat{v}_{m-1}\|_2=1 \end{aligned}$$

Result: An Arnoldi process of m-2 steps with the initial vector $p(A)v_1$.

▶ In other words: We know how to apply polynomial £Itering via a form of the Arnoldi process, combined with the QR algorithm.

Goal: to use a more general preconditioner to introduce good new components to the subspace.

Ideal new vector would be eigenvector itself!

- Next best thing: an approximation to $(A \mu I)^{-1}r$ where $r = (A \mu I)z$, current residual.
- Approximation written in the form $M^{-1}r$. Note that M can vary at every step if needed.

ALGORITHM : 11 Davidson's method (Real symmetric case)

1.	Choose an initial unit vector v_1 . Set $V_1 = [v_1]$.
2.	Until convergence Do:
3.	For $j=1,\ldots,m$ Do:
4.	$w:=Av_j$.
5.	Update $H_j \equiv V_j^T A V_j$
6 .	Compute the smallest eigenpair μ , y of H_j .
7.	$z:=V_jy \ \ r:=Az-\mu z$
8.	Test for convergence. If satis£ed Return
9.	If $j < m$ compute $t := M_{j}^{-1}r$
10.	compute $V_{j+1} := ORTHN([V_j, t])$
11.	Endlf
12.	Set $v_1 := z$ and go to 3
13.	EndDo
14.	EndDo
	Calais February 7, 2005

111

▶ Note: Traditional Davidson uses diagonal preconditioning: $M_j = D - \sigma_j I$.

Will work only for some matrices

Other options:

Shift-and-invert using ILU [negatives: expensive + hard to parallelize.]

- **Filtering (by averaging)**
- Filtering by using smoothers (multigrid style)
- Iterative solves [See Jacobi-Davidson]

CONVERGENCE THEORY

The Lanczos Algorithm in the Hermitian Case

Assume eigenvalues sorted increasingly

 $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$

b Orthogonal projection method onto K_m ;

To derive error bounds, use the Courant characterization

$$egin{aligned} & ilde{\lambda}_1 \,=\, \min_{u \;\in\; K,\; u
eq 0} rac{(Au,u)}{(u,u)} = rac{(A ilde{u}_1, ilde{u}_1)}{(ilde{u}_1, ilde{u}_1)} \ & ilde{\lambda}_j \,=\, \min_{\left\{egin{aligned} u \;\in\; K,\; u
eq 0 \ u \;\; ot ilde{u}_1,\dots, ilde{u}_{j-1} \end{array}} rac{(Au,u)}{(u,u)} = rac{(A ilde{u}_1, ilde{u}_1)}{(ilde{u}_j, ilde{u}_j)} \end{aligned}$$

Bounds for λ_1 easy to £nd – similar to linear systems.

Ritz values approximate eigenvalues of *A* **inside out:**

Theorem [Kaniel, 1966]:

$$0\leq \lambda_1^{(m)}-\lambda_1\leq (\lambda_N-\lambda_1)\left[rac{ anar{}\left(u_1,u_1
ight)}{T_{m-1}(1+2\gamma_1)}
ight]^2$$

where $\gamma_1 = rac{\lambda_2 - \lambda_1}{\lambda_N - \lambda_2}$; and $\angle(v_1, u_1)$ = acute angle between v_1 and u_1 .

+ results for other eigenvalues. [Kaniel, Paige, YS]

$$\begin{array}{l} \text{Theorem [YS,1980]} \\ 0 \leq \lambda_i^{(m)} - \lambda_i \leq (\lambda_N - \lambda_1) \left[\kappa_i^{(m)} \frac{\tan \angle (v_i, u_i)}{T_{m-i}(1+2\gamma_i)} \right]^2 \\ \text{where } \gamma_i = \frac{\lambda_{i+1} - \lambda_i}{\lambda_N - \lambda_{i+1}} \,, \quad \kappa_i^{(m)} = \Pi_{j < i} \frac{\lambda_j^{(m)} - \lambda_N}{\lambda_j^{(m)} - \lambda_i} \end{array}$$

Calais February 7, 2005

116

Theory for nonhermitian case

More dif£cult. No convincing results on 'global convergence'.

Can get a general a-priori – a-posteriori error bound

Let \mathcal{P} be the orthogonal projector onto K and

 \mathcal{Q} be the (oblique) projector onto K and orthogonally to L.

