A short course on: Preconditioned Krylov subspace methods

Yousef Saad University of Minnesota Dept. of Computer Science and Engineering

Universite du Littoral, Jan 19-30, 2005

INTRODUCTION - MOTIVATION

Outline

Part 1

- Introd., discretization of PDEs
- Sparse matrices and sparsity
- Basic iterative methods (Relaxation..)

Part 2

- Projection methods
- Krylov subspace methods

Part 3

- Preconditioned iterations
- Preconditioning techniques
- Parallel implementations

Part 4

- Eigenvalue problems
- Applications –

Calais February 7, 2005

Origins of Eigenvalue Problems

- Structural Engineering $[Ku = \lambda Mu]$
- Electronic structure calculations [Shrödinger equation..]
- Stability analysis [e.g., electrical networks, mechanical system,..]
- Bifurcation analysis [e.g., in ¤uid ¤ow]
- Large sparse eigenvalue problems are among the most demanding calculations (in terms of CPU time) in scienti£c computing.

New application in information technology

- ► Search engines (google) rank web-sites in order to improve searches
- The google toolbar on some browsers (http://toolbar.google.com)
- gives a measure of relevance of a page.
- ▶ The problem can be formulated as a Markov chain Seek the dominant eigenvector
- ▶ Algorithm used: power method
- ▶ For details see:

http://www.iprcom.com/papers/pagerank/index.html

Calais February 7, 2005

Types of problems

- * Standard Hermitian (or symmetric real) $Ax = \lambda x$, $A^H = A$
- * Standard non-Hermitian $Ax = \lambda x$, $A^H \neq A$
- * Generalized

$$Ax = \lambda Bx$$

Several distinct sub-cases (B SPD, B SSPD, B singular with large null space, both A and B singular, etc..)

* Quadratic

$$(A + \lambda B + \lambda^2 C)x = 0$$

* Nonlinear

$$A(\lambda)x = 0$$

Calais February 7, 2005

The Problem

We consider the eigenvalue problem

$$Ax = \lambda x$$
 or $Ax = \lambda Bx$

Typically: B is symmetric (semi) positive de£nite, A is symmetric or nonsymmetric

Requirements vary:

- Compute a few λ_i 's with smallest or largest real parts;
- Compute all λ_i 's in a certain region of \mathbb{C} ;
- Compute a few of the dominant eigenvalues;
- Compute all λ_i 's.

Calais February 7, 2005

EIGENVALUE PROBLEMS - BASICS DENSE MATRIX CASE

- Background on eigenvalues/ eigenvectors/ Jordan form
- The Schur form
- Perturbation analysis, condition numbers..
- Power method, subspace iteration algorithms
- The QR algorithm
- Practical QR algorithms: use of Hessenberg form and shifts
- The symmetric eigenvalue problem.

Basic de£nitions and properties

A complex scalar λ is called an eigenvalue of a square matrix Aif there exists a nonzero vector u in C^n such that $Au = \lambda u$. The vector u is called an eigenvector of A associated with λ . The set of all eigenvalues of A is the 'spectrum' of A. Notation: $\Lambda(A)$.

- $\triangleright \lambda \in \Lambda(A)$ iff the columns of $A \lambda I$ are linearly dependent.
- ... equivalent to saying that its rows are linearly dependent. So: there is a nonzero vector w such that

$$w^H(A - \lambda I) = 0$$

- \blacktriangleright w^H is called a left eigenvector of A (u is a right eigenvector)
- $lacksquare \lambda \in \Lambda(A)$ iff $\det(A-\lambda I)=0$ Calais February 7, 2005

- ▶ Geometric multiplicity is < algebraic multiplicity.</p>
- An eigenvalue is simple if its (algebraic) multiplicity is one.
- ▶ It is semi-simple if its geometric and algebraic multiplicities are equal.

Example: Consider

$$A = egin{pmatrix} 1 & 2 & -4 \ 0 & 1 & 2 \ 0 & 0 & 2 \end{pmatrix}$$

What are the eigenvalues of A? their algebraic multiplicities? their geometric multiplicities? Is one a semi-simple eigenvalue?

Same questions if a_{33} is replaced by one.

Basic de£nitions and properties (cont.)

► An eigenvalue is a root of the Characteristic polynomial:

$$p_A(\lambda) = \det(A - \lambda I)$$

- **▶** So there are *n* eigenvalues (counted with their multiplicities).
- \blacktriangleright The multiplicity of these eigenvalues as roots of p_A are called algebraic multiplicities.
- \blacktriangleright The geometric multiplicity of an eigenvalue λ_i is the number of linearly independent eigenvectors associated with λ_i .

Calais February 7, 2005

 \blacktriangleright Two matrices A and B are similar if there exists a nonsingular matrix X such that

$$B = XAX^{-1}$$

- ▶ De£nition: A is diagonalizable if it is similar to a diagonal matrix
- ► THEOREM: A matrix is diagonalizable iff it has n linearly independent eigenvectors
- THEOREM (Schur form): Any matrix is unitarily similar to a triangular matrix, i.e., for any A there exists a unitary matrix Qand an upper triangular matrix R such that

$$A = QRQ^H$$

► Any Hermitian matrix is unitarily similar to a real diagonal matrix, (i.e. its Schur form is real diagonal).

Special case: symmetric / Hermitian matrices

▶ Consider the Schur form of a real symmetric matrix *A*:

$$A = QRQ^H$$

Since $A^H = A$ then $R = R^H$

Eigenvalues of A are real

In addition, Q can be taken to be real when A is real.

$$(A - \lambda I)(u + iv) = 0 \rightarrow (A - \lambda I)u = 0$$
 and $(A - \lambda I)v = 0$

▶ Can select eigenvectors to be real.

There is an orthonormal basis of eigenvectors of A

Calais February 7, 2005

The Law of interia

 \blacktriangleright A matrix A with m negative, z zero, and p positive eigenvalues, has inertia [m, z, p].

Sylvester's Law of inertia: If X is an $n \times n$ nonsingular matrix, then A and X^TAX have the same inertia.

Example: Suppose that $A = LDL^T$ where L is unit lower triangular, and D diagonal. How many negative eigenvalues does A have?

Example: Assume that A is tridiagonal. How many operations are required to determine the number of negative eigenvalues of A?

Example: Devise an algorithm based on the inertia theorem to compute the *i*-th eigenvalue of a tridiagonal matrix.

The min-max theorem

Label eigenvalues increasingly:

$$\lambda_1 \geq \lambda_2 \geq \cdots \lambda_n$$

The eigenvalues of a Hermitian matrix A are characterized by the relation

$$\lambda_k = \max_{S, \; \dim(S) = k} \quad \min_{x \in S, x
eq 0} \; rac{(Ax, x)}{(x, x)}$$

Consequence:

$$\lambda_1 = \max_{x
eq 0} (Ax,x)/(x,x) \qquad \lambda_n = \min_{x
eq 0} (Ax,x)/(x,x)$$

Calais February 7, 2005

Perturbation analysis

- General questions: If A is perturbed how does an eigenvalue change? How about an eigenvector?
- Also: sensitivity of an eigenvalue to perturbations

THEOREM [Gerschgorin]

$$orall \; \lambda \; \in \Lambda(A), \quad \exists \; i \quad \mathsf{such \; that} \quad |\lambda - a_{ii}| \leq \sum\limits_{\substack{j=1 \ j \neq i}}^{j=n} |a_{ij}| \; .$$

 \blacktriangleright In words: An eigenvalue λ of A is located in one of the closed discs $D(a_{ii}, \rho_i)$ with $\rho_i = \sum_{i \neq i} |a_{ij}|$.

Gerschgorin's theorem - example

Find a region of the complex plane where the eigenvalues of the following matrix are located:

$$A = \left(egin{array}{cccc} 1 & -1 & 0 & 0 \ 0 & 2 & 0 & 1 \ -1 & -2 & -3 & 1 \ rac{1}{2} & rac{1}{2} & 0 & -4 \end{array}
ight)$$

- ▶ Re£nement: if disks are all disjoint then each of them contains one eigenvalue
- Re£nement: can combine row and column version of the theorem (column version obtained by applying theorem to A^H).

Calais February 7, 2005

Conditioning of Eigenvalues

 \blacktriangleright Assume that λ is a simple eigenvalue with right and left eigenvectors u and w^H respectively. Consider the matrices:

$$A(t) = A + tE$$

- \blacktriangleright Eigenvalue $\lambda(t)$, eigenvector u(t).
- ▶ Conditioning of λ of A relative to E is the $|d\lambda(t)/dt|$ at t=0.
- ▶ Write

$$A(t)u(t) = \lambda(t)u(t)$$

 \blacktriangleright then multiply both sides to the left by w^H

$$egin{aligned} w^H(A+tE)u(t) &= \lambda(t)w^Hu(t) &
ightarrow \ \lambda(t)w^Hu(t) &= w^HAu(t) + tw^HEu(t) \ &= \lambda w^Hu(t) + tw^HEu(t). \end{aligned}$$

Bauer-Fike theorem

THEOREM [Bauer-Fike] Let $\tilde{\lambda}$, \tilde{u} be an approximate eigenpair with $\| ilde{u}\|_2=1$, and let $r=A ilde{u}- ilde{\lambda} ilde{u}$ ('residual vector'). Assume A is diagonalizable: $A = XDX^{-1}$, with D diagonal. Then

$$\exists \ \lambda \in \ \Lambda(A) \quad \mathsf{such that} \quad |\lambda - ilde{\lambda}| \leq \mathrm{cond}_2(X) \|r\|_2 \ .$$

- Very restrictive result also not too sharp in general.
- Alternative formulation. If E is a perturbation to A then for any eigenvalue $\tilde{\lambda}$ of A+E there is an eigenvalue λ of A such that:

$$|\lambda - \tilde{\lambda}| \leq \operatorname{cond}_2(X) \|E\|_2$$
 .

♦ Prove this result from the previous one. Calais February 7, 2005

Hence,

$$rac{\lambda(t)-\lambda}{t}w^Hu(t)\ = w^HEu(t)$$

ightharpoonup Take the limit at t=0,

$$\lambda'(0) = rac{w^H E u}{w^H u}$$

▶ Note: the left and right eigenvectors associated with a simple eigenvalue cannot be orthogonal to each other.

Actual conditioning of an eigenvalue, given a perturbation "in the direction of E" is the modulus of the above quantity.

▶ In practice, one only has an estimate of ||E|| for some norm

$$|\lambda'(0)| \leq rac{\|Eu\|_2 \|w\|_2}{|(u,w)|} \leq \|E\|_2 rac{\|u\|_2 \|w\|_2}{|(u,w)|}$$

De£nition. The condition number of a simple eigenvalue λ of an arbitrary matrix A is defined by

$$\operatorname{cond}(\lambda) = \frac{1}{\cos \theta(u, w)}$$

in which u and w^H are the right and left eigenvectors, respectively, associated with λ .

Example: Consider the matrix

$$A = egin{pmatrix} -149 & -50 & -154 \ 537 & 180 & 546 \ -27 & -9 & -25 \ \end{pmatrix}$$

 $ightharpoonup \Lambda(A) = \{1,2,3\}$. Right and left eigenvectors associated with $\lambda_1 = 1$:

$$u = egin{pmatrix} 0.3162 \ -0.9487 \ 0.0 \end{pmatrix} \quad ext{and} \quad w = egin{pmatrix} 0.6810 \ 0.2253 \ 0.6967 \end{pmatrix}$$

The power method

- **Basic** idea is to generate the sequence of vectors $A^k v_0$ where $v_0 \neq 0$ – then normalize.
- Most commonly used normalization: ensure that the largest component of the approximation is equal to one.

