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) _ e Preconditioned iterations
e Sparse matrices and sparsity S )
e Preconditioning techniques

e Basic iterative methods (Relax-

) e Parallel implementations
ation..)
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e Eigenvalue problems

e Projection methods o
e Applications —
e Krylov subspace methods
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Origins of Eigenvalue Problems

e Structural Engineering [Ku = AMu)]
e Electronic structure calculations [Shrodinger equation..]
¢ Stability analysis [e.g., electrical networks, mechanical system,..]

e Bifurcation analysis [e.g., in auid @ow]

» Large sparse eigenvalue problems are among the most demand-

ing calculations (in terms of CPU time) in scientiEc computing.
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New application in information technology

» Search engines (google) rank web-sites in order to improve searches

» The google toolbar on some browsers (http://toolbar.google.com)

- gives a measure of relevance of a page.

» The problem can be formulated as a Markov chain — Seek the

dominant eigenvector
» Algorithm used: power method

» For details see:

http://ww. i prcom cont paper s/ pager ank/ i ndex. ht m
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Types of problems

* Standard Hermitian (or symmetric real) [Az = Az], A" = A
* Standard non-Hermitian [Az = Az], AH # A

* Generalized
Ax = ABzx
Several distinct sub-cases (B SPD, B SSPD, B singular with large
null space, both A and B singular, etc..)
* Quadratic
(A+AB +22C)z =0
* Nonlinear
ANz =0
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The Problem

We consider the eigenvalue problem
Ax = Az or Ax = ABx

Typically: B is symmetric (semi) positive de£nite, A is symmetric

or nonsymmetric

Requirements vary:

e Compute a few ); 's with smallest or largest real parts;
e Compute all A;’s in a certain region of C ;
e Compute a few of the dominant eigenvalues;

e Compute all \;’s.
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EIGENVALUE PROBLEMS - BASICS
DENSE MATRIX CASE

e Background on eigenvalues/ eigenvectors/ Jordan form

e The Schur form

e Perturbation analysis, condition numbers..

e Power method, subspace iteration algorithms

e The QR algorithm

e Practical QR algorithms: use of Hessenberg form and shifts

e The symmetric eigenvalue problem.



Basic defnitions and properties

A complex scalar A is called an eigenvalue of a square matrix A
if there exists a nonzero vector v in C" such that Au = Au. The
vector u is called an eigenvector of A associated with X. The set of

all eigenvalues of A is the ‘spectrum’ of A. Notation: A(A).

w A € A(A) iff the columns of A — AT are linearly dependent.

» ... equivalent to saying that its rows are linearly dependent. So:

there is a nonzero vector w such that

wH(A—-AI)=0

w w is called a left eigenvector of A (u is a right eigenvector)

» A € A(A) iff [det(A — AI) = 0|
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» Geometric multiplicity is < algebraic multiplicity.
» An eigenvalue is simple if its (algebraic) multiplicity is one.

» It is semi-simple if its geometric and algebraic multiplicities are

equal.

Example: Consider

1 2 —4
A=|0 1 2
0O 0 2

What are the eigenvalues of A? their algebraic multiplicities? their

geometric multiplicities? Is one a semi-simple eigenvalue?

Same questions if ass is replaced by one.

Calais February 7, 2005

Basic de£nitions and properties (cont.)

» An eigenvalue is a root of the Characteristic polynomial:

pa(A) = det(A — XI)

» So there are n eigenvalues (counted with their multiplicities).

» The multiplicity of these eigenvalues as roots of p4 are called

algebraic multiplicities.

» The geometric multiplicity of an eigenvalue A; is the number of

linearly independent eigenvectors associated with ;.
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» Two matrices A and B are similar if there exists a nonsingular
matrix X such that
B=XAX"!

» Def£nition: A is diagonalizable if it is similar to a diagonal matrix

» THEOREM: A matrix is diagonalizable iff it has n linearly
independent eigenvectors
» THEOREM (Schur form): Any matrix is unitarily similar to a
triangular matrix, i.e., for any A there exists a unitary matrix Q
and an upper triangular matrix R such that

A = QRQY
» Any Hermitian matrix is unitarily similar to a real diagonal matrix,

(i.e. its Schur form is real diagonal).
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Special case: symmetric / Hermitian matrices

» Consider the Schur form of a real symmetric matrix A:
A = QRQ"”

Since A = AthenR=RE »

Eigenvalues of A are real

In addition, Q can be taken to be real when A is real.

(A=A)(u+iv) =0—> (A—ANu=0 and (A—A)v=0

» Can select eigenvectors to be real.

There is an orthonormal basis of eigenvectors of A
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The Law of interia

» A matrix A with m negative, z zero, and p positive eigenvalues,

has inertia [m, z, p].

‘ Sylvester’s Law of inertia: I If X is an n X m nonsingular matrix,

then A and XT AX have the same inertia.

Example: Supposethat A = LDLT where L is unit lower triangular,

and D diagonal. How many negative eigenvalues does A have?

Example: Assume that A is tridiagonal. How many operations are

required to determine the number of negative eigenvalues of A?