Analysis

Approximate problem amounts to solving

 $\mathcal{Q}(Ax - \lambda x) = 0, \ x \in K$ or in operator form $\mathcal{Q}A\mathcal{P}x = \lambda x$

 $\blacktriangleright \mathsf{Set} A_m \equiv \mathcal{Q}A\mathcal{P}$

THEOREM. Let $\gamma = \|Q(A - \lambda I)(I - P)\|_2$. Then the residual norms of the pairs λ, Pu and λ, u for the linear operator A_m satisfy, respectively

$$egin{aligned} &\|(A_m-\lambda I)\mathcal{P}u\|_2\leq \gamma\|(I-\mathcal{P})u\|_2\ &\|(A_m-\lambda I)u\|_2\leq \sqrt{|\lambda|^2+\gamma^2}\,\|(I-\mathcal{P})u\|_2 \end{aligned}$$

118

How to estimate $||(I - P)u_i||_2$?

 \blacktriangleright Assume that A is diagonizable and expand v_1 in the eigen-basis

$$v_1 = {\scriptscriptstyle \Sigma}_{j=1}^N \, lpha_j u_j$$

Assume $\alpha_i \neq 0$, $\|u_j\|_2 = 1$ for all j. Then:

$$\|(I-\mathcal{P})u_i\|_2 \leq \xi_i \epsilon_i^{(m)}$$

where

$$\xi_i = \sum_{j
eq i} \left| rac{lpha_j}{lpha_i}
ight|$$
 and $\epsilon_i^{(m)} = \min_{\substack{p \in \mathrm{P}_{\mathrm{m}-1} \ p(\lambda_i) = 1}} \max_{\substack{j
eq i}} \left| p(\lambda_j)
ight|$

Particular case i = 1

▶ Assume: $\Lambda(A) \setminus \{\lambda_1\}$ is \subset an ellipse E(c, e, a).

$$\epsilon_1^{(m)} \leq \frac{C_{m-1}\left(\frac{a}{e}\right)}{|C_{m-1}\left(\frac{\lambda_1 - c}{e}\right)|}$$

where C_{m-1} = Chebyshev polynomial of degree m - 1 of the £rst kind.

Calais February 7, 2005	120
-------------------------	-----

HARMONIC RITZ VALUES

Harmonic Ritz values: Literature

- Morgan '91 [Hermitian case]
- Freund '93 [Non-Hermitian case, Starting point: GMRES]
- Morgan '93 [Nonhermitian case]
- Paige, Parlett, Van der Vorst '95.
- Chapman & Y.S. '95. [use in De¤ated GMRES]
- Many publications in the 40s and 50s (Intermediate eigenvalue problems, Lehman intervals, etc..)

Harmonic Ritz values (continued)

Main idea: take L = AK in projection process

▶ In context of Arnoldi's method. Write $\tilde{u} = V_m y$ then: $(A - \tilde{\lambda}I)V_m y \perp \{AV_m\}$

Using $AV_m = V_{m+1}\underline{H}_m \blacktriangleright$

$$\underline{H}_{m}^{H}V_{m+1}^{H}\left[V_{m+1}\underline{H}_{m}y-\tilde{\lambda}V_{m}y
ight]=0$$

Notation: $H_m = \underline{H_m}$ - last row. Then

 $\underline{H}_{m}^{H}\underline{H}_{m}y- ilde{\lambda}H_{m}^{H}y=0$

$$\left(H_m^H H_m + h_{m+1,m}^2 e_m e_m^H
ight)y = ilde{\lambda} H_m^H y$$

Remark:

Assume H_m is nonsingular and multiply both sides by H_m^{-H} . Then, the problem is equivalent to

$$(oldsymbol{H}_{oldsymbol{m}}+oldsymbol{z}_{oldsymbol{m}}oldsymbol{e}_{oldsymbol{m}}^{oldsymbol{H}})oldsymbol{y}= ilde{oldsymbol{\lambda}}oldsymbol{y}$$

with
$$z_m=h_{m+1,m}^2H_m^{-H}e_m$$
 .

b Modi£ed from H_m only in the last column.

Implementation within Davidson framework

Slight varation to standard Davidson: Introduce $z_i = M_i^{-1}r_i$ to subspace. Proceed as in FGMRES: $v_{j+1} = Orthn(Az_j, V_j)$.