ALGORITHM: 1. The Power Method

- 1. Choose a nonzero initial vector $v^{(0)}$.
- **2.** For $k = 1, 2, \ldots$, until convergence, Do:
- 3. $v^{(k)} = \frac{1}{\alpha_k} A v^{(k-1)}$ where
- 4. $\alpha_k = \operatorname{argmax}_{i=1,\dots,n} |(Av^{(k-1)})_i|$
- 5. EndDo
- $ightharpoonup rgmax_{i=1,..,n}|\mathbf{x}_i| \equiv$ the component x_i with largest modulus

Calais February 7, 2005

So:

$$\operatorname{cond}(\lambda_1) \approx 603.64$$

▶ Perturbing a_{11} to -149.01 yields the spectrum:

$$\{0.2287, 3.2878, 2.4735\}.$$

- as expected..
- For Hermitian (also normal matrices) every simple eigenvalue is well-conditioned, since $cond(\lambda) = 1$.

Calais February 7, 2005 22

Convergence of the power method

THEOREM Assume that there is one and only one eigenvalue λ_1 of A of largest modulus and that λ_1 is semi-simple. Then either the initial vector v_0 has no component in the invariant subspace associated with λ_1 or the sequence of vectors generated by the algorithm converges to an eigenvector associated with λ_1 and α_k converges to λ_1 .

Proof in the diagonalizable case.

- $ightharpoonup v_k$ is = vector $A^k v_0$ normalized by a certain scalar $\hat{\alpha}_k$ in such a way that its largest component is 1.
- lacktriangle Decompose the initial vector v_0 as $v_0 = \sum_{i=1}^p \gamma_i u_i$ where the u_i 's are the eigenvectors associated with the λ_i 's, $i=1,\ldots,n$. Calais February 7, 2005

ightharpoonup Note that $A^k u_i = \lambda_i^p u_i$

$$egin{aligned} v_k &= rac{1}{scaling} imes \sum\limits_{i=1}^n \lambda_i^k \gamma_i u_i \ &= rac{1}{scaling} imes \left[\lambda_1^k \gamma_1 u_1 + \sum\limits_{i=2}^n \lambda_i^k \gamma_i^k u_i
ight] \ &= rac{1}{scaling'} imes \left[u_1 + \sum\limits_{i=2}^n \left(rac{\lambda_i}{\lambda_1}
ight)^k rac{\gamma_i}{\gamma_1} u_i
ight] \end{aligned}$$

- **▶** Second term inside bracket converges to zero. QED
- ▶ Proof suggests that the convergence factor is given by

$$ho_D = rac{|\lambda_2|}{|\lambda_1|}$$

where λ_2 is the second largest eigenvalue in modulus.

Example: Consider a 'Markov Chain' matrix of size n=55. Dominant eigenvalues are $\lambda=1$ and $\lambda=-1$ the power method applied directly to A fails. (Why?)

ais February 7, 2005

25

The Shifted Power Method

▶ In previous example shifted A into B=A+I before applying power method. We could also iterate with $B(\sigma)=A+\sigma I$ for any positive σ

Example: With $\sigma=0.1$ we get the following improvement.

Iteration	Norm of diff.	Res. Norm	Eigenvalue	
20	0.273D-01	0.794D-02	1.00524001	
40	0.729D-03	0.210D-03	1.00016755	
60	0.183D-04	0.509D-05	1.00000446	
80	0.437D-06	0.118D-06	1.00000011	
88	0.971D-07	0.261D-07	1.00000002	

We can consider instead the matrix I+A The eigenvalue $\lambda=1$ is then transformed into the (only) dominant eigenvalue $\lambda=2$

Iteration	Norm of diff.	Res. norm	Eigenvalue
20	0.639D-01	0.276D-01	1.02591636
40	0.129D-01	0.513D-02	1.00680780
60	0.192D-02	0.808D-03	1.00102145
80	0.280D-03	0.121D-03	1.00014720
100	0.400D-04	0.174D-04	1.00002078
120	0.562D-05	0.247D-05	1.00000289
140	0.781D-06	0.344D-06	1.00000040
161	0.973D-07	0.430D-07	1.00000005

Calais February 7, 2005

is February 7, 2005

Question: What is the best shift-of-origin σ to use?

When all eigenvalues are real and such that

$$\lambda_1 > \lambda_2 > \lambda_2 > \cdots > \lambda_n$$

then the value of σ which yields the best convergence factor is:

$$\sigma_{opt} = rac{\lambda_2 + \lambda_n}{2}$$

Inverse Iteration

Observation: The eigenvectors of A and A^{-1} are identical.

- ldea: use the power method on A^{-1} .
- **▶** Will compute the eigenvalues closest to zero.
- ▶ Shift-and-invert Use power method on $(A \sigma I)^{-1}$. ▶ will compute eigenvalues closest to σ .
- Advantages: fast convergence in general.
- ▶ Drawbacks: need to factor A (or $A \sigma I$) into LU..

Calais February 7, 2005 29

ALGORITHM: 3. Subspace Iteration with Projection

Start: Choose $Q_0 = [q_0, \ldots, q_m]$

Iterate: For k = 1, ..., until convergence do:

Compute $\hat{Z} = AQ_{k-1}$.

 $\hat{Z}=ZR_{Z}$ (QR factorization)

 $B = Z^H A Z$

Compute the Schur factorization $B = YRY^H$

 $Q_k = ZY$

EndDo

- Again: no need to orthogonalize + project at each step.
- ightharpoonup Assume $|\lambda_1| \geq |\lambda_2| \geq \cdots |\lambda_m| > |\lambda_{m+1}| \geq \cdots \geq |\lambda_n|$, then convergence rate for λ_1 is (generally)

$$|\lambda_{m+1}/\lambda_1|$$

Generalizes the power method

ALGORITHM: 2 • Orthogonal iteration

- 1. Start: $Q_0 = [q_1, \dots, q_m]$
- 2. Iterate: Until convergence do,
- 3. $X := AQ_{k-1}$
- $X = Q_k R$ (QR factorization)
- 5. EndDo
- Normalization in step 4 is similar to the scaling used in the power method.
- Improvement: normalize only once in a while.

Calais February 7, 2005

The QR algorithm

The most common method for solving small (dense) eigenvalue problems. The basic algorithm:

ALGORITHM: 4 • QR without shifts

- 1. Until Convergence Do:
- 2. Compute the QR factorization A = QR
- 3. Set A := RQ
- 4. EndDo
- **▶** "Until Convergence" means "Until A becomes close enough to an upper triangular matrix"

- Note: $A_{new} = RQ = Q^H(QR)Q = Q^HAQ$
- $ightharpoonup A_{new}$ is similar to A throughout the algorithm .
- ► Above basic algorithm is never used in practice. Two variations:
- (1) use shift of origin and
- (2) Transform A into Hessenberg form..

Calais February 7, 2005 33

lacktriangle Idea: Apply QR algorithm to $A^{(k)}-\mu I$ with $\mu \ = \ a_{nn}^{(k)}.$ Note: eigenvalues of $A^{(k)} - \mu I$ are shifted by μ , and eigenvectors are the same.

Practical QR: Shifts of origin

Observation: (from theory): Last row converges fastest. Convergence is dictated by $\frac{|\lambda_n|}{|\lambda_n|}$

- **▶** We will now consider only the real symmetric case.
- Eigenvalues are real.
- $ightharpoonup A^{(k)}$ remains symmetric throughout process.
- \blacktriangleright As k goes to in£nity the last column and row (except $a_{nn}^{(k)}$) converge to zero quickly...
- ightharpoonup and $a_{nn}^{(k)}$ converges to lowest eigenvalue.

Calais February 7, 2005

ALGORITHM: 5 • QR with shifts

- 1. Until row a_{in} , $1 \le i < n$ converges to zero DO:
- Obtain next shift (e.g. $\mu=a_{nn}$)
- $A \mu I = QR$
- Set $A:=RQ+\mu I$
- 6. EndDo
- ▶ Convergence is cubic at the limit! [for symmetric case]

Result of algorithm:

$$A^{(k)} = egin{bmatrix} \cdot & \cdot & \cdot & \cdot & \cdot & 0 \ \cdot & \cdot & \cdot & \cdot & \cdot & 0 \ \cdot & \cdot & \cdot & \cdot & \cdot & 0 \ \cdot & \cdot & \cdot & \cdot & \cdot & 0 \ 0 & 0 & 0 & 0 & 0 & \lambda_n \end{bmatrix}$$

▶ Next step: depate, i.e., apply above algorithm to $(n-1) \times (n-1)$ upper triangular matrix.

Calais February 7, 2005

We want
$$H_1AH_1^T=H_1AH_1$$
 to have the form:
$$\begin{pmatrix} \star & \star & \star & \star & \star \\ \star & \star & \star & \star & \star \\ 0 & \star & \star & \star & \star \\ 0 & \star & \star & \star & \star \\ 0 & \star & \star & \star & \star \\ 0 & \star & \star & \star & \star \end{pmatrix}$$

- ightharpoonup Choose a w in $H_1=I-2ww^T$ so that $(H_1A)[2:n,1]=0$
- ▶ Apply to left $B = H_1A$. Then apply to right $A_1 = BH_1$.

Observation: the Householder matrix H_1 which transforms the column A(:,1) into e_1 works only on rows 2 to n. When applying H_1^T to the right of $B=H_1A$, only columns 2 to n will be altered ▶ 1st column retains the same pattern (zeros below row 2)

Practical QR: Use of the Hessenberg Form

Recall: Upper Hessenberg matrix is such that

$$a_{ij} = 0$$
 for $j < i - 1$

Observation: The QR algorithm preserves Hessenberg form (tridiagonal form in symmetric case). Results in substantial savings.

- ▶ 1-st step: reduce A to Hessenberg form. Then (2nd step) apply QR algorithm to resulting matrix.
- It is easy to adapt the Householder factorization to reduce a matrix into Hessenberg form – [similarity transformation]
- \blacktriangleright Consider the £rst step only on a 6×6 matrix.

QR for Hessenberg matrices

Need the "implicit Q theorem"

Suppose that Q^TAQ is an unreduced upper Hessenberg matrix. Then columns 2 to n of Q are determined uniquely (up to signs) by the £rst column of Q.

Implication: In order to compute $A_{i+1} = Q_i^T A Q_i$ we can:

- ightharpoonup Compute the £rst column of Q_i [easy: = scalar imes A(:,1)]
- ▶ Choose other columns so Q_i = unitary, and A_{i+1} = Hessenberg.