Example: Devise an algorithm based on the inertia theorem to com-

pute the -th eigenvalue of a tridiagonal matrix.
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The min-max theorem

Label eigenvalues increasingly:
AL > A > Ay,

The eigenvalues of a Hermitian matrix A are characterized by the

relation
(Az, x)
A = max min ———~
S, dim(S)=k xE€S,x#£0 (w’ w)

» Conseqguence:

AL = rgl;%((Aw, x)/(x,x) An = 151;51(143:, xz)/(z,x)
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Perturbation analysis

» General questions: If A is perturbed how does an eigenvalue

change? How about an eigenvector?
» Also: sensitivity of an eigenvalue to perturbations

THEOREM [Gerschgorin]

VA €A(A), 3i suchthat |A—ay| < ’E'l‘|a,~,-| .
7=
J#i

» In words: An eigenvalue X\ of A is located in one of the closed

discs D(aii, pi) with Pi = Xj#£4 |ai]-| .
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Gerschgorin’s theorem - example

» Find a region of the complex plane where the eigenvalues of the

following matrix are located:

» Refnement: if disks are all disjoint then each of them contains

one eigenvalue

» Ref£nement: can combine row and column version of the theorem

(column version obtained by applying theorem to A).
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Conditioning of Eigenvalues

» Assume that A is a simple eigenvalue with right and left eigenvec-
tors u and w respectively. Consider the matrices:
A(t)=A+tE

w Eigenvalue A(t), eigenvector u(t).
w Conditioning of A of A relative to FE is the |[d\(t)/dt| att = 0.

» Write
A(t)u(t) = A()u(t)
w» then multiply both sides to the left by wH
wH (A +tE)u(t) = A(t)wlu(t) —
A wu(t) = wf Au(t) + tw? Eu(t)
= Awfu(t) + tw? Eu(t).

Bauer-Fike theorem

THEOREM [Bauer-Fike] Let A, @ be an approximate eigenpair with
@)l = 1, and let r = A@ — Aa (residual vector’). Assume A is
diagonalizable: A = X DX !, with D diagonal. Then

IXx e A(A) suchthat |A— A| < condy(X)||7l2 -

» Very restrictive result - also not too sharp in general.

» Alternative formulation. If E is a perturbation to A then for any

eigenvalue X of A + E there is an eigenvalue X of A such that:
IA = A| < condy(X)||E|2 -

O Prove this result from the previous one. ,
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Hence,
At) — A
()t'wHu(t) = w Eu(t)
» Take the limitat ¢t = 0,

wH Eu

wHy

N(0) =

» Note: the left and right eigenvectors associated with a simple

eigenvalue cannot be orthogonal to each other.

Actual conditioning of an eigenvalue, given a perturbation “in the

direction of E” is the modulus of the above quantity.

» In practice, one only has an estimate of || E|| for some norm
| Eu|l2||w]]2

| (w, w)|

[[u]l2][w]l2
< Bl ==

o= = 1 )



De£nition. The condition number of a simple eigenvalue X of an

arbitrary matrix A is defned by
1

condA) =
) cos 0(u, w)
in which u and w are the right and left eigenvectors, respectively,

associated with .

Example: Consider the matrix
—149 —50 —154
A= 537 180 546
—27 —9 —25
» A(A) = {1,2,3}. Right and left eigenvectors associated with
AL = 1:

0.3162 0.6810
u=1|-0.9487 | and w =] 0.2253
0.0 0.6967

The power method

w» Basic idea is to generate the sequence of vectors A*v, where

vg # 0 —then normalize.

» Most commonly used normalization: ensure that the largest com-

ponent of the approximation is equal to one.

ALGORITHM : 1. The Power Method
1. Choose a nonzero initial vector v,

2.Fork =1,2,...,until convergence, Do:
3. o) = aikAv(’“—l) where

4, oy = argmaxizl’_“’n|(A'u(’“_l)),-|

5. EndDo

W argmaxi—1,. n|x;| = the component z; with largest modulus
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So:

cond(\;) ~ 603.64

» Perturbing a;; to —149.01 yields the spectrum:

{0.2287, 3.2878, 2.4735}.

» as expected..

» For Hermitian (also normal matrices) every simple eigenvalue is

well-conditioned, since cond(\) = 1.
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Convergence of the power method

THEOREM Assume that there is one and only one eigenvalue \;
of A of largest modulus and that \; is semi-simple. Then either
the initial vector vy has no component in the invariant subspace
associated with A; or the sequence of vectors generated by the
algorithm converges to an eigenvector associated with A; and ay

converges to ;.
Proof in the diagonalizable case.

» vy is = vector A*v, normalized by a certain scalar &;, in such a

way that its largest component is 1.

» Decompose the initial vector vy as vy = s¥_; v;u; where the u;’s

are the eigenvectors associated with the A\;’s, i = 1,...,n.
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w Note that Aku; = A\lu;

1 no .
vVp = ——— X X )\ifyiui
scaling i=1
1
= o My + 3 Ml
scaling i=2
~ scaling’ Er="10W "

» Second term inside bracket converges to zero. QED

» Proof suggests that the convergence factor is given by
_ A

| Al
where ), is the second largest eigenvalue in modulus.