From Gram-Schmidt process:

$$Az_j = \sum\limits_{i=1}^{j+1} h_{ij}v_i$$

Hence the relation

$$AZ_m = V_{m+1}ar{H}_m$$

Approximation: λ , $\tilde{u} = Z_m y$

Galerkin Condition: $r\perp AZ_m$ gives the generalized problem $ar{H}_m^Har{H}_m\,y=\lambda\,ar{H}_m^HV_{m+1}^HZ_m\,y$

Davidson's algorithm and two variants

DAVIDSON's ALGORITHM. 1

Start: select v_1 . For $j = 1, \ldots, m$ Do: Update $V_i^H A V_j$. Compute Ritz pair $ilde{u}, \lambda$ Compute $r = A \tilde{u} - \tilde{\lambda} u$ $z = M^{-1}r$ $v_{i+1} = ORTHN(z, V_i)$ EndDo

DAVIDSON'S ALGORITHM. 2

```
Start: select r.
For j = 1, \ldots, m Do:
  z = M^{-1}r
  v_j = ORTHN(z, V_{j-1})
   Compute w = Av_i and
  Update V_i^H A V_j.
   Compute Ritz pair \tilde{u}, \tilde{\lambda}
   Compute r = A \tilde{u} - \tilde{\lambda} u
EndDo
```

Difference: start with a preconditioning operation instead of a matvec. In general minor differences.

Calais February 7, 2005	127
-------------------------	-----

HARMONIC DAVIDSON

Start: select r. Set $v_1 = r/||r||_2$. For $j = 1, \ldots, m$ Do: $z_i = M^{-1}r$ Compute $w = Az_i$ and $v_{j+1} = ORTHN(w, V_j, h_{:,j});$ Update $G = \underline{H}_{i}^{H} \underline{H}_{j}$, and $S = \underline{H}_{i}^{H} V_{i+1}^{H} Z_{j}$; Compute Ritz pair $\tilde{u}, \tilde{\lambda}$: $Gy = ilde{\lambda}Sy, ilde{u} = Z_j y$ Compute $r = A ilde{u} - ilde{\lambda} u$ **EndDo**

Arnoldi part identical with that of FGMRES.

Relation with GMRES (Freund '91)

The Harmonic Ritz values are the roots of the 'GMRES' polynomial:

$$\psi_m = rg\min_{\psi \in \mathrm{P}_m, \ \psi(0)=1} = \|\psi(A)r_0\|_2$$

Proof. GMRES condition is:

$$egin{aligned} eta v_1 - AV_m y \ ota \ \{AV_m\} \ \psi_m(A) v_1 \ ota \ \{AV_m\} \ (A - ilde{\lambda}_i I) V_m y_i \ ota \ \{AV_m\} \end{aligned}$$

Same condition as that of Harmonic Ritz projection. $\blacktriangleright \tilde{\lambda}_i$ = Ritz harmonic value, $\tilde{u}_i = V_m y_i$ = Ritz Harmonic vector.

Calais February 7, 2005

130

Harmonic values and interior eigenvalues

Let $\tilde{z} = A^{-1}\tilde{u}$ and rewrite the condition $[A - \tilde{\lambda}I]\tilde{u} \perp AK$ as:

 $[ilde{\lambda}^{-1}I - A^{-1}] ilde{z} \perp L \qquad ilde{z} \in L$

• Orthogonal projection method for A^{-1} .

Note: This is NOT shift-and-invert in disguise.

- **Space of approximants is the same as for standard projection.**
- Interesting consequence for Hermitian case.

Harmonic Ritz projection in the Hermitian Case

Order eigenvalues increasingly:

$$\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$$

Recall: Ritz values approximate eigenvalues of *A* inside out:

$$ilde{\lambda}_i = \min_{x \; \in \; K_i \; rac{(Ax,x)}{(x,x)}}$$

Apply principle to Harmonic Ritz values

Careful: treat positive and negative eigenvalues separately. Result: [Paige, Parlett, Van der Vorst '95]

Assume for simplicity that A is SPD.