Example: With
$$n=6$$
:

1. Choose
$$G_1$$

$$G(1,2, heta_1)$$
 so that $(G_1A)_{21}=0$

4. Choose
$$G_4$$

$$G(4,5, heta_4)$$
 so that $(G_4A_3)_{53}=0$

Choose
$$G_4 = \{ a, \theta_4 \}$$
 so that $A_4 = G_4^T A_3 G_4 = \{ a, \theta_4 \}$ so $A_4 = G_4^T A_3 G_4 = \{ a, \theta_4 \}$

- Process known as "Bulge chasing"
- ► Similar idea for the symmetric (tridiagonal) case

2. Choose
$$G_2=G(2,3, heta_2)$$
 so that $(G_2A_1)_{31}=0$

Choose
$$G_2 = \{0, \theta_2\}$$
 so that $A_2 = G_2^T A_1 G_2 = \{0, \theta_2\}$ $A_3 = 0$

3. Choose
$$G_3=G(3,4, heta_3)$$
 so that

3. Choose
$$G_3 = G(3,4,\theta_3)$$
 so that $G_3A_2)_{42} = 0$ $A_3 = G_3^TA_2G_3 = 0$ $A_3 = G_3^TA_2G_3 = 0$ $A_3 = G_3^TA_2G_3 = 0$

The QR algorithm for symmetric matrices

- ▶ Most important method used : reduce to tridiagonal form and apply the QR algorithm with shifts.
- ▶ Householder transformation to Hesseenberg form yields a tridiagonal matrix because

$$HAH^T = A_1$$

is symmetric and also of Hessenberg form ▶ it is tridiagonal symmetric.

Tridiagonal form is preserved by QR similarity transformation

Practical method

- ▶ How to implement the QR algorithm with shifts?
- It is best to use Givens rotations can do a shifted QR step without explicitly shifting the matrix..
- ▶ Two most popular shifts:

$$s=a_{nn}$$
 and $s=$ smallest e.v. of $A(n-1:n,n-1:n)$

Calais February 7, 2005 45

The Singular Value Decomposition (SVD)

For any real n imes m matrix A there exists orthogonal matrices $U \in$ $\mathbb{R}^{n imes n}$ and $V \in \mathbb{R}^{m imes m}$ such that

$$A = U\Sigma V^T$$

where Σ is a diagonal matrix with nonnegative diagonal entries.

$$\sigma_{11} \geq \sigma_{22} \geq \cdots \sigma_{pp} \geq 0$$
 with $p = \min(m,n)$

▶ The σ_{ii} are called singular values of A. Denoted simply by σ_{i} .

Proof: [one among many!] Let $\sigma_1 = \|A\|_2 = \max_{x, \|x\|_2=1} \|Ax\|_2$

There exists a pair of unit vectors v_1,u_1 such that

$$Av_1 = \sigma_1 u_1$$

Calais February 7, 2005 47

THE SINGULAR VALUE DECOMPOSITION

- The SVD existence properties.
- Pseudo-inverses and the SVD
- Use of SVD for least-squares problems
- Applications of the SVD

Complete v_1 into an orthonormal basis of \mathbb{R}^m

$$V \equiv [v_1, V_2] = m imes m$$
 unitary

▶ Complete u_1 into an orthonormal basis of \mathbb{R}^m

$$U \equiv [u_1, U_2] = n imes n$$
 unitary

▶ Then, it is easy to show that

$$AV = U imes egin{pmatrix} \sigma_1 & w^T \ 0 & B \end{pmatrix} &
ightarrow & U^TAV = egin{pmatrix} \sigma_1 & w^T \ 0 & B \end{pmatrix} \equiv A_1$$

Observe that

$$\left\|A_1inom{\sigma_1}{w}
ight\|_2 \geq \sigma_1^2 + \|w\|^2 = \sqrt{\sigma_1^2 + \|w\|^2} \left\|inom{\sigma_1}{w}
ight\|_2$$

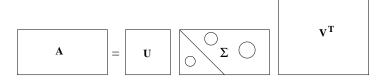
- ▶ This shows that w must be zero [why?]
- Complete the proof by an induction argument.

 Calais February 7, 2005

Case 1:

$$\mathbf{A} = \mathbf{U} \qquad \mathbf{\Sigma}$$

Case 2:



Calais February 7, 2005 49

Some properties. Assume that

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$$
 and $\sigma_{r+1} = \cdots = \sigma_p = 0$

Then:

- rank(A) = r = number of nonzero singular values.
- $\bullet \ Ran(A) = span\{u_1, u_2, \dots, u_r\}$
- $Null(A) = span\{v_{r+1}, v_{r+2}, \dots, v_m\}$
- The matrix A admits the SVD expansion:

$$A = \sum\limits_{i=1}^r \sigma_i u_i v_i^T$$

The "thin" SVD

Consider the Case-1. It can be rewritten as

$$oldsymbol{A} = [oldsymbol{U}_1 oldsymbol{U}_2]egin{pmatrix} oldsymbol{\Sigma}_1 \ 0 \end{pmatrix} oldsymbol{V}^T$$

Which gives:

$$A = U_1 \Sigma_1 \ V^T$$

where U_1 is $n \times m$ (same shape as A), and Σ_1 and V are $m \times m$

referred to as the "thin" SVD. Important in practice.

♦Show how to obtain the thin SVD from the QR factorization of A and the SVD of an $m \times m$ matrix

Calais February 7, 2005 50

Properties of the SVD (continued)

- ullet $\|A\|_2=\sigma_1$ = largest singular value
- $||A||_F = (\sum_{i=1}^r \sigma_i^2)^{1/2}$
- ullet When A is an n imes n nonsingular matrix then $\|A^{-1}\|_2=1/\sigma_n$ = inverse of smallest s.v.

Let k < r and

$$A_k = \sum\limits_{i=1}^k \sigma_i u_i v_i^T$$

then

$$\min_{rank(B)=k} \|A-B\|_2 = \|A-A_k\|_2 = \sigma_{k+1}$$

De£ne the $r \times r$ matrix

$$\Sigma_1 = \mathrm{diag}(\sigma_1, \ldots, \sigma_r)$$

lackbox Let $A \in \mathbb{R}^{n imes m}$ and consider now A^TA (which is of size m imes m)

$$A^TA = V\Sigma^T\Sigma V^T \qquad
ightarrow \qquad A^TA = V \underbrace{egin{pmatrix} \Sigma_1^2 & 0 \ 0 & 0 \end{pmatrix}}_{m imes m} V^T$$

 \blacktriangleright This gives the spectral decomposition of A^TA . Similarly, U gives the eigenvectors of AA^{T} .

$$AA^T = U egin{pmatrix} \Sigma_1^2 & 0 \ 0 & 0 \end{pmatrix} U^T$$

Important: $A^TA = VD_1V^T$ and $AA^T = UD_2U^T$ give the SVD factors U, V up to signs!

Pseudo-inverse of an arbitrary matrix

The pseudo-inverse of A is given by

$$A^\dagger = V egin{pmatrix} \Sigma_1^{-1} & 0 \ 0 & 0 \end{pmatrix} U^T$$

Moore-Penrose conditions: The pseudo inverse of a matrix is uniquely determined by these four conditions:

- AXA = A
- XAX = X
- $(AX)^H = AX \qquad \textbf{(4)} \qquad (XA)^H = XA$
- ▶ In the full-rank overdetermined case, $A^{\dagger} = (A^T A)^{-1} A^T$

♦ Compute the singular value decomposition the matrix:

$$A=egin{pmatrix}1&0&2&0\0&0&-2&1\end{pmatrix}$$

 \Diamond Find the matrix B of rank 1 which is the closest to the above matrix in the 2-norm sense.

 \diamond What is the pseudo-inverse of A? What is the pseudo-inverse of **B?**

 \Diamond Find the vector x of smallest norm which minimizes $||b-Ax||_2$ with $b = (1, 1)^T$

 \Diamond Find the vector x of smallest norm which minimizes $||b-Bx||_2$ with $b = (1, 1)^T$

Least-squares problems and the SVD

SVD can give much information about solving overdetermined and underdetermined linear systems -

Let A be an $n \times m$ matrix and $A = U \Sigma V$ its SVD with r = $rank(A), V = [v_1, \ldots, v_m] \ U = [u_1, \ldots, u_n].$ Then $x_{LS} = \sum\limits_{i=1}^{r} rac{u_i^T b}{\sigma_i} \, v_i$

minimizes $||b - Ax||_2$ and has the smallest 2-norm among all possible minimizers. In addition,

 $\rho_{LS} \equiv \|b - Ax_{LS}\|_2 = \|z\|_2$ with $z = [u_{r+1}, \dots, u_n]^T b$

Least-squares problems and pseudo-inverses

► A restatement of the £rst part of the previous result:

Consider the general linear least-squares problem

$$\min_{x \in S} \|x\|_2 \qquad S = \{x \in \mathbb{R}^m \mid \|b - Ax\|_2 \min\}$$

This problem always has a unique solution given by

$$x = A^{\dagger}b$$

Calais February 7, 2005 _____ 57

Numerical rank and the SVD

- \blacktriangleright Assume that the original matrix A is exactly of rank k.
- \blacktriangleright The computed SVD of A will be the SVD of a nearby matrix A+E.
- **Easy to show that** $|\hat{\sigma}_i \sigma_i| \leq \alpha \ \sigma_1 \text{eps}$
- Result: zero singular values will yield small computed singular values
- Determining the "numerical rank:" treat singular values below a certain threshold δ as zero. Practical problem : need to set δ .

Ill-conditioned systems and the SVD

- Let A be $n \times n$ (square matrix) and $A = U \Sigma V^T$ its SVD
- lacksquare Solution of Ax=b is $x=A^{-1}b=\sum_{i=1}^n rac{u_i^Tb}{\sigma_i}\,v_i$
- \blacktriangleright When A is very ill-conditioned, it may have many small singular values. The division by these small σ_i 's will amplify any noise in the data. Result: solution may be meaningless.
- ▶ Remedy: use regularization, i.e., truncate the SVD by only keeping the $\sigma_i's$ that are larger than a threshold τ .
- ► This gives the truncated SVD solution (SVD regularization:)

$$x_{TSVD} = \sum\limits_{\sigma_i \geq au} rac{u_i^T b}{\sigma_i} \, v_i$$

► Many applications [e.g., Image processing,..]

Calais February 7, 2005

LARGE SPARSE EIGENVALUE PROBLEMS

General Tools for Solving Large Eigen-Problems

- Projection techniques Arnoldi, Lanczos, Subspace Iteration;
- Preconditioninings: shift-and-invert, Polynomials, ...
- ▶ De¤ation and restarting techniques

Good computational codes combine these three ingredients

Calais February 7, 2005 61

A few popular solution Methods

- Subspace Iteration [Now less popular sometimes used for validation]
- Arnoldi's method (or Lanczos) with polynomial acceleration [Stiefel '58, Rutishauser '62, YS '84,'85, Sorensen '89,...]
- Shift-and-invert and other preconditioners. [Use Arnoldi or Lanczos for $(A - \sigma I)^{-1}$.]
- Davidson's method and variants, Generalized Davidosn's method [Morgan and Scott, 89], Jacobi-Davidsion
- Emerning method: Automatic Multilevel Substructuring (AMLS).

Projection Methods for Eigenvalue Problems

General formulation:

Projection method onto K orthogonal to L

- \blacktriangleright Given: Two subspaces K and L of same dimension.
- Find: $\tilde{\lambda}$, \tilde{u} such that

$$ilde{\lambda} \in \mathbb{C} \; , ilde{u} \in K; \;\; (ilde{\lambda}I - A) ilde{u} \perp L$$

Two types of methods:

Orthogonal projection methods: situation when L = K.

Oblique projection methods: When $L \neq K$.