PD

Example: Consider a ‘Markov Chain’ matrix of size n = 55. Dom-
inant eigenvalues are A\ = 1 and A = —1 w the power method

applied directly to A fails. (Why?) Catais February 7. 200

» We can consider instead the matrix I + A The eigenvalue A =1

is then transformed into the (only) dominant eigenvalue A = 2

Iteration | Norm of diff. | Res. norm | Eigenvalue
20| 0.639D-01  0.276D-01|1.02591636
40| 0.129D-01| 0.513D-02|1.00680780
60| 0.192D-02 0.808D-03|1.00102145
80. 0.280D-03| 0.121D-03|1.00014720
100/ 0.400D-04| 0.174D-04|1.00002078
120, 0.562D-05 0.247D-05 1.00000289
140, 0.781D-06 0.344D-06 1.00000040
161, 0.973D-07 0.430D-07  1.00000005

The Shifted Power Method

» In previous example shifted A into B = A + I before applying
power method. We could also iterate with B(o) = A + oI for any

positive o

Example: With o = 0.1 we get the following improvement.

Iteration | Norm of diff. | Res. Norm | Eigenvalue
20| 0.273D-01| 0.794D-02|1.00524001
40  0.729D-03| 0.210D-03|1.00016755
60| 0.183D-04 0.509D-05|1.00000446
80| 0.437D-06| 0.118D-06 1.00000011
88| 0.971D-07| 0.261D-07 | 1.00000002
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» Question: What is the best shift-of-origin o to use?
When all eigenvalues are real and such that
AL> A2 A 2> 2 Ay,

then the value of o which yields the best convergence factor is:
>\2 + An
2

Oopt =
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Inverse lteration

Observation: The eigenvectors of A and A~! are identical.
» |dea: use the power method on A1,

» Will compute the eigenvalues closest to zero.

w Shift-and-invert Use power method on [(A — oI)~*| w» will com-

pute eigenvalues closest to o.
» Advantages: fast convergence in general.

» Drawbacks: need to factor A (or A — o) into LU..
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ALGORITHM : 3. Subspace Iteration with Projection
Start: Choose Q¢ = [qos -+« - » Gm)

Iterate: For k = 1,..., until convergence do:
Compute Z = AQj_1.
Z = ZRy (QR factorization)
B=7ZHAZ
Compute the Schur factorization B = YRY H
Qr=2Y

EndDo

» Again: no need to orthogonalize + project at each step.

w» Assume |A1| > |Az| > - [Am] >[Amsa] = --+ > |As], then

convergence rate for A; is (generally)

[Am1/A1]
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Subspace iteration

» Generalizes the power method

ALGORITHM : 2. Orthogonal iteration
Start: Qo = [q1s+ -5 qm]

1

2. lterate: Until convergence do,

3. X := AQi_

4 X = QiR (QR factorization)

5. EndDo

» Normalization in step 4 is similar to the scaling used in the power

method.

» Improvement: normalize only once in a while.
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The QR algorithm

» The most common method for solving small (dense) eigenvalue

problems. The basic algorithm:

ALGORITHM : 4. OR without shifts

1. Until Convergence Do:

2. Compute the QR factorization A = QR
3. Set A := RQ
4. EndDo

» “Until Convergence” means “Until A becomes close enough to

an upper triangular matrix”
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» Note: A,.., = RQ = QH(QR)Q = QHAQ

» A, IS Similar to A throughout the algorithm .

» Above basic algorithm is never used in practice. Two variations:
(1) use shift of origin and

(2) Transform A into Hessenberg form..
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a a a a a [a

w Idea: Apply QR algorithm to A® — uI with p = a*). Note:
eigenvalues of A®) — uI are shifted by u, and eigenvectors are the

same.
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Practical QR: Shifts of origin

Observation: (from theory): Last row converges fastest. Conver-

[An]
|)‘n71|

gence is dictated by

| » We will now consider only the real symmetric case.|

» Eigenvalues are real.
w» A*) remains symmetric throughout process.

w As k goes to infnity the last column and row (except a*)) con-

verge to zero quickly.,,

» and a(®) converges to lowest eigenvalue.
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ALGORITHM : 5. QR with shifts
1. Until row a;,,1 < 7 < m converges to zero DO:

2. Obtain next shift (e.g. u = any)
3. A—ul =QR

5. Set A:= RQ + ul

6. EndDo

» Convergence is cubic at the limit! [for symmetric case]
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» Result of algorithm:

o ©o o o o©

0 0 0 0 0 X,

» Next step: derate, i.e., apply above algorithmto (n — 1) x (n —1)

upper triangular matrix.

Calais February 7, 2005

. We want Hi1AHT = H,AH,

to have the form:

S O O O * *
*
*
>*
>*
*

*x Kk Kk x %
w Choose a w in H; = I — 2ww? so that (H,A)[2:n,1] =0
» Apply to left B = H; A. Then apply to right A; = BH;.

Observation: the Householder matrix H; which transforms the
column A(:, 1) into e; works only on rows 2 to n. When applying
HY to the right of B = H; A, only columns 2 to n will be altered
» 1st column retains the same pattern (zeros below row 2)
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Practical QR: Use of the Hessenberg Form

Recall: Upper Hessenberg matrix is such that
aij:Oforj<i—1
Observation: The QR algorithm preserves Hessenberg form (tridi-

agonal form in symmetric case). Results in substantial savings.

» 1-st step: reduce A to Hessenberg form. Then (2nd step) apply

QR algorithm to resulting matrix.

» It is easy to adapt the Householder factorization to reduce a ma-

trix into Hessenberg form — [similarity transformation]

» Consider the £rst step only on a 6 x 6 matrix.