▶ De£ne: $K^{(i)} = \{x \in K \mid Ax \perp A\tilde{u}_1, A\tilde{u}_2, \ldots A\tilde{u}_{i-1}\}$ ($K^{(i)} \equiv K$). Then

$$ilde{\lambda}_i^{-1} = \max_{x \ \in \ K_i} \ rac{(Ax,x)}{(Ax,Ax)}$$

Alternative Projections

Eigenvalue problems are really non-linear systems of equations..

Idea: £nd μ such $(A - \mu I)V$ is nearly rank-de£cient

Leads to

$$det[V^H(A-\mu I)^H(A-\mu I)V]=0$$

Assume $\mu = \text{real. Using } AV_m = V_{m+1}\bar{H} \longrightarrow \text{quadratic problem}$ $(\bar{H}_m^T \bar{H}_m - \mu (H_m + H_m^T) + \mu^2 I)y = 0$

Alternative formulations

•
$$\det (V^H(A - \mu I)V) = 0 \rightarrow$$
 orthog. projection

- $\det ((AV)^H (A \mu I)V) = 0 \rightarrow$ Harmonic projection
- $\sigma_{min}\left((A-\mu I)V
 ight)=0 o$ SVD projection

135

137

JACOBI – DAVIDSON

Introduction via Newton's metod

Assumptions: M = A + E and $Az \approx \mu z$

Goal: to £nd an improved eigenpair $(\mu + \eta, z + v)$.

For white $A(z + v) = (\mu + \eta)(z + v)$ and neglect second order terms

+ rearrange 🍉

$$(M - \mu I)v - \eta z = -r$$
 with $r \equiv (A - \mu I)z$

b Unknowns: η and v.

Underdertermined system. Need one constraint.

Add the condition: $w^H v = 0$ for some vector w.

In matrix form:

$$\begin{pmatrix} \boldsymbol{M} - \boldsymbol{\mu} \boldsymbol{I} & -\boldsymbol{z} \\ \boldsymbol{w}^{\boldsymbol{H}} & \boldsymbol{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{v} \\ \boldsymbol{\eta} \end{pmatrix} = \begin{pmatrix} -\boldsymbol{r} \\ \boldsymbol{0} \end{pmatrix}$$

 $\blacktriangleright \text{ Eliminate } v \text{ from second equation:} \\ \begin{pmatrix} M - \mu I & -z \\ 0 & w^H (M - \mu I)^{-1} z \end{pmatrix} \begin{pmatrix} v \\ \eta \end{pmatrix} = \begin{pmatrix} -r \\ w^H (M - \mu I)^{-1} r \end{pmatrix}$

Solution: [Olsen's method]

$$\eta = rac{w^H (M-\mu I)^{-1} r}{w^H (M-\mu I)^{-1} z} \qquad v = -(M-\mu I)^{-1} (r-\eta z)$$

When M = A, corresponds to Newton's method for solving $\begin{cases} (A - \lambda I)u = 0 \\ w^Tu = Constant \end{cases}$

Note: Another way to characterize the solution is:

$$v = -(M-\mu I)^{-1}r + \eta (M-\mu I)^{-1}z, \hspace{1em}\eta \hspace{1em}$$
 such that $\hspace{1em} w^Hv = 0$

Involves inverse of $(M - \lambda I)$. Jacobi-Davidson rewrites solution using projectors.

Let P_z be a projector in the direction of z which leaves r invariant. It is of the form

$$P_z = I - rac{z s^H}{s^H z}$$

where $s \perp r$. Similarly let P_w any projector which leaves v inchanged. Then the Olsen's solution can be written as

$$[P_z(M-\mu I)P_w]v=-r$$
 $w^Hv=0$

The two solutions are mathematically equivalent.

The Jacobi-Davidson approach

In orthogonal projection methods (e.g. Arnoldi) we have $r\perp z$

Also it is natural to take $w \equiv z$. Assume $||z||_2 = 1$

With the above assumptions, Olsen's correction equation is mathematically equivalent to finding v such that :

$$(I-zz^H)(M-\mu I)(I-zz^H)v=-r$$
 $v\perp z$

Main attraction: can use iterative method for the solution of the correction equation. (M -solves not explicitly required).

Automatic Multi-Level Substructuring

Origin: Extention of substructuring for eigenvalue problems.