Rayleigh-Ritz projection

Given: a subspace X known to contain good approximations to eigenvectors of A.

Question: How to extract good approximations to eigenvalues/ eigenvectors from this subspace?

Answer: Rayleigh Ritz process.

Let $Q = [q_1, \dots, q_m]$ an orthonormal basis of X. Then write an approximation in the form $\tilde{u} = Qy$ and obtain y by writing

$$Q^H(A-\tilde{\lambda}I)\tilde{u}=0$$

$$ightharpoonup Q^H A Q y = \tilde{\lambda} y$$

Calais February 7, 2005

Procedure:

1. Obtain an orthonormal basis of X

2. Compute $C = Q^H A Q$ (an $m \times m$ matrix)

3. Obtain Schur factorization of C, $C = YRY^H$

4. Compute $ilde{U} = QY$

Property: if X is (exactly) invariant, then procedure will yield exact eigenvalues and eigenvectors.

Proof: Since X is invariant, $(A-\tilde{\lambda}I)u=Qz$ for a certain z. $Q^HQz=$ 0 implies z=0 and therefore $(A-\tilde{\lambda}I)u=0$.

Can use this procedure in conjunction with the subspace obtained from subspace iteration algorithm

Calais February 7, 2005 65

Algorithm: Subspace Iteration with Projection

- 1. Start: Choose an initial system of vectors $X = [x_0, \dots, x_m]$ and an initial polynomial C_{l} .
- 2. Iterate: Until convergence do:
- (a) Compute $\hat{Z} = C_k(A)X_{old}$.
- (b) Orthonormalize \hat{Z} into Z.
- (c) Compute $B = Z^H A Z$ and use the QR algorithm to compute the Schur vectors $Y = [y_1, \dots, y_m]$ of B.
- (d) Compute $X_{new} = ZY$.
- (e) Test for convergence. If satis£ed stop. Else select a new polynomial $C'_{k'}$ and continue.

Subspace Iteration

Original idea: projection technique onto a subspace if the form

$$Y = A^k X$$

 \blacktriangleright In practice: Replace A^k by suitable polynomial [Chebyshev]

• Easy to implement (in symmetric case);

Advantages:

• Easy to analyze;

Disadvantage: Slow.

 \blacktriangleright Often used with polynomial acceleration: A^kX replaced by $C_k(A)X$.

Typically C_k = Chebyshev polynomial.

THEOREM: Let $S_0 = span\{x_1, x_2, \dots, x_m\}$ and assume that S_0 is such that the vectors $\{Px_i\}_{i=1,\dots,m}$ are linearly independent where P is the spectral projector associated with $\lambda_1, \ldots, \lambda_m$. Let \mathcal{P}_k the orthogonal projector onto the subspace $S_k = span\{X_k\}$. Then for each eigenvector u_i of $A, i = 1, \dots, m$, there exists a unique vector s_i in the subspace S_0 such that $Ps_i = u_i$. Moreover, the following inequality is satis£ed

$$\|(I - \mathcal{P}_k)u_i\|_2 \le \|u_i - s_i\|_2 \left(\frac{\lambda_{m+1}}{\lambda_i} + \epsilon_k \right)^k, \tag{1}$$

where ϵ_k tends to zero as k tends to in£nity.

KRYLOV SUBSPACE METHODS

ARNOLDI'S ALGORITHM

- ightharpoonup Goal: to compute an orthogonal basis of K_m .
- ▶ Input: Initial vector v_1 , with $||v_1||_2 = 1$ and m.

ALGORITHM: 6. Arnoldi's procedure

For
$$j=1,...,m$$
 do

Compute $w := Av_i$

For
$$i=1,\ldots,j$$
 , do $egin{cases} h_{i,j}:=(w,v_i)\ w:=w-h_{i,j}v_i \end{cases}$

$$h_{j+1,j} = \|w\|_2$$
; $v_{j+1} = w/h_{j+1,j}$

End

KRYLOV SUBSPACE METHODS

Principle: Projection methods on Krylov subspaces, i.e., on

$$K_m(A,v_1)=\mathsf{span}\{v_1,Av_1,\cdots,A^{m-1}v_1\}$$

- probably the most important class of projection methods [for linear systems and for eigenvalue problems]
- many variants exist depending on the subspace L.

Properties of K_m . Let $\mu = \deg$. of minimal polynom. of v. Then,

- $K_m = \{p(A)v|p = \text{polynomial of degree} \le m-1\}$
- ullet $K_m=K_\mu$ for all $m\geq \mu.$ Moreover, K_μ is invariant under A.
- $\bullet \ dim(K_m) = m \ ext{iff} \ \mu \geq m.$

Calais February 7, 2005

Result of Arnoldi's algorithm

- 1. $V_m = [v_1, v_2, ..., v_m]$ orthonormal basis of K_m .
- **2.** $AV_m = V_{m+1}\overline{H}_m = V_mH_m + h_{m+1,m}v_{m+1}e_m^T$
- 3. $V_m^T A V_m = H_m \equiv \overline{H}_m$ last row.

Appliaction to eigenvalue problems

ightharpoonup Write approximate eigenvector as $ilde{u} = V_m y$ + Galerkin condition

$$(A- ilde{\lambda}I)V_my \perp \mathcal{K}_m
ightarrow V_m^H(A- ilde{\lambda}I)V_my = 0$$

ightharpoonup Approximate eigenvalues are eigenvalues of H_m

$$H_m y_j = ilde{\lambda}_j y_j$$

Associated approximate eigenvectors are

$$ilde{u}_j = V_m y_j$$

Typically a few of the outermost eigenvalues will converge £rst.

Calais February 7, 2005 _____ 73

Restarted Arnoldi

In practice: Memory requirement of algorithm implies restarting is necessary

ALGORITHM: 7 • Restarted Arnoldi (computes rightmost eigenpair)

- 1. Start: Choose an initial vector v_1 and a dimension m.
- 2. Iterate: Perform m steps of Arnoldi's algorithm.
- 3. Restart: Compute the approximate eigenvector $u_1^{(m)}$
- associated with the rightmost eigenvalue $\lambda_1^{(m)}$.
- If satis£ed stop, else set $v_1 \equiv u_1^{(m)}$ and goto 2. 5.

Calais February 7, 2005 74

Example:

Small Markov Chain matrix [Mark(10), dimension = 55]. Restarted Arnoldi procedure for computing the eigenvector associated with the eigenvalue with algebraically largest real part. We use m=10.

m	$\Re(\lambda)$	$\Im(\lambda)$	Res. Norm
10	0.9987435899D+00	0.0	0.246D-01
20	0.9999523324D+00	0.0	0.144D-02
30	0.1000000368D+01	0.0	0.221D-04
40	0.1000000025D+01	0.0	0.508D-06
50	0.999999996D+00	0.0	0.138D-07

Restarted Arnoldi (cont.)

► Can be generalized to more than *one* eigenvector :

$$v_1^{(new)} = \sum\limits_{i=1}^p
ho_i u_i^{(m)}$$

- ▶ However: often does not work well (hard to £nd good coef£cients ρ_i 's)
- Alternative : compute eigenvectors (actually Schur vectors) one at a time.
- Implicit de¤ation.

Hermitian case: The Lanczos Algorithm

▶ The Hessenberg matrix becomes tridiagonal :

$$A = A^H \quad \text{and} \quad V_m^H A V_m = H_m \quad \to H_m = H_m^H$$

▶ We can write

▶ Consequence: three term recurrence

$$eta_{j+1}v_{j+1}=Av_j-lpha_jv_j-eta_jv_{j-1}$$

Calais February 7, 2005 77

Observation [Paige, 1981]: Loss of orthogonality starts suddenly, when the £rst eigenpair has converged. It is a sign of loss of linear indedependence of the computed eigenvectors. When orthogonality is lost, then several the copies of the same eigenvalue start appearing.

ALGORITHM: 8 Lanczos

- 1. Choose an initial vector v_1 of norm unity. Set $\beta_1 \equiv 0, v_0 \equiv 0$
- **2.** For j = 1, 2, ..., m Do:
- $3. \qquad w_j := Av_j \beta_j v_{j-1}$
- 4. $\alpha_j := (w_j, v_j)$
- $\mathbf{5.} \qquad w_j := w_j \alpha_j v_j$
- 6. $\beta_{j+1} := \|w_j\|_2$. If $\beta_{j+1} = 0$ then Stop
- 7. $v_{j+1} := w_j/\beta_{j+1}$
- 8. EndDo

Hermitian matrix + Arnoldi → **Hermitian Lanczos**

- \blacktriangleright In theory v_i 's de£ned by 3-term recurrence are orthogonal.
- **▶** However: in practice severe loss of orthogonality;

Calais February 7, 2005 78

Reorthogonalization

- Full reorthogonalization reorthogonalize v_{j+1} against all previous v_i 's every time.
- ightharpoonup Partial reorthogonalization reorthogonalize v_{j+1} against all previous v_i 's only when needed [Parlett & Simon]
- ightharpoonup Selective reorthogonalization reorthogonalize v_{j+1} against computed eigenvectors [Parlett & Scott]
- No reorthogonalization − Do not reorthogonalize but take measures to deal with 'spurious' eigenvalues. [Cullum & Willoughby]

LANCZOS BIORTHOGONALIZATION

▶ Builds a pair of biorthogonal bases for the two subspaces

$$\mathcal{K}_m(A,v_1)$$
 and $\mathcal{K}_m(A^H,w_1)$

▶ Many choices for δ_{i+1} , β_{i+1} in lines 7 and 8. Only constraint:

$$\delta_{j+1}eta_{j+1} = (\hat{v}_{j+1},\hat{w}_{j+1})$$

Let

 $\triangleright v_i \in \mathcal{K}_m(A,v_1)$ and $w_i \in \mathcal{K}_m(A^T,w_1)$.

The Lanczos biorthogonalization $(A^H \neq A)$

ALGORITHM: 9 The Lanczos Bi-Orthogonalization Procedure

- 1. Choose v_1, w_1 such that $(v_1, w_1) = 1$. Set $\beta_1 = \delta_1 \equiv 0$, $w_0 = v_0 \equiv 0$
- 2. For i = 1, 2, ..., m Do:

3.
$$\alpha_j = (Av_j, w_j)$$
 [$\alpha_j = (Av_j - \beta_j v_{j-1}, w_j)$]

4.
$$\hat{v}_{j+1} = Av_j - \alpha_j v_j - \beta_j v_{j-1}$$
 [$\hat{v}_{j+1} = (Av_j - \beta_j v_{j-1}) - \alpha_j v_j$]

5.
$$\hat{w}_{j+1} = A^H w_j - \bar{\alpha}_j w_j - \delta_j w_{j-1} \hat{w}_{j+1} = (A^H w_j - \delta_j w_{j-1}) - \bar{\alpha}_j w_j$$

6.
$$\delta_{j+1} = |(\hat{v}_{j+1}, \hat{w}_{j+1})|^{1/2}$$
. If $\delta_{j+1} = 0$ Stop

7.
$$\beta_{j+1} = (\hat{v}_{j+1}, \hat{w}_{j+1})/\delta_{j+1}$$

8.
$$w_{j+1} = \hat{w}_{j+1}/ar{eta}_{j+1}$$

9.
$$v_{j+1} = \hat{v}_{j+1}/\delta_{j+1}$$

10. EndDo

Calais February 7, 2005

If the algorithm does not break down before step m, then the vectors $v_i, i = 1, \ldots, m$, and $w_i, j = 1, \ldots, m$, are biorthogonal, i.e.,

$$(v_j,w_i)=\delta_{ij}$$
 $1\leq i,\ j\leq m$.