QR for Hessenberg matrices

» Need the “implicit Q theorem”

Suppose that QT AQ is an unreduced upper Hessenberg matrix.
Then columns 2 to n of Q are determined uniquely (up to signs)

by the £rst column of Q.

Implication: |In order to compute A;;; = Q7 AQ; we can:

» Compute the £rst column of Q; [easy: = scalar x A(:,1)]

» Choose other columns so Q; = unitary, and A, = Hessenberg.
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* * * * * * * * * *
* ok ok ok % 2, Choose G = * %k % k%
Example: Withn = 6 : A=]0 % % x = G(2,3,6;) so  that p A, =GTAG,=|0 % * * =x
0 0 % % =% (G2A1)31 =0 0 + % % =
0 0 0 *x =% 0 0 0 =% =
* k% ok ok Xk * % %k  *x %
i, Choose G = ok ok k% 3. Choose G; = ¥ ok k% %
Gl,2,6:) so  that > A =GIAG =+ * * x x G(3,4,0;) 50 that A, = GTAG;=|0 * * = x
(G1A)21 =0 0 0 * =* = (G3A3)42 =0 0 0 % % =
0 0 0 % =* 00 4 &
4. Choose Gy = * ok ok % %
G(4,5,04) so that ) Ay =GlA;Gy= |0 * x *x =x » Most important method used : reduce to tridiagonal form and
(G4A3)53 =0 0 0 * * = apply the QR algorithm with shifts.
00 0 « » Householder transformation to Hesseenberg form yields a tridi-
» Process known as “Bulge chasing” agonal matrix because

T _
» Similar idea for the symmetric (tridiagonal) case HAH" = A,
is symmetric and also of Hessenberg form w it is tridiagonal sym-
metric.

Tridiagonal form is preserved by QR similarity transformation
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Practical method I

» How to implement the QR algorithm with shifts?

» It is best to use Givens rotations — can do a shifted QR step

without explicitly shifting the matrix..

» Two most popular shifts:

§ = @pn and s = smalleste.v. of A(n —1:n,n —1:n)
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The Singular Value Decomposition (SVD)

For any real n X m matrix A there exists orthogonal matrices U €

R™™and V. &€ R™*™ such that
A=UxvT

where X is a diagonal matrix with nonnegative diagonal entries.
O11 > T2 > -+ 0pp > 0 With p = min(m, n)
» The o;; are called singular values of A. Denoted simply by o;.

Proof: |[one among many!] Let oy = [|A]l2 = max, |z|,=1 || Az

There exists a pair of unit vectors vy, u; such that

A’Ul = o1Uy
Calais February 7, 2005

THE SINGULAR VALUE DECOMPOSITION

e The SVD - existence - properties.
e Pseudo-inverses and the SVD
e Use of SVD for least-squares problems

e Applications of the SVD

» Complete v; into an orthonormal basis of R™

V = [v1, Vo] = m X m unitary

» Complete u; into an orthonormal basis of R™

U= [u, U] =n X n unitary

» Then, it is easy to show that

g1 ’UJT

0 B

AV =U X

o1 ’lUT
)E A1

0 B

) = WAV:(

» Observe that

g
A7)z ol = o+ ol
w2

(o)

» This shows that w must be zero [why?]

» Complete the proof by an induction argument.
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Case 1:

O

O

A = U 2
O

Case 2:

VT
A = u OZ O

O
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Some properties. | Assume that

1209220, >0ando,y1=--=0,=0
Then:
e rank(A) = r = number of nonzero singular values.
e Ran(A) = span{ui,uz,...,u,}
e Null(A) = span{v,i11,Vri12y+++,Um}

e The matrix A admits the SVD expansion:

e Callais February 7, 2005 pmmm
—

The “thin” SVD

» Consider the Case-1. It can be rewritten as

p

A = [U1U)] { 1) VT

0

Which gives:
A == U121 VT

where U; is n X m (same shape as A), and X; and V are m X m
w referred to as the “thin” SVD. Important in practice.

<&Show how to obtain the thin SVD from the QR factorization of A

and the SVD of an m X m matrix
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Properties of the SVD (continued)

e |Al|2 = oy = largest singular value

o lAllr = (=1, 02"

i=1"1

e When A is an n X n nonsingular matrix then ||A7Y||; = 1/0, =

inverse of smallest s.v.




Defne the » X r matrix {Compute the singular value decomposition the matrix:

21 = diag(al, e ,0'7-)

» Let A € R™™™ and consider now AT A (which is of size m x m)

$Find the matrix B of rank 1 which is the closest to the above matrix
in the 2-norm sense.

OWhat is the pseudo-inverse of A? What is the pseudo-inverse of

B?

» This gives the spectral decomposition of AT A. Similarly, U gives

the eigenvectors of AAT.

QFind the vector « of smallest norm which minimizes ||b — Ax||»
with b = (1,1)T
QFind the vector  of smallest norm which minimizes ||b — Bz||»

with b = (1,1)T

Important: | ATA = VD, VT and AAT = UD,UT give the SVD
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factors U, V up to signs!