Background: Domain decomposition. Let $A \in \mathbb{C}^{n \times n}$, Hermitian

► B= block-diagonal - represents local matrices -

 \blacktriangleright *E* represent coupling - *C* operates on interface variables.
The problem $Au = \lambda u$, can be written as:

$$egin{pmatrix} oldsymbol{B} & oldsymbol{E} \ oldsymbol{E}^* & oldsymbol{C} \end{pmatrix} egin{pmatrix} oldsymbol{ ilde{u}^B} \ oldsymbol{ ilde{u}^S} \end{pmatrix} = oldsymbol{\lambda} egin{pmatrix} oldsymbol{ ilde{u}^B} \ oldsymbol{ ilde{u}^S} \end{pmatrix}$$

Basic idea of the method for two levels

First step: eliminate the blocks E, E^* .

$$egin{array}{rcl} oldsymbol{U}=egin{pmatrix} oldsymbol{I}&-oldsymbol{B}^{-1}oldsymbol{E}\ 0&oldsymbol{I} \end{pmatrix}
ightarrowoldsymbol{U}^*oldsymbol{A}oldsymbol{U}=egin{pmatrix} oldsymbol{B}&0\ 0&oldsymbol{S} \end{pmatrix}; &oldsymbol{S}=oldsymbol{C}-oldsymbol{E}^*oldsymbol{B}^{-1}oldsymbol{E}. \end{array}$$

Original problem is equivalent to $U^*AUu = \lambda U^*Uu \rightarrow$

$$egin{pmatrix} egin{array}{ccc} egin{array}{cccc} egin{array}{ccc} egin{array}$$

 \blacktriangleright with $M_S = I + E^* B^{-2} E$

Second step: neglect the coupling in right-hand side matrix:

$$egin{pmatrix} egin{array}{ccc} egin{array}{cccc} egin{array}{ccc} egin{array}{cccc} egin{array}{cccc} egin{array}{cccc} egin{array}{cccc} egin{array}{cccc} egin{array}{cccc} egin{array}{cccc} egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{cccc} egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array} egin{array}{cccc} egin{array}{cccc} egin{array} egin{arr$$

Compute a few of the smallest eigenvalues of above problem.

Third step:Build a 'good' subspace to approximate to eigenfunc-tions of original problem. For projection, use basis the form

$$egin{aligned} & igin{aligned} & \hat{v}_i = ig(egin{aligned} v_i \ 0 \end{pmatrix} & i = 1, \dots, m_B; & \hat{w}_j = ig(egin{aligned} w_j \end{pmatrix} & j = 1, \dots, m_S \end{bmatrix}, \end{aligned}$$

where $m_B < (n-p)$ and $m_S < p$.

Then use this subspace for a Rayleigh-Ritz projection applied to

$$egin{pmatrix} m{B} & m{0} \ m{0} & m{S} \end{pmatrix} egin{pmatrix} m{u}^B \ m{u}^S \end{pmatrix} &= \lambda egin{pmatrix} m{I} & -m{B}^{-1}m{E} \ -m{E}^*m{B}^{-1} & m{M}_S \end{pmatrix} egin{pmatrix} m{u}^B \ m{u}^S \end{pmatrix}$$

(Note: not the original problem.)

Final step: exploit recursion –

NOTE: algorithm does only one shot of descent - ascent (no iterative improvement).

References:

[1] J. K. BENNIGHOF AND R. B. LEHOUCQ, *An automated multilevel* substructuring method for eigenspace computation in linear elastodynamics, To appear in SIAM. J. Sci. Comput., (2003).

[2] R. R. GRAIG, JR. AND M. C. C. BAMPTON, *Coupling of substructures* for dynamic analysis, AIAA Journal, 6 (1968), pp. 1313–1319.

[3] W. C. HURTY, *Vibrations of structural systems by componentmode synthesis*, Journal of the Engineering Mechanics Division, ASCE, 86 (1960), pp. 51–69.

[4] K. BEKAS AND Y. SAAD, Computation of Smallest Eigenvalues using Spectral Schur Complements, MSI technical report, Jan. 2004
to appear.