Moreover, $\{v_i\}_{i=1,2,...,m}$ is a basis of $\mathcal{K}_m(A,v_1)$ and $\{w_i\}_{i=1,2,...,m}$ is a basis of $\mathcal{K}_m(A^H,w_1)$ and

$$egin{aligned} AV_m &= V_m T_m + \delta_{m+1} v_{m+1} e_m^H, \ A^H W_m &= W_m T_m^H + ar{eta}_{m+1} w_{m+1} e_m^H, \ W_m^H A V_m &= T_m \enspace. \end{aligned}$$

▶ If θ_j, y_j, z_j are, respectively an eigenvalue of T_m , with associated right and left eigenvectors y_j and z_j respectively, then corresponding approximations for A are

Ritz value	Right Ritz vector	Left Ritz vector
$oldsymbol{ heta_j}$	$V_m y_j$	$W_m z_j$

[Note: terminology is abused slightly - Ritz values and vectors normally refer to Hermitian cases.]

Calais February 7, 2005

85

Advantages and disadvantages

Advantages:

- ▶ Nice three-term recurrence requires little storage in theory.
- **▶** Computes left and a right eigenvectors at the same time

Disadvantages:

- Algorithm can breakdown or nearly breakdown.
- **▶** Convergence not too well understood. Erratic behavior
- \blacktriangleright Not easy to take advantage of the tridiagonal form of T_m .

Look-ahead Lanczos algorithms deal with the second case. See Parlett 80, Freund and Nachtigal '90.... Main idea: when break-down occurs, skip the computation of v_{j+1}, w_{j+1} and de£ne v_{j+2}, w_{j+2} from v_j, w_j . For example by orthogonalizing A^2v_j ... Can de£ne v_{j+1} somewhat arbitrarily as $v_{j+1} = Av_j$. Similarly for w_{j+1} .

▶ Drawbacks: (1) projected problem no longer tridiagonal (2) dif£cult to know what constitutes near-breakdown.

Look-ahead Lanczos

Algorithm breaks down when:

$$(\hat{v}_{j+1},\hat{w}_{j+1})=0$$

Three distinct situations.

- 'lucky breakdown' when either \hat{v}_{j+1} or \hat{w}_{j+1} is zero. In this case, eigenvalues of T_m are eigenvalues of A.
- $(\hat{v}_{j+1}, \hat{w}_{j+1}) = 0$ but of $\hat{v}_{j+1} \neq 0$, $\hat{w}_{j+1} \neq 0 \rightarrow$ serious breakdown. Often possible to bypass the step (+ a few more) and continue the algorithm. If this is not possible then we get an ...
- ... Incurable break-down. [very rare]

Calais February 7, 2005

DEFLATION

A little background

Consider Schur canonical form

$$A = URU^H$$

where \boldsymbol{U} is a (complex) upper triangular matrix.

- ightharpoonup Vector columns u_1, \ldots, u_n called Schur vectors.
- ► Note: Schur vectors depend on each other, and on the order of the eigenvalues

Depation

- **▶** Very useful in practice.
- ▶ Different forms: locking (subspace iteration), selective orthogonalization (Lanczos), Schur de¤ation, ...

Calais February 7, 2005

Wiedlandt Det ation: Assume we have computed a right eigenpair λ_1, u_1 . Wielandt det ation considers eigenvalues of

$$A_1 = A - \sigma u_1 v^H$$

Note:

$$\Lambda(A_1) = \{\lambda_1 - \sigma, \lambda_2, \dots, \lambda_n\}$$

Wielandt de¤ation preserves u_1 as an eigenvector as well all the left eigenvectors not associated with λ_1 .

ightharpoonup An interesting choice for v is to take simply $v=u_1$. In this case Wielandt department of the Wielandt depar

▶ It is possible to apply this procedure successively:

ALGORITHM: 10 • Explicit Degation

- 1. $A_0 = A$
- **2.** For $j = 0 \dots \mu 1$ Do:
- Compute a dominant eigenvector of A_i
- De£ne $A_{j+1} = A_j \sigma_j u_j u_i^H$
- 5. End
- ▶ Computed $u_1, u_2,...$ form a set of Schur vectors for A.
- ► Alternative: implicit de¤ation (within a procedure such as Arnoldi).

For $k=1,\ldots NEV$ do: /* Eigenvalue loop */

- 1. For j=k,k+1,...,m do: /* Arnoldi loop*/
 - Compute $w := Av_j$.
 - ullet Orthonormalize w against $v_1, v_2, \dots, v_j
 ightarrow v_{j+1}$
- 2. Compute next approximate eigenpair $\tilde{\lambda}$, \tilde{u} .
- 3. Orthonormalize \tilde{u} against $v_1, \ldots, v_i \triangleright \mathsf{Result} = \tilde{s} = \mathsf{approximate}$ Schur vector.
- 4. De£ne $v_k := \tilde{s}$.
- 5. If approximation not satisfactory go to 1.
- 6. Else de£ne $h_{i,k} = (Av_k, v_i) \;,\; i = 1,..,k$,

De¤ated Arnoldi: When £rst eigenvector converges, we freeze it as the £rst vector of $V_m = [v_1, v_2, \ldots, v_m]$. Arnoldi starts working at column v_2 . Orthogonalization is still done against $v_1,...,v_j$ at step j. Each new converged eigenvector will be added to the 'locked' set of eigenvectors.

Calais February 7, 2005

Thus, for k=2:

$$V_m = \left[egin{array}{c} v_1, v_2, \overline{v_3, \ldots, v_m} \end{array}
ight]$$

► Similar techniques in Subspace iteration [G. Stewart's SRRIT]

Example: Matrix Mark(10) – small Markov chain matrix (N = 55).

First eigenpair by iterative Arnoldi with m=10.

m	$\Re e(\pmb{\lambda})$	$\Im m(\lambda)$	Res. Norm
10	0.9987435899D+00	0.0	0.246D-01
20	0.9999523324D+00	0.0	0.144D-02
30	0.1000000368D+01	0.0	0.221D-04
40	0.1000000025D+01	0.0	0.508D-06
50	0.999999996D+00	0.0	0.138D-07
		0.0	0.000

PRECONDITIONING - DAVIDSON'S METHOD

► Computing the next 2 eigenvalues of Mark(10).

Eig.	Mat-Vec's	$\Re e(\lambda)$	$\Im m(\lambda)$	Res. Norm
2	60	0.9370509474	0.0	0.870D-03
	69	0.9371549617	0.0	0.175D-04
	78	0.9371501442	0.0	0.313D-06
	87	0.9371501564	0.0	0.490D-08
3	96	0.8112247133	0.0	0.210D-02
	104	0.8097553450	0.0	0.538D-03
	112	0.8096419483	0.0	0.874D-04
	ŧ	I	ı	1
	i i	I	i	ı
	152	0.8095717167	0.0	0.444D-07

Preconditioning eigenvalue problems

- ► Goal: To extract good approximations to add to a subspace in a projection process. Result: faster convergence.
- **▶** Best known technique: Shift-and-invert; Work with

$$B = (A - \sigma I)^{-1}$$

➤ Some success with polynomial preconditioning [Chebyshev iteration / least-squares polynomials]. Work with

$$B = p(A)$$

 \blacktriangleright Above preconditioners preserve eigenvectors. Other methods (Davidson) use a more general preconditioner M.

Shift-and-invert preconditioning

Main idea: to use Arnoldi, or Lanczos, or subspace iteration for the matrix $B = (A - \sigma I)^{-1}$. The matrix B need not be computed explicitly. Each time we need to apply B to a vector we solve a system with B.

Factor $B = A - \sigma I = LU$. Then each solution Bx = y requires solving Lz = y and Ux = z.

Calais February 7, 2005

Preconditioning by polynomials

Main idea:

Iterate with p(A) instead of A in Arnoldi or Lanczos,...

- **▶** Used very early on in subspace iteration [Rutishauser, 1959.]
- Usually not as reliable as Shift-and-invert techniques but less demanding in terms of storage.

How to deal with complex shifts?

- ▶ If A is complex need to work in complex arithmetic.
- \blacktriangleright If A is real, it is desirable that Arnoldi/ Lanczos algorithms work with a real matrix.
- ▶ Idea: Instead of using $B = (A \sigma I)^{-1}$ use

$$B_+ = \Re e (A - \sigma I)^{-1} = rac{1}{2} \left[(A - \sigma I)^{-1} + (A - ar{\sigma} I)^{-1}
ight]$$

or

$$B_- = \Im m (A - \sigma I)^{-1} = rac{1}{2i} ig[(A - \sigma I)^{-1} - (A - ar{\sigma} I)^{-1} ig]$$

- Little difference between the two.
- ightharpoonup Result: $B_- = heta(A \sigma I)^{-1}(A ar{\sigma} I)$ with $heta = \Im m(\sigma)$.

Calais February 7, 2005

Question: How to £nd a good polynomial (dynamically)?

- Use of Chebyshev polynomials over ellipses
- Use polynomials based on Leja points

Approaches:

- 3 Least-squares polynomials over polygons
- Polynomials from previous Arnoldi decompositions

Goal: to apply polynomial £lter of the form

$$p(t) = (t - \theta_1)(t - \theta_2)\dots(t - \theta_q)$$

by exploiting the Arnoldi procedure.

Assume

$$AV_m = V_m H_m + eta_m v_{m+1} e_m^T$$

and consider £rst factor: $(t - \theta_1)$

$$(A- heta_1I)V_m=V_m(H_m- heta_1I)+eta_mv_{m+1}e_m^T$$

Let $H_m - \theta_1 I = Q_1 R_1$. Then,

$$egin{aligned} (A - heta_1 I) V_m &= V_m Q_1 R_1 + eta_m v_{m+1} e_m^T &
ightarrow \ (A - heta_1 I) (V_m Q_1) &= (V_m Q_1) R_1 Q_1 + eta_m v_{m+1} e_m^T Q_1
ightarrow \ A(V_m Q_1) &= (V_m Q_1) (R_1 Q_1 + heta_1 I) + eta_m v_{m+1} e_m^T Q_1 \end{aligned}$$

Notation:

$$R_1Q_1 + heta_1I \equiv H_m^{(1)}; \qquad (b_{m+1}^{(1)})^T \equiv e_m^TQ_1; \qquad V_mQ_1 =$$

 $V_m^{(1)}$

$$AV_m^{(1)} = V_m^{(1)} H_m^{(1)} + v_{m+1} (b_{m+1}^{(1)})^T$$

- ightharpoonup Note that $H_m^{(1)}$ is upper Hessenberg.
- Similar to an Arnoldi decomposition.

Observe:

- $ightharpoonup R_1Q_1+ heta_1I \equiv$ matrix resulting from one step of the QR algorithm with shift θ_1 applied to H_m .
- First column of $V_m^{(1)}$ is a multiple of $(A \theta_1 I)v_1$.
- ▶ The columns of $V_m^{(1)}$ are orthonormal.