Pseudo-inverse of an arbitrary matrix Least-squares problems and the SVD

» SVD can give much information about solving overdetermined
and underdetermined linear systems —

Moore-Penrose conditions: | The pseudo inverse of a matrix is uniquely
determined by these four conditions:
1) AXA=A 2 XAX =X
) (AX)H =AX 4) (XA)HE=XA
» In the full-rank overdetermined case, AT = (AT A)~1AT

Calais February 7, 2005
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Least-squares problems and pseudo-inverses

» A restatement of the £rst part of the previous result:

Consider the general linear least-squares problem
min [|zfl. S ={z € R"|||b— Az|,min}
This problem always has a unique solution given by

xz = A'b
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Numerical rank and the SVD

» Assume that the original matrix A is exactly of rank k.
» The computed SVD of A will be the SVD of a nearby matrix A+ E.
» Easy to show that |6; — ;| < a o1eps

» Result: zero singular values will yield small computed singular

values

» Determining the “numerical rank:” treat singular values below a

certain threshold § as zero. Practical problem : need to set 4.
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IlI-conditioned systems and the SVD

» Let A be n x n (square matrix) and A = UXV 7T its SVD

» Solution of Ax = bisxz = A~'b =" ufb

=1 o;

v

» When A is very ill-conditioned, it may have many small
singular values. The division by these small o;’s will amplify any
noise in the data. Result: solution may be meaningless.

» Remedy: use regularization, i.e., truncate the SVD by only
keeping the o/s that are larger than a threshold .

» This gives the truncated SVD solution (SVD regularization:)

usz
Trsvp = X
o,>T O

U4

» Many applications [e.g., Image processing,..
y app [ 9 9€e p Cgais]February7,2005

LARGE SPARSE EIGENVALUE PROBLEMS




General Tools for Solving Large Eigen-Problems

» Projection techniques — Arnoldi, Lanczos, Subspace Iteration;
» Preconditioninings: shift-and-invert, Polynomials, ...

» Deration and restarting techniques

|Good computational codes combine these three ingredients|
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Projection Methods for Eigenvalue Problems

A few popular solution Methods

e Subspace lIteration [Now less popular — sometimes used for vali-

dation]

¢ Arnoldi’s method (or Lanczos) with polynomial acceleration [Stiefel
'58, Rutishauser ’'62, YS '84,85, Sorensen '89,...]

e Shift-and-invert and other preconditioners. [Use Arnoldi or Lanc-
zos for (A — o)~ 1]

e Davidson’s method and variants, Generalized Davidosn’s method

[Morgan and Scott, 89], Jacobi-Davidsion

e Emerning method: Automatic Multilevel Substructuring (AMLS).
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[General formulation:|

Projection method onto K orthogonal to L

» Given: Two subspaces K and L of same dimension.

w Find: X, @ such that
AeC,i € Ki M—-AallL

[Two types of methods:|

Orthogonal projection methods: situation when L = K.

Oblique projection methods: When L # K.
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Rayleigh-Ritz projection

Given: a subspace X known to contain good approximations to

eigenvectors of A.
Question: How to extract good approximations to eigenvalues/

eigenvectors from this subspace?

Answer: |Ray|eigh Ritz process.

Let @ = [q1,-...,q9m] an orthonormal basis of X. Then write an

approximation in the form « = Qy and obtain y by writing

QA —-ADa=0

» QTAQy = Ay
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Procedure: Subspace Iteration

1. Obtain an orthonormal basis of X
2. Compute C = Q7 AQ (an m x m matrix) » Original idea: projection technique onto a subspace if the form
3. Obtain Schur factorization of C, C = YRY # Y = AFX

4. Compute U = QY . . .
» In practice: Replace A* by suitable polynomial [Chebyshev]

Property: if X is (exactly) invariant, then procedure will yield exact e Easy to implement (in symmetric case);
. . Advantages: ’

eigenvalues and eigenvectors. e Easy to analyze;

Proof: Since X is invariant, (A—XI)u = Qz foracertain z. Q7Qz = Disadvantage: Slow.

0 implies z = 0 and therefore (A — Al)u = 0. w Often used with polynomial acceleration: A*X replaced by C(A)X.

» Can use this procedure in conjunction with the subspace ob- Typically Cy = Chebyshev polynomial.

tained from subspace iteration algorithm
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Algorithm: Subspace Iteration with Projection THEOREM: Let Sy = span{xi, xs, ..., 2z} and assume that Sy is

1. Start: Choose an initial system of vectors X = [zo, . . . , Zu] such that the vectors {Px;};—,....» are linearly independent where

and an initial polynomial Cy,. P is the spectral projector associated with Ay,...,A,. Let Py the
orthogonal projector onto the subspace S, = span{Xy}. Then for
2. Iterate: Until convergence do: 9 broJ P K R il

each eigenvector u; of A, i = 1,...,m, there exists a unique vector

Z = A) X 4. . .
(a) Compute Cir(A)Xoia s; in the subspace S, such that Ps; = u;. Moreover, the following

(b) Orthonormalize Z into Z. inequality is satisfed

(c)Compute B = ZHAZ and use the QR algorithm to A .
1 = Pyl < llus = sile [ 37+ ] ®

1

compute the Schur vectors Y = [yi,...,ym,] of B.
(d) Compute X 7y where ¢, tends to zero as k tends to in£nity.
(e) Test for convergence. If satisEed stop. Else select a new

polynomial Cj, and continue.
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KRYLOV SUBSPACE METHODS

ARNOLDI’S ALGORITHM

» Goal: to compute an orthogonal basis of K,,.

w Input: Initial vector vy, with ||v;||2 = 1 and m.