Spectral Schur complements

Can interpret AMLS in terms of Schur complements. Start with

$$egin{pmatrix} oldsymbol{B} & oldsymbol{E} \ oldsymbol{E}^* & oldsymbol{C} \end{pmatrix} egin{pmatrix} oldsymbol{u}^B \ oldsymbol{u}^S \end{pmatrix} = oldsymbol{\lambda} egin{pmatrix} oldsymbol{u}^B \ oldsymbol{u}^S \end{pmatrix}$$

For $\lambda \notin \Lambda(B)$ de£ne

$$S(\lambda) = C - E^*(B - \lambda I)^{-1} H$$

When $\lambda \notin \Lambda(B)$ then $\lambda \in \Lambda(A) \leftrightarrow \lambda \in \Lambda(S(\lambda))$, i.e., iff $S(\lambda)u^S = \lambda u^S$

Observation: The Schur complement problem solved by AMLS can be viewed as the problem resulting from £rst order approximation of $S(\lambda)$ around $\lambda = 0$. The standard expansion of the resolvent

$$(B-\lambda I)^{-1}=B^{-1}\sum\limits_{k=0}^\infty (\lambda B^{-1})^k=\sum\limits_{k=0}^\infty \lambda^k B^{-k-1},$$

around $\lambda = 0$, leads to the series

 $S(\lambda) = C - E^* \left(B^{-1} + \lambda B^{-2} + \lambda^2 B^{-3} + \ldots
ight) E = S - \sum_{k=1}^{\infty} \lambda^k E^* B^{-k-1} E$

> Zeroth order approximation [\approx shift-and-invert with zero shift]

$$Su^S=\lambda u^S$$

First order approximation [AMLS]

$$Su^S=\lambda(I+E^*B^{-2}E)u^S$$

Second order approximation [See Bekas and YS '04]

$$Su^S=\lambda(I+E^*B^{-2}E+\lambda E^*B^{-3}E)u^S$$

Approximating the eigenvectors

Let λ , u^S be an eigenpair of the nonlinear eigenvalue problem i.e., such that: $S(\lambda)u^S = \lambda u^S$ Then, λ is an eigenvalue of A with associated eigenvector:

$$\begin{pmatrix} -(B-\lambda I)^{-1}Eu^S\ u^S \end{pmatrix} = egin{pmatrix} I & -(B-\lambda I)^{-1}E\ 0 & I \end{pmatrix} egin{pmatrix} 0\ u^S \end{pmatrix} egin{pmatrix} U(\lambda) \end{pmatrix}$$

▶ AMLS approximates the exact prolongator $U(\lambda)$ by $U(0) \equiv U$;

b It then adds approximate eigenvectors from B to construct a subspace of approximants to perform a projection process.

▶ the space of approximants is spanned by the family of vectors: $\begin{cases} \begin{pmatrix} v_i^B \\ 0 \end{pmatrix} \\ 0 \end{pmatrix} , \quad \begin{cases} \begin{pmatrix} -B^{-1}Eu_j^S \\ u_j^S \end{pmatrix} = U(0) \begin{pmatrix} 0 \\ u^S \end{pmatrix} \\ u^S \end{pmatrix} ,$ in which v_i^B are eigenvectors of *B* associated with the smallest eigenvalues

When λ is small, then $U(\lambda) \approx U(0) \rightarrow$ some simple bounds can obtained for the distance between this space of approximants and exact eigenvectors of A.

AN APPLICATION

Electronic structures and Shrödinger's equation

- **b** Determining matter's electronic structure can be a major challenge: [a macroscopic amount contains $\approx 10^{23}$ electrons and nuclei]
- **Solution via the many-body Shrödinger equation:**

 $H\Psi=E\Psi$

The Hamiltonian *H* is very complex:

$$H = -\sum\limits_{i} rac{\hbar^2
abla_i^2}{2M_i} - \sum\limits_{j} rac{\hbar^2
abla_j^2}{2m} + rac{1}{2} \sum\limits_{i,j} rac{Z_i Z_j e^2}{|ec{R}_i - ec{R}_j|} - \sum\limits_{i,j} rac{Z_i e^2}{|ec{R}_i - ec{r}_j|} + rac{1}{2} \sum\limits_{i,j} rac{e^2}{|ec{r}_i - ec{r}_j|}$$

Involves sums over all electrons / nuclei and their pairs in terms involving Laplaceans, distances betweens electrons /nuclei.

Several approximations/theories used

Born-Oppenheimer approximation: Neglects motion of nuclei [heavier than electrons]

▶ Many electrons \rightarrow one electron systems: each electron sees only the average potential from other electrons/ nuclei.