Can now apply second shift in same way:

$$(A- heta_2I)V_m^{(1)}=V_m^{(1)}(H_m^{(1)}- heta_2I)+v_{m+1}(b_{m+1}^{(1)})^T \quad o$$

Similar process: $(H_m^{(1)} - \theta_2 I) = Q_2 R_2$ then $\times Q_2$ to the right:

$$(A- heta_2I)V_m^{(1)}Q_2=(V_m^{(1)}Q_2)(R_2Q_2)+v_{m+1}(b_{m+1}^{(1)})^TQ_2$$

$$AV_m^{(2)} = V_m^{(2)} H_m^{(2)} + v_{m+1} (b_{m+1}^{(2)})^T$$

Now:

First column of
$$V_m^{(2)}$$
 = scalar $\times (A - \theta_2 I) v_1^{(1)}$ = scalar $\times (A - \theta_2 I) (A - \theta_1 I) v_1$

$$lackbox{Note that} \qquad (b_{m+1}^{(2)})^T = e_m^T Q_1 Q_2 = [0,0,\cdots,0,q_1,q_2,q_3]$$

lackbox Let: $\hat{V}_{m-2}=[\hat{v}_1,\ldots,\hat{v}_{m-2}]$ consist of £rst m-2 columns of $V_m^{(2)}$ and \hat{H}_{m-2} = leading principal submatrix of H_m . Then

$$A\hat{V}_{m-2} \,=\, \hat{V}_{m-2}\hat{H}_{m-2}+\hat{eta}_{m-1}\hat{v}_{m-1}e_m^T \qquad ext{with}$$
 $\hat{eta}_{m-1}\hat{v}_{m-1} \,\equiv\, q_1v_{m+1}+h_{m-1,m-2}^{(2)}v_{m-1}^{(2)} \,\,\, \|\hat{v}_{m-1}\|_2=1$

- \blacktriangleright Result: An Arnoldi process of m-2 steps with the initial vector $p(A)v_1$.
- ▶ In other words: We know how to apply polynomial £ltering via a form of the Arnoldi process, combined with the QR algorithm.

Calais February 7, 2005 109

ALGORITHM: 11 Davidson's method (Real symmetric case)

- Choose an initial unit vector v_1 . Set $V_1 = [v_1]$. 1.
- 2. Until convergence Do:
- For $j=1,\ldots,m$ Do: 3.
- $w := Av_i$. 4.
- Update $H_j \equiv V_i^T A V_j$ 5.
- Compute the smallest eigenpair μ , y of H_i . 6.
- $z := V_i y \quad r := Az \mu z$ 7.
- Test for convergence. If satis£ed Return 8.
- If j < m compute $t := M_i^{-1} r$ 9.
- compute $V_{i+1} := ORTHN([V_i, t])$ 10.
- **EndIf** 11.
- Set $v_1 := z$ and go to 3 12.
- **EndDo** *13.*
- 14. **EndDo**

The Davidson approach

Goal: to use a more general preconditioner to introduce good new components to the subspace.

- ▶ Ideal new vector would be eigenvector itself!
- Next best thing: an approximation to $(A \mu I)^{-1}r$ where $r = (A - \mu I)z$, current residual.
- ightharpoonup Approximation written in the form $M^{-1}r$. Note that M can vary at every step if needed.

Calais February 7, 2005 110

- \blacktriangleright Note: Traditional Davidson uses diagonal preconditioning: $M_i =$ $D-\sigma_i I$.
- Will work only for some matrices

Other options:

- ► Shift-and-invert using ILU [negatives: expensive + hard to parallelize.]
- Filtering (by averaging)
- Filtering by using smoothers (multigrid style)
- Iterative solves [See Jacobi-Davidson]

CONVERGENCE THEORY

- **Bounds for** λ_1 easy to £nd similar to linear systems.
- **▶** Ritz values approximate eigenvalues of *A* inside out:

The Lanczos Algorithm in the Hermitian Case

Assume eigenvalues sorted increasingly

$$\lambda_1 \le \lambda_2 \le \dots \le \lambda_n$$

- ightharpoonup Orthogonal projection method onto K_m ;
- ▶ To derive error bounds, use the Courant characterization

$$egin{aligned} ilde{\lambda}_1 &= \min_{u \;\in\; K,\; u
eq 0} rac{(Au,u)}{(u,u)} = rac{(A ilde{u}_1, ilde{u}_1)}{(ilde{u}_1, ilde{u}_1)} \ ilde{\lambda}_j &= \min_{\left\{egin{aligned} u \;\in\; K,\; u
eq 0 \ u \;\;linesize{eta}_{1,u,u, ilde{u}_j-1} \end{array}
ight.} rac{(Au,u)}{(u,u)} = rac{(A ilde{u}_1, ilde{u}_1)}{(ilde{u}_j, ilde{u}_j)} \end{aligned}$$

Calais February 7, 2005

A-priori error bounds

Theorem [Kaniel, 1966]:

$$0 \leq \lambda_1^{(m)} - \lambda_1 \leq (\lambda_N - \lambda_1) \left[rac{ anot(v_1,u_1)}{T_{m-1}(1+2\gamma_1)}
ight]^2$$

where $\gamma_1=rac{\lambda_2-\lambda_1}{\lambda_N-\lambda_2}$; and $\angle(v_1,u_1)$ = acute angle between v_1 and u_1 .

+ results for other eigenvalues. [Kaniel, Paige, YS]

Theorem [YS,1980]

$$0 \leq \lambda_i^{(m)} - \lambda_i \leq (\lambda_N - \lambda_1) \left[\kappa_i^{(m)} rac{ an oldsymbol{\angle}(v_i, u_i)}{T_{m-i} (1 + 2 \gamma_i)}
ight]^2$$

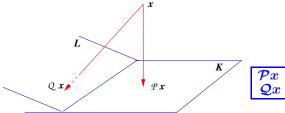
where
$$\gamma_i = rac{\lambda_{i+1} - \lambda_i}{\lambda_N - \lambda_{i+1}}$$
 , $\kappa_i^{(m)} = \Pi_{j < i} rac{\lambda_j^{(m)} - \lambda_N}{\lambda_i^{(m)} - \lambda_i}$

Theory for nonhermitian case

- More dif£cult. No convincing results on 'global convergence'.
- ▶ Can get a general a-priori a-posteriori error bound

Let \mathcal{P} be the orthogonal projector onto K and

 $\mathcal Q$ be the (oblique) projector onto K and orthogonally to L.



$$egin{array}{ll} \mathcal{P}x \ \in \ K, \ x-\mathcal{P}x \perp K \ \mathcal{Q}x \ \in \ K, \ x-\mathcal{Q}x \perp L \end{array}$$

Calais February 7, 2005

Analysis

Approximate problem amounts to solving

$$\mathcal{Q}(Ax - \lambda x) = 0, \;\; x \;\; \in K$$
 or in operator form $\mathcal{Q}A\mathcal{P}x = \lambda x$

$$ightharpoonup$$
 Set $A_m \equiv \mathcal{Q}A\mathcal{P}$

THEOREM. Let $\gamma = \|\mathcal{Q}(A - \lambda I)(I - \mathcal{P})\|_2$. Then the residual norms of the pairs $\lambda, \mathcal{P}u$ and λ, u for the linear operator A_m satisfy, respectively

$$egin{aligned} \|(A_m-\lambda I)\mathcal{P}u\|_2 &\leq \gamma \|(I-\mathcal{P})u\|_2 \ \ \|(A_m-\lambda I)u\|_2 &\leq \sqrt{|\lambda|^2+\gamma^2} \ \|(I-\mathcal{P})u\|_2 \ . \end{aligned}$$

Calais February 7, 2005

How to estimate $||(I-\mathcal{P})u_i||_2$?

 \blacktriangleright Assume that A is diagonizable and expand v_1 in the eigen-basis

$$v_1 = \sum_{j=1}^N lpha_j u_j$$

ightharpoonup Assume $lpha_i
eq 0$, $\|u_j\|_2 = 1$ for all j. Then:

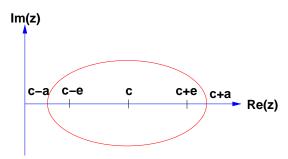
$$\|(I-\mathcal{P})u_i\|_2 \leq \xi_i \epsilon_i^{(m)}$$

where

$$egin{aligned} eta_i = \sum\limits_{j
eq i} \left| rac{lpha_j}{lpha_i}
ight| & ext{and} & \epsilon_i^{(m)} = \min_{\left\{ p \in \mathrm{P_{m-1}} top p(\lambda_j) = 1
ight.} \max_{j \,
eq i} |p(\lambda_j)| \end{aligned}$$

Particular case i = 1

ightharpoonup Assume: $\Lambda(A)\setminus\{\lambda_1\}$ is \subset an ellipse E(c,e,a).



$$\epsilon_1^{(m)} \leq rac{C_{m-1}\left(rac{a}{e}
ight)}{|C_{m-1}\left(rac{\lambda_1-c}{e}
ight)|}$$

where C_{m-1} = Chebyshev polynomial of degree m-1 of the £rst kind.

HARMONIC RITZ VALUES

Harmonic Ritz values: Literature

- Morgan '91 [Hermitian case]
- Freund '93 [Non-Hermitian case, Starting point: GMRES]
- Morgan '93 [Nonhermitian case]
- Paige, Parlett, Van der Vorst '95.
- Chapman & Y.S. '95. [use in Demated GMRES]
- Many publications in the 40s and 50s (Intermediate eigenvalue problems, Lehman intervals, etc..)

Harmonic Ritz values (continued)

Main idea: take L = AK in projection process

▶ In context of Arnoldi's method. Write $\tilde{u} = V_m y$ then:

$$(A- ilde{\lambda}I)V_my\perp\{AV_m\}$$

Using $AV_m = V_{m+1}\underline{H}_m$

$$\underline{H}_{m}^{H}V_{m+1}^{H}ig[V_{m+1}\underline{H}_{m}y- ilde{\lambda}V_{m}yig]=0$$

Notation: $H_m = \underline{H_m} -$ last row. Then

$$\underline{H}_{m}^{H}\underline{H}_{m}y - \tilde{\lambda}H_{m}^{H}y = 0$$

or

$$\left(H_m^H H_m + h_{m+1,m}^2 e_m e_m^H
ight) y = ilde{\lambda} H_m^H y$$

Remark:

Assume H_m is nonsingular and multiply both sides by H_m^{-H} . Then, the problem is equivalent to

$$(H_m + z_m e_m^H)\, y = ilde{\lambda} y$$

with
$$z_m=h_{m+1,m}^2H_m^{-H}e_m$$
 .

 \blacktriangleright Modi£ed from H_m only in the last column.

Calais February 7, 2005 _____ 125

Davidson's algorithm and two variants

DAVIDSON'S ALGORITHM. 1

Start: select v_1 .

For $j = 1, \ldots, m$ Do:

Update $V_i^H A V_j$.

Compute Ritz pair $\tilde{u}, \tilde{\lambda}$

Compute $r = A \tilde{u} - \tilde{\lambda} u$

 $z = M^{-1}r$

 $v_{i+1} = ORTHN(z, V_i)$

EndDo

DAVIDSON'S ALGORITHM. 2

Start: select r.

For $j = 1, \ldots, m$ Do:

 $z = M^{-1}r$

 $v_i = ORTHN(z, V_{i-1})$

Compute $w=Av_i$ and

Update $V_i^H A V_j$.