ALGORITHM : 6« Arnoldi’s procedure

Forj=1,...,mdo

Compute w := Av;

h;;:= (w,v;
Fori=1,...,5,do i #= (W, i)
wi=w — h;;v;
hji1; = |lwl|2; vjig1 = w/hjiy;
End
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KRYLOV SUBSPACE METHODS

Principle: Projection methods on Krylov subspaces, i.e., on
Km(Aa Ul) = Span{vl, Avl’ e Am—lvl}

e probably the most important class of projection methods [for lin-

ear systems and for eigenvalue problems]

e many variants exist depending on the subspace L.

Properties of K,,,. Let u = deg. of minimal polynom. of ». Then,

e K,, = {p(A)v|p = polynomial of degree < m — 1}
e K,, = K, for all m > u. Moreover, K, is invariant under A.

e dim(K,,) = miff u > m.
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Result of Arnoldi’s algorithm

Let r & T X X

r & T X X

r I T X

H, = H,, = r T T x
r T x

r T x
r x

r x
T

1. V,, = [v1,v2, ..., vy] Orthonormal basis of K,,.
2. AV, = m—l—lﬁm =VnHy, + hm—i—l,mvm—i-lez;;

3.VIAV,, = H,, = H,,— last row.
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Appliaction to eigenvalue problems

» Write approximate eigenvector as u = V,,y + Galerkin condition
(A=ADVyy L Ky — VHA - X)V,,y =0

» Approximate eigenvalues are eigenvalues of H,,
Hpy; = A\jy;
Associated approximate eigenvectors are
u; = Viny;

Typically a few of the outermost eigenvalues will converge £rst.
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Example:

Small Markov Chain matrix [ Mark(10) , dimension = 55]. Restarted
Arnoldi procedure for computing the eigenvector associated with

the eigenvalue with algebraically largest real part. We use m = 10.

m R(A) I(A) |[Res. Norm
10/0.9987435899D+00 0.0 | 0.246D-01
20/0.9999523324D+00| 0.0 | 0.144D-02
30/ 0.1000000368D+01| 0.0 | 0.221D-04
40/0.1000000025D+01 | 0.0 | 0.508D-06
50/ 0.9999999996D+00 | 0.0 | 0.138D-07
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Restarted Arnoldi

In practice: Memory requirement of algorithm implies restarting is

necessary

ALGORITHM : 7. Restarted Arnoldi (computesrightmost eigenpair)
Start: Choose an initial vector v; and a dimension m.

1

2. lterate: Perform m steps of Arnoldi’s algorithm.
3. Restart: Compute the approximate eigenvector u§m>
4 associated with the rightmost eigenvalue Aﬁm).

5

If satisfed stop, else set v, = uﬁm) and goto 2.
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Restarted Arnoldi (cont.)

» Can be generalized to more than *one* eigenvector :

new id m
oo = £ pufm

» However: often does not work well — (hard to £nd good coef£-
cients p;’s)

» Alternative : compute eigenvectors (actually Schur vectors) one

at a time.

» Implicit deration.
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Hermitian case: The Lanczos Algorithm

» The Hessenberg matrix becomes tridiagonal :
A=A" and VHAV, =H, — H,=HY

» We can write

ay B
B2 oz P3
Bs a3 By

H,, = )

16771 am
» Consequence: three term recurrence

Bj+1vj+1 = Avj — ov; — Bvjq
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Observation [Paige, 1981]: Loss of orthogonality starts suddenly,

when the £rst eigenpair has converged. It is a sign of loss
of linear indedependence of the computed eigenvectors. When
orthogonality is lost, then several the copies of the same eigenvalue

start appearing.
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ALGORITHM : 8. Lanczos

Choose an initial vector v; of norm unity. Set 3; = 0,v9 = 0
Forjy =1,2,...,m Do:

w; = A’Uj — ﬁjvj_l

Wwj = w; — O;U;
Bj+1 := ||wjl|2. If Bj4+1 = 0 then Stop
Vi1 = w;/Bjn

1

2

3

4. aj = (w),v5)
5

6

7

8. EndDo

Hermitian matrix + Arnoldi — Hermitian Lanczos

» In theory v;’s de£ned by 3-term recurrence are orthogonal.

» However: in practice severe loss of orthogonality;
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Reorthogonalization

» Full reorthogonalization — reorthogonalize v;,, against all previ-

ous v;’s every time.

» Partial reorthogonalization — reorthogonalize v;; against all pre-

vious v;’s only when needed [Parlett & Simon]

» Selective reorthogonalization —reorthogonalize v, against com-

puted eigenvectors [Parlett & Scott]

» No reorthogonalization — Do not reorthogonalize - but take mea-

sures to deal with 'spurious’ eigenvalues. [Cullum & Willoughby]
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LANCZOS BIORTHOGONALIZATION

» Builds a pair of biorthogonal bases for the two subspaces

Km(A,v;) and K,,(A" w)

w Many choices for 4,1, 341 in lines 7 and 8. Only constraint:

0118541 = (D41, Wjiy1)

Let
a; B

02 o B3

5m—1 Amp—1 /Bm

Om  Qpy

w v, € Kn(A,v1)and w; € IC, (AT, wy).