Density Functional Theory: observable quantities uniquely determined by ground state charge density. Consequence: Kohn-Sham equations

 \triangleright v_0 = external potential, E_{xc} = exchange-correlation energy

b Local Density Approximation: exchange-correlation energy E_{xc} is a simple known function

Pseudopotentials: replace effect of core (inner shell) electrons of the system by an effective potential

$$\left[-rac{h^2}{2m}
abla^2+V_{tot}[
ho(r),r]
ight]\Psi(r)=E\Psi(r)$$

With

$$V_{tot} = V_{ion} + V_H + V_{xc}$$

- V_H = Hartree potential
- V_{xc} = Exchange & Correlation potential
- V_{ion} = lonic potential
- **Electron Density:**

$$ho(r) = {\scriptscriptstyle \Sigma}_i^{occup} \, |\Psi_i(r)|^2$$
 .

Above problem can be viewed as a nonlinear eigenvalue problem.

Local

Non-Local

The three potential terms

Hartree Potential V_H is solution of the Poisson equation:

 $abla^2 V_H = -4\pi
ho(r)$

Solve using Conjugate Gradient method once ρ is known.

▶ Potential V_{xc} (exchange & correlation) is approximated by a potential induced by a local density. [Local Density Approximation]. Valid for slowly varying $\rho(r)$.

Potential V_{ion} is more complex: In matrix terms: a small-rank matrix localized around each atom.

Self Consistency

 $\rho(r)$

2.

$$1. \quad \left[-rac{h^2}{2m}
abla^2 + V_{tot}[
ho(r),r]
ight] \Psi_i(r) = E_i \Psi_i(r), i=1,...,i^{occup}$$

$$3. \quad
abla^2 V_H = -4\pi
ho(r) \quad o \quad V_{tot} = V_H + V_{xc} + V_{ion}$$

 $|\Psi_i(r)|$

b Both V_{xc} and V_H , depend on ρ .

 $= \Sigma_i$

The potentials and charge densities must be self-consistent: Can be viewed as a nonlinear eigenvalue problem

Preferred approach: Broyden-type quasi-Newton technique

- **Typically, a small number of iterations are required**
- ▶ Not represented above: time stepping.

Calais February 7, 2005

Resources

► ARPACK:

http://www.caam.rice.edu/software/ARPACK/indexold.html

"Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide", Zhaojun Bai, James Demmel, Jack Dongarra, Axel Ruhe, and Henk van der Vorst, SIAM, 2000.

Matrix Algorithms, Vol 2, G. W. Stewart, SIAM, 2001

Numerical Methods for Large Eigenvalue Problems, Y. Saad, available from

http://www.cs.umn.edu/~saad/books.html

Calais February 7, 2005

The end

• The slides for this talk can be downloaded from my web site:

URL: http://www.cs.umn.edu/~saad

- Follow the "Teaching" icon [Calais lecture notes]
- Will include all matlab scripts used for demonstrations
- My e-mail address:

e-mail: saad@cs.umn.edu

MERCI DE VOTRE ATTENTION!

The Test – Durée: 20mn

1. Quel nombre de couleurs trouveriez-vous si vous appliquiez l'algorithme gourmand de coloriage a une matrice a 5 points [disc. du Laplacien a 2-D - grille rectangulaire - point de depart = 1]

2. Montrez les tableaux *AA*, *JA*, *IA* utilisés pour stocker la matrice creuse suivante en format CSR (compressed sparse row)?

	2	0	0
3	4	0	5
0	0	6	7
8	9	0	0

3. L'algorithme "steepest descent" converge-t-il quand $A \neq A^T$? Quel (s) algorithmes de projection a une dimension convergent toujours quand *A* est telle que $A + A^T$ est SDP? 4. A quelle methode de projection correspond l'algorithme du gradient conjugué?

5. Quelles relations d'orthogonalite sont satisfaites par les residus preconditiones z_j de l'algorithme du gradient conjugue preconditioné?

6. Quelle est la matrice de preconditionnement SSOR ($\omega = 1$) pour une matrice *A* quelconque?

7. A quelle methode de projection correspond l'algorithme des valeurs de Ritz harmoniques?

8. Quelle methode utiliseriez-vous pour calculer toutes les valeurs propres d'une matrice symmetrique dense ?