Compute Ritz pair $\tilde{u}, \tilde{\lambda}$

Compute $r = A ilde{u} - ilde{\lambda} u$

EndDo

Difference: start with a preconditioning operation instead of a matvec. In general minor differences.

Implementation within Davidson framework

- lacktriangle Slight varation to standard Davidson: Introduce $z_i=M_i^{-1}r_i$ to subspace. Proceed as in FGMRES: $v_{j+1} = Orthn(Az_j, V_j)$.
- From Gram-Schmidt process:

$$Az_j = \sum\limits_{i=1}^{j+1} h_{ij}v_i$$

▶ Hence the relation

$$AZ_m = V_{m+1}ar{H}_m$$

Approximation: λ , $\tilde{u} = Z_m y$

Galerkin Condition: $r \perp AZ_m$ gives the generalized problem

$$ar{H}_m^Har{H}_m\,y=\lambda\;ar{H}_m^HV_{m+1}^HZ_m\,y$$

Calais February 7, 2005 126

Calais February 7, 2005

HARMONIC DAVIDSON

Start: select
$$r$$
. Set $v_1=r/\|r\|_2$. For $j=1,\dots,m$ Do: $z_j=M^{-1}r$ Compute $w=Az_j$ and $v_{j+1}=ORTHN(w,V_j,h_{:,j});$ Update $G=\underbrace{H_j^H H_j}_j$, and $S=\underbrace{H_j^H V_{j+1}^H Z_j}_j;$ Compute Ritz pair $\tilde{u},\tilde{\lambda}$: $Gy=\tilde{\lambda}Sy, \tilde{u}=Z_jy$ Compute $r=A\tilde{u}-\tilde{\lambda}u$ EndDo

Arnoldi part identical with that of FGMRES.

Calais February 7, 2005 129

Harmonic values and interior eigenvalues

Let $\tilde{z}=A^{-1}\tilde{u}$ and rewrite the condition $[A-\tilde{\lambda}I]\tilde{u}\perp AK$ as:

$$[ilde{\lambda}^{-1}I - A^{-1}] ilde{z} \perp L \qquad ilde{z} \in L$$

- ▶ Orthogonal projection method for A^{-1} .
- Note: This is NOT shift-and-invert in disguise
- Space of approximants is the same as for standard projection.
- Interesting consequence for Hermitian case.

Relation with GMRES (Freund '91)

The Harmonic Ritz values are the roots of the 'GMRES' polynomial:

$$\psi_m = rg\min_{\psi \in \mathrm{P}_m, \; \psi(0)=1} = \|\psi(A)r_0\|_2$$

Proof. GMRES condition is:

$$egin{aligned} eta v_1 - A V_m y \ oxed \ \psi_m(A) v_1 \ oxed \ \{A V_m\} \ \end{aligned} \ (A - ilde{\lambda}_i I) V_m y_i \ oxed \ \{A V_m\} \end{aligned}$$

▶ Same condition as that of Harmonic Ritz projection. ▶ $\tilde{\lambda}_i$ = Ritz harmonic value, $\tilde{u}_i = V_m y_i$ = Ritz Harmonic vector.

Calais February 7, 2005 130

Harmonic Ritz projection in the Hermitian Case

Order eigenvalues increasingly:

$$\lambda_1 \le \lambda_2 \le \dots \le \lambda_n$$

▶ Recall: Ritz values approximate eigenvalues of *A* inside out:

ightharpoonup De£ne: $K^{(i)}=\{x\in K\mid x\perp ilde{u}_1, ilde{u}_2,\dots ilde{u}_{i-1}\}$ ($K^{(1)}\equiv K$). Then

$$ilde{\lambda}_i = \min_{x \;\in\; K_i} \; rac{(Ax,x)}{(x,x)}$$

Apply principle to Harmonic Ritz values >

$$ilde{\lambda}_1^{-1} \leq \lambda_1^{-1}; \quad ilde{\lambda}_n^{-1} \geq \lambda_n^{-1} \qquad \longrightarrow \qquad ilde{\lambda}_1 \geq \lambda_1; \quad ilde{\lambda}_n \leq \lambda_n$$

► Careful: treat positive and negative eigenvalues separately. Result: [Paige, Parlett, Van der Vorst '95]

Assume for simplicity that A is SPD.

lackbox De£ne: $K^{(i)}=\{x\ \in\ K\ \mid\ Ax\perp A ilde{u}_1,A ilde{u}_2,\dots A ilde{u}_{i-1}\}$ ($K^{(i)}\equiv$ K). Then

$$\tilde{\lambda}_i^{-1} = \max_{x \in K_i} \frac{(Ax, x)}{(Ax, Ax)}$$

Calais February 7, 2005

Alternative formulations

- $ullet \det (V^H(A-\mu I)V)=0 o$ orthog. projection
- ullet $\det\left((AV)^H(A-\mu I)V\right)=0 o ext{Harmonic projection}$
- ullet $\sigma_{min}\left((A-\mu I)V
 ight)=0
 ightarrow extsf{SVD}$ projection

Alternative Projections

▶ Eigenvalue problems are really non-linear systems of equations..

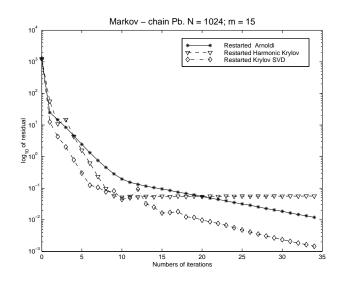
Idea: £nd μ such $(A - \mu I)V$ is nearly rank-de£cient

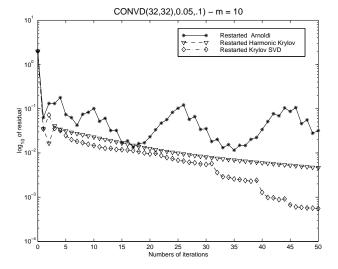
Leads to

$$det[V^H(A-\mu I)^H(A-\mu I)V]=0$$

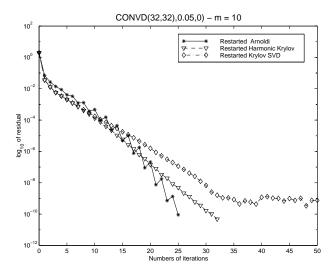
Assume
$$\mu=$$
 real. Using $AV_m=V_{m+1}ar{H}\longrightarrow$ quadratic problem $(ar{H}_m^Tar{H}_m-\mu(H_m+H_m^T)+\mu^2I)y=0$

Calais February 7, 2005





JACOBI – DAVIDSON



Calais February 7, 2005

Introduction via Newton's metod

Assumptions: M = A + E and $Az \approx \mu z$

Goal: to £nd an improved eigenpair $(\mu + \eta, z + v)$.

- lackbox Write $A(z+v)=(\mu+\eta)(z+v)$ and neglect second order terms
- + rearrange >

$$(M-\mu I)v-\eta z=-r$$
 with $r\equiv (A-\mu I)z$

- ightharpoonup Unknowns: η and v.
- **▶** Underdertermined system. Need one constraint.
- ▶ Add the condition: $w^H v = 0$ for some vector w.

In matrix form:

$$\begin{pmatrix} \boldsymbol{M} - \boldsymbol{\mu} \boldsymbol{I} & -\boldsymbol{z} \\ \boldsymbol{w}^H & \boldsymbol{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{v} \\ \boldsymbol{\eta} \end{pmatrix} = \begin{pmatrix} -\boldsymbol{r} \\ \boldsymbol{0} \end{pmatrix}$$

Eliminate v from second equation:

$$\begin{pmatrix} M-\mu I & -z \\ 0 & w^H(M-\mu I)^{-1}z \end{pmatrix}\begin{pmatrix} v \\ \eta \end{pmatrix} = \begin{pmatrix} -r \\ w^H(M-\mu I)^{-1}r \end{pmatrix}$$

▶ Solution: [Olsen's method]

$$\eta = rac{w^H(M-\mu I)^{-1}r}{w^H(M-\mu I)^{-1}z} \hspace{0.5cm} v = -(M-\mu I)^{-1}(r-\eta z)$$

 \blacktriangleright When M=A, corresponds to Newton's method for solving

$$\left\{ egin{aligned} (A-\lambda I)u &= 0 \ & w^Tu &= Constant \end{aligned}
ight.$$

The Jacobi-Davidson approach

- \blacktriangleright In orthogonal projection methods (e.g. Arnoldi) we have $r\perp z$
- ightharpoonup Also it is natural to take $w\equiv z.$ Assume $\|z\|_2=1$

With the above assumptions, Olsen's correction equation is mathematically equivalent to £nding v such that :

$$(I-zz^H)(M-\mu I)(I-zz^H)v=-r \qquad v\perp z$$

Main attraction: can use iterative method for the solution of the correction equation. (M -solves not explicitly required).

Note: Another way to characterize the solution is:

$$v=-(M-\mu I)^{-1}r+\eta (M-\mu I)^{-1}z,\quad \eta ext{ such that}\quad w^Hv=0$$

- lackspace inverse of $(M \lambda I)$. Jacobi-Davidson rewrites solution using projectors.
- \blacktriangleright Let P_z be a projector in the direction of z which leaves r invariant. It is of the form

$$P_z = I - rac{z s^H}{s^H z}$$

where $s \perp r$. Similarly let P_w any projector which leaves v inchanged. Then the Olsen's solution can be written as

$$[P_z(M-\mu I)P_w]v=-r \qquad w^Hv=0$$

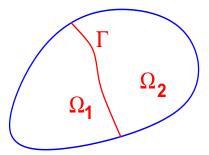
The two solutions are mathematically equivalent.

Calais February 7, 2005 142

Automatic Multi-Level Substructuring

Origin: Extention of substructuring for eigenvalue problems.

Background: Domain decomposition. Let $A \in \mathbb{C}^{n \times n}$, Hermitian



$$\Omega_{\mathbf{2}}$$
 $\rightarrow A = \begin{pmatrix} B & E \\ E^* & C \end{pmatrix}$ $B \in \mathbb{C}^{(n-p)\times(n-p)}$

Note: B is block-diagonal

- B= block-diagonal represents local matrices -
- \blacktriangleright E represent coupling C operates on interface variables.

The problem $Au = \lambda u$, can be written as:

$$egin{pmatrix} B & E \ E^* & C \end{pmatrix} egin{pmatrix} ilde{m{u}}^B \ ilde{m{u}}^S \end{pmatrix} = \lambda egin{pmatrix} ilde{m{u}}^B \ ilde{m{u}}^S \end{pmatrix}$$

Basic idea of the method for two levels

First step: eliminate the blocks E, E^* .

$$U=egin{pmatrix} I & -B^{-1}E \ 0 & I \end{pmatrix}
ightarrow U^*AU=egin{pmatrix} B & 0 \ 0 & S \end{pmatrix} \; ; \quad S=C-E^*B^{-1}E.$$

Original problem is equivalent to $U^*AUu = \lambda U^*Uu \rightarrow$

$$\left(egin{array}{ccc} B & 0 \ 0 & S \end{array}
ight) u \ = \lambda \, \left(egin{array}{ccc} I & -B^{-1}E \ -E^*B^{-1} & M_S \end{array}
ight) u \ ;$$

ightharpoonup with $M_S=I+E^*B^{-2}E$

Calais February 7, 2005 145

Then use this subspace for a Rayleigh-Ritz projection applied to

$$egin{pmatrix} egin{pmatrix} egi$$

(Note: not the original problem.)