The Lanczos biorthogonalization (AH # A)

ALGORITHM : 9. The Lanczos Bi-Orthogonalization Procedure

1. Choose vy, w; such that (v, w;) = 1. Set 81 = d; =0, wg = vy =0

2. Forj=1,2,...,mDo:

3. a; = (Avj,wy) [ = (Av; — Bjvj—1, w;) ]

4 = Avj — oyuj = Bivja [954 = (Avj — Bjvj-1) — ajv;]

5 Wi = AMw; — ayw; — dw; f Wi = (AT w; — §wj 1) — ayw;]
6.  8js1 = |(Bjr1, Wj41)|"/% If 641 = 0 Stop

7. Bt = (D541, Wj41) /0541

8.  wji1 = Wjt1/Bin

9. Vjg1 = Uj41/041

10. EndDo
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If the algorithm does not break down before step m, then
the vectors v;,7 = 1,...,m, and w;,j = 1,...,m, are

biorthogonal, i.e.,

Moreover, {v;}i=12,..m IS a basis of K,,(A,v;) and
{w;}iz1,2,..,m is a basis of KC,,(AH, w;) and

AVpy = ViuT + S 1Um1el,

AW, = W, TH + B iwimiiel,

WHAV,, =T,, .
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w If 6;,y;, z; are, respectively an eigenvalue of T;,,, with associated
right and left eigenvectors y; and z; respectively, then correspond-

ing approximations for A are

Ritz value | Right Ritz vector | Left Ritz vector
Hj mej Wij

[Note: terminology is abused slightly - Ritz values and vectors nor-

mally refer to Hermitian cases.]

Calais February 7, 2005

Look-ahead Lanczos

Algorithm breaks down when:
(D41, Wj1) = 0

Three distinct situations.

» ‘lucky breakdown’ when either ©;,, or W, is zero. In this case,

eigenvalues of T,,, are eigenvalues of A.

w (0j11,Wj41) = 0butof v, # 0, w1 # 0 — serious breakdown.
Often possible to bypass the step (+ a few more) and continue the

algorithm. If this is not possible then we get an ...

» ... Incurable break-down. [very rare]
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Advantages and disadvantages

Advantages:

» Nice three-term recurrence — requires little storage in theory.

» Computes left and a right eigenvectors at the same time
Disadvantages:

» Algorithm can breakdown or nearly breakdown.
» Convergence not too well understood. Erratic behavior

» Not easy to take advantage of the tridiagonal form of T,,.
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Look-ahead Lanczos algorithms | deal with the second case. See

Parlett 80, Freund and Nachtigal '90.... Main idea: when break-down
occurs, skip the computation of v;i1,w;+; and defEne v s, wjio
from v, w;. For example by orthogonalizing A%v; ... Can defne

vj+1 Somewhat arbitrarily as v, = Awv;. Similarly for w;,4.

» Drawbacks: (1) projected problem no longer tridiagonal (2) dif£-

cult to know what constitutes near-breakdown.

Calais February 7, 2005




DEFLATION

A little background

Consider Schur canonical form
A=URUHY

where U is a (complex) upper triangular matrix.
» Vector columns w;, ..., u, called Schur vectors.

» Note: Schur vectors depend on each other, and on the order of

the eigenvalues

» Very useful in practice.

w Different forms: locking (subspace iteration), selective orthogo-

nalization (Lanczos), Schur deration, ...
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Wiedlandt Deration: Assume we have computed a right eigenpair
A1, up. Wielandt deration considers eigenvalues of

A = A — ouo?

Note:
A(Al) = {Al — O, )\2, ceey )\n}
Wielandt deration preserves u; as an eigenvector as well all the left

eigenvectors not associated with A;.

» An interesting choice for v is to take simply v = w;. In this case

Wielandt deration preserves Schur vectors as well.



» It is possible to apply this procedure successively:

ALGORITHM : 10« Explicit Deration
Ag=A
Forj =0...u—1Do:

Compute a dominant eigenvector of A;
Defne Aj+1 = Aj — ajujuH

J
End

o M w0 N

» Computed uq, us., .. form a set of Schur vectors for A.

» Alternative: implicit dezation (within a procedure such as Arnoldi).
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Thus, for k = 2:

» Similar techniques in Subspace iteration [G. Stewart’s SRRIT]




Matrix Mark(10) — small Markov chain matrix (N = 55). » Computing the next 2 eigenvalues of Mark(10).

w» First eigenpair by iterative Arnoldi with m = 10. Eig. Mat-Vec’s Re(N) Im(A) Res. Norm
2 60 0.9370509474| 0.0 0.870D-03
69 0.9371549617| 0.0 0.175D-04
78/0.9371501442 0.0 | 0.313D-06
87/0.9371501564 0.0 | 0.490D-08
3 96 0.8112247133| 0.0 0.210D-02
104|0.8097553450| 0.0 0.538D-03
112|0.8096419483| 0.0 0.874D-04

m‘ Re(N) Im(A) | Res. Norm
10/0.9987435899D+00 0.0 | 0.246D-01
20/0.9999523324D+00 4 0.0 0.144D-02
30/0.1000000368D+01| 0.0 0.221D-04
40/0.1000000025D+01| 0.0 | 0.508D-06
50/0.9999999996D+00 0.0 | 0.138D-07

152/0.8095717167| 0.0 | 0.444D-07

Preconditioning eigenvalue problems

» Goal: To extract good approximations to add to a subspace in a

projection process. Result: faster convergence.

PRECONDITIONING - DAVIDSON’S METHOD

» Best known technique: Shift-and-invert; Work with
B=(A-oI)!