Final step: | exploit recursion -

NOTE: algorithm does only one shot of descent - ascent (no iterative improvement).

Second step: | neglect the coupling in right-hand side matrix:

$$egin{pmatrix} B & 0 \ 0 & S \end{pmatrix} u = \lambda egin{pmatrix} I & 0 \ 0 & M_S \end{pmatrix} u
ightarrow egin{pmatrix} Bv = \mu \ v \ Sw = \eta \ M_Sw \end{pmatrix}$$

► Compute a few of the smallest eigenvalues of above problem.

Third step: Build a 'good' subspace to approximate to eigenfunctions of original problem. For projection, use basis the form

$$\left\{ egin{aligned} \hat{v}_i = inom{v_i}{0} & i=1,\ldots,m_B; & \hat{w}_j = inom{0}{w_j} & j=1,\ldots,m_S
ight\}, \end{aligned}$$
 where $m_B < (n-p)$ and $m_S < p$.

Calais February 7, 2005

References:

- [1] J. K. Bennighof and R. B. Lehoucq, An automated multilevel substructuring method for eigenspace computation in linear elastodynamics, To appear in SIAM. J. Sci. Comput., (2003).
- [2] R. R. GRAIG, JR. AND M. C. C. BAMPTON, Coupling of substructures for dynamic analysis, AIAA Journal, 6 (1968), pp. 1313–1319.
- [3] W. C. Hurty, Vibrations of structural systems by componentmode synthesis, Journal of the Engineering Mechanics Division, ASCE, 86 (1960), pp. 51-69.
- [4] K. Bekas and Y. Saad, Computation of Smallest Eigenvalues using Spectral Schur Complements, MSI technical report, Jan. 2004 - to appear.

Spectral Schur complements

▶ Can interpret AMLS in terms of Schur complements. Start with

$$egin{pmatrix} B & E \ E^* & C \end{pmatrix} egin{pmatrix} oldsymbol{u}^B \ oldsymbol{u}^S \end{pmatrix} = \lambda egin{pmatrix} oldsymbol{u}^B \ oldsymbol{u}^S \end{pmatrix}$$

ightharpoonup For $\lambda \notin \Lambda(B)$ de£ne

$$S(\lambda) = C - E^*(B - \lambda I)^{-1}E$$

When $\lambda\notin\Lambda(B)$ then $\lambda\in\Lambda(A)\leftrightarrow\lambda\in\Lambda(S(\lambda)),$ i.e., iff $S(\lambda)u^S=\lambda u^S$

Observation: The Schur complement problem solved by AMLS can be viewed as the problem resulting from £rst order approximation of $S(\lambda)$ around $\lambda=0$.

Approximating the eigenvectors

Let λ,u^S be an eigenpair of the nonlinear eigenvalue problem i.e., such that: $S(\lambda)u^S=\lambda u^S$ Then, λ is an eigenvalue of A with associated eigenvector:

$$egin{pmatrix} -(B-\lambda I)^{-1}Eu^S \ u^S \end{pmatrix} = \underbrace{egin{pmatrix} I & -(B-\lambda I)^{-1}E \ 0 & I \ U(\lambda) \end{pmatrix}}_{U(\lambda)} egin{pmatrix} 0 \ u^S \end{pmatrix}$$

- ightharpoonup AMLS approximates the exact prolongator $U(\lambda)$ by $U(0)\equiv U$;
- ▶ It then adds approximate eigenvectors from B to construct a subspace of approximants to perform a projection process.

The standard expansion of the resolvent

$$(B-\lambda I)^{-1}=B^{-1}\sum\limits_{k=0}^{\infty}(\lambda B^{-1})^k=\sum\limits_{k=0}^{\infty}\lambda^k B^{-k-1},$$

around $\lambda = 0$, leads to the series

$$S(\lambda) = C - E^* \left(B^{-1} + \lambda B^{-2} + \lambda^2 B^{-3} + \ldots \right) E = S - \sum\limits_{k=1}^{\infty} \lambda^k E^* B^{-k-1} E$$

▶ Zeroth order approximation [≈ shift-and-invert with zero shift]

$$Su^S=\lambda u^S$$

First order approximation [AMLS]

$$Su^S=\lambda(I+E^*B^{-2}E)u^S$$

► Second order approximation [See Bekas and YS '04]

$$Su^S = \lambda (I + E^*B^{-2}E + \lambda E^*B^{-3}E)u^S$$

Calais February 7, 2005 _____ 150

▶ the space of approximants is spanned by the family of vectors:

$$\left\{egin{pmatrix} egin{pmatrix} egin{pmatrix} egin{pmatrix} egin{pmatrix} egin{pmatrix} egin{pmatrix} -B^{-1}Eu_j^S \ u_j^S \end{pmatrix} = U(0) egin{pmatrix} 0 \ u^S \end{pmatrix}
ight\} \; ,$$

in which \boldsymbol{v}_i^B are eigenvectors of \boldsymbol{B} associated with the smallest eigenvalues

▶ When λ is small, then $U(\lambda) \approx U(0) \to \text{some simple bounds can}$ obtained for the distance between this space of approximants and exact eigenvectors of A.

AN APPLICATION

Several approximations/theories used

- **▶** Born-Oppenheimer approximation: Neglects motion of nuclei [heavier than electrons]
- Many electrons → one electron systems: each electron sees only the average potential from other electrons/ nuclei.

Density Functional Theory: observable quantities uniquely determined by ground state charge density. Consequence: Kohn-Sham equations

Electronic structures and Shrödinger's equation

- Determining matter's electronic structure can be a major challenge: [a macroscopic amount contains $pprox 10^{23}$ electrons and nuclei]
- ▶ Solution via the many-body Shrödinger equation:

$$H\Psi=E\Psi$$

► The Hamiltonian H is very complex:

$$H = -\sum\limits_{i}rac{\hbar^{2}
abla_{i}^{2}}{2M_{i}} - \sum\limits_{j}rac{\hbar^{2}
abla_{j}^{2}}{2m} + rac{1}{2}\sum\limits_{i,j}rac{Z_{i}Z_{j}e^{2}}{|ec{R}_{i} - ec{R}_{j}|} - \sum\limits_{i,j}rac{Z_{i}e^{2}}{|ec{R}_{i} - ec{r}_{j}|} + rac{1}{2}\sum\limits_{i,j}rac{e^{2}}{|ec{r}_{i} - ec{r}_{j}|}$$

▶ Involves sums over all electrons / nuclei and their pairs in terms involving Laplaceans, distances betweens electrons /nuclei.

Calais February 7, 2005

Kohn-Sham:

$$\left[-rac{h^2}{2m}
abla^2+v_0(r)+\intrac{
ho(r')}{|r-r'|}dr'+rac{\delta E_{xc}}{\delta
ho}
ight]\Psi(r)=E\Psi(r)$$

- $ightharpoonup v_0$ = external potential, E_{xc} = exchange-correlation enery
- \blacktriangleright Local Density Approximation: exchange-correlation energy E_{xc} is a simple known funtion
- Pseudopotentials: replace effect of core (inner shell) electrons of the system by an effective potential

In the end:

$$\left[-rac{h^2}{2m}
abla^2 + V_{tot}[
ho(r),r]
ight]\Psi(r) = E\Psi(r)$$

With

$$V_{tot} = V_{ion} + V_H + V_{xc}$$

- V_H = Hartree potential
- V_{xc} = Exchange & Correlation potential
- V_{ion} = lonic potential

▶ Non-Local

Local

▶ Electron Density:

$$ho(r) = \scriptscriptstyle \Sigma_i^{occup} |\Psi_i(r)|^2$$

Above problem can be viewed as a nonlinear eigenvalue problem.

Calais February 7, 2005

The three potential terms

 \blacktriangleright Hartree Potential V_H is solution of the Poisson equation:

$$abla^2 V_H = -4\pi
ho(r)$$

- \blacktriangleright Solve using Conjugate Gradient method once ρ is known.
- ightharpoonup Potential V_{xc} (exchange & correlation) is approximated by a potential induced by a local density. [Local Density Approximation]. Valid for slowly varying $\rho(r)$.
- Potential V_{ion} is more complex: In matrix terms: a small-rank matrix localized around each atom.

Self Consistency

$$egin{aligned} 1. & \left[-rac{h^2}{2m}
abla^2 + V_{tot}[
ho(r),r]
ight]\Psi_i(r) = E_i\Psi_i(r), i = 1,...,i^{occup} \ 2. &
ho(r) = \Sigma_i^{occup} |\Psi_i(r)|^2 \ 3. &
abla^2 V_H = -4\pi
ho(r) &
ightarrow V_{tot} = V_H + V_{xc} + V_{ion} \end{aligned}$$

- ▶ Both V_{xc} and V_H , depend on ρ .
- ▶ The potentials and charge densities must be self-consistent: Can be viewed as a nonlinear eigenvalue problem
- ▶ Preferred approach: Broyden-type quasi-Newton technique
- ▶ Typically, a small number of iterations are required
- ▶ Not represented above: time stepping.

Calais February 7, 2005

Resources

ARPACK:

http://www.caam.rice.edu/software/ARPACK/indexold.html

- "Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide", Zhaojun Bai, James Demmel, Jack Dongarra, Axel Ruhe, and Henk van der Vorst, SIAM, 2000.
- Matrix Algorithms, Vol 2, G. W. Stewart, SIAM, 2001
- ▶ Numerical Methods for Large Eigenvalue Problems, Y. Saad, available from

http://www.cs.umn.edu/~saad/books.html

Calais February 7, 2005 158

The end

• The slides for this talk can be downloaded from my web site:

URL: http://www.cs.umn.edu/~saad

- Follow the "Teaching" icon [> Calais lecture notes]
- Will include all matlab scripts used for demonstrations
- My e-mail address:

e-mail: saad@cs.umn.edu

Calais February 7, 2005

The Test - Durée: 20mn

- Quel nombre de couleurs trouveriez-vous si vous appliquiez l'algorithme gourmand de coloriage a une matrice a 5 points [disc. du Laplacien a 2-D - grille rectangulaire - point de depart = 1]
- Montrez les tableaux AA, JA, IA utilisés pour stocker la matrice creuse suivante en format CSR (compressed sparse row)?

$$\begin{pmatrix} 1 & 2 & 0 & 0 \\ 3 & 4 & 0 & 5 \\ 0 & 0 & 6 & 7 \\ 8 & 9 & 0 & 0 \end{pmatrix}$$

L'algorithme "steepest descent" converge-t-il quand $A \neq A^T$? Quel (s) algorithmes de projection a une dimension convergent toujours quand A est telle que $A + A^T$ est SDP?

MERCI DE VOTRE ATTENTION!

- A quelle methode de projection correspond l'algorithme du gradient conjugué?
- 5. Quelles relations d'orthogonalite sont satisfaites par les residus preconditiones z_i de l'algorithme du gradient conjugue preconditioné?
- Quelle est la matrice de preconditionnement SSOR ($\omega=1$) pour une matrice A quelconque?
- A quelle methode de projection correspond l'algorithme des valeurs de Ritz harmoniques?
- Quelle methode utiliseriez-vous pour calculer toutes les valeurs propres d'une matrice symmetrique dense ?

Calais February 7, 2005