» Some success with polynomial preconditioning [Chebyshev iter-
ation / least-squares polynomials]. Work with
B =p(A)

» Above preconditioners preserve eigenvectors. Other methods

(Davidson) use a more general preconditioner M.
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Shift-and-invert preconditioning

Main idea: to use Arnoldi, or Lanczos, or subspace iteration for the
matrix B = (A — oI)~!. The matrix B need not be computed
explicitly. Each time we need to apply B to a vector we solve a

system with B.

» Factor B = A — oI = LU. Then each solution Bz = y requires

solving Lz =yand Ux = =z.
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Preconditioning by polynomials

Main idea:

|Iterate with p(A) instead of A in Arnoldi or Lanczos,..

» Used very early on in subspace iteration [Rutishauser, 1959.]

» Usually not as reliable as Shift-and-invert techniques but less

demanding in terms of storage.
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How to deal with complex shifts?

» If A is complex need to work in complex arithmetic.

w If A is real, it is desirable that Arnoldi/ Lanczos algorithms work

with a real matrix.

»w |dea: Instead of using B = (A — oI)~ ' use
B, =Re(A—ol)'=1[(A—0ol)'+ (A—5I)"

B_=Sm(A—ol)' = [(A—0ol)™ — (A—5I)7}

» Little difference between the two.

» Result: [B_ = 0(A — oI)~'(A — &1)|with = Sm(o).
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Question: How to £nd a good polynomial (dynamically)?
Use of Chebyshev polynomials over ellipses

Use polynomials based on Leja points

Approaches: Least-squares polynomials over polygons

Polynomials from previous Arnoldi decomposi-

tions
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Polynomial £Iters and implicit restart

» Goal: to apply polynomial £lter of the form

p(t) = (t—01)(t—6:)...(t—0,)

by exploiting the Arnoldi procedure.

Assume AV,, = Vo, Hyy, + Bimmyi€l,

and consider £rst factor: (t — 6,)
(A—0,1)V,, = V,,(Hy, — 01I) + Bryvmirel,
Let H,, — 6,1 = Q1R,. Then,
(A —0,I)V,, = V;,Q1 Ry + BnVmirel, —
(A= 01)(ViQ1) = (ViuQ1)R1Q1 + BrVmirel, Q1 —
A(Vin@Q1) = (VinQ1) (R1Q1 + 611) + Brvmiiel, Qr

Notation:  Ry;Q,+6:1 = H®Y;  (bP)T =elQ;  VinQi =
v
» AV,’,,(,Ll) = Vn(‘zl)Hg) = ’Um_i_l(bg)_H)T

w Note that H1) is upper Hessenberg.

» Similar to an Arnoldi decomposition.

Observe: I

» R;Q:+ 6.1 = matrix resulting from one step of the QR algorithm
with shift 8; applied to H,,.

w First column of V,(!) is a multiple of (A — 6,1)v,.

w The columns of V() are orthonormal.
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Can now apply second shift in same way:
(A= 0DV = VINHD = 051) + v (0, )" —
Similar process: (H() — 6,I) = Q2 R, then x Q- to the right:

(A= 0.I)V,IQs = (VIQ2) (R2Q2) + Vi1 (Y, )T Qo

AVE = VOH® 14 6P,,)T

Now:
First column of V,® = scalar x (A — 6,I)v{"

=scalar X (A — 0:1)(A — 6:1)v,
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» Note that  (b241)” = e£Q:1Qz = [0,0,-+,0, g1, gz, gs] The Davidson approach

w Let: V,,_5 = [#1,...,0m_o] cOnsist of £rst m — 2 columns of V.?)

and H,,_, = leading principal submatrix of H,,,. Then . _
Goal: to use a more general preconditioner to introduce good new
AV o = Vi oHy o+ ;Bm—l'i)m—leﬂ with

Bm-1Pm—1 = @1Vmi1 + hg)_]_,m_zvg)_l [[Om-1]l2 =1

components to the subspace.

. . |
» Result: An Arnoldi process of m — 2 steps with the initial vector » Ideal new vector would be eigenvector itself!

p(A)v;. w Next best thing: an approximation to (A — pI)~'r where
. . . r = (A — pI)z, current residual.
» In other words: We know how to apply polynomial £Itering via a

form of the Arnoldi process, combined with the QR algorithm. » Approximation written in the form M ~!r. Note that M can vary at

every step if needed.
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ALGORITHM : 11. Davidson’s method (Real symmetric case) » Note: Traditional Davidson uses diagonal preconditioning: M; =
N . D —o,l.
1. Choose an initial unit vector v;. Set Vi = [v,]. 73
2. Until convergence Do: w Will work only for some matrices
3. Forj =1,...,m Do:
4 w = Av;. Other options:
=VvVTAV: . . . . .
5 Update H; = V" AV; » Shift-and-invert using ILU [negatives: expensive + hard to paral-
6. Compute the smallest eigenpair p, y of Hj. .
lelize.]
7. z:=Vjy r:=Az— pz
8. Test for convergence. If satisfed Return w» Filtering (by averaging)
9. If j <m computet:= M;'r o _ o
10, compute Vj4; := ORTHN([V;, 1)) » Filtering by using smoothers (multigrid style)
11. Endlf » Iterative solves [See Jacobi-Davidson]
12. Setwv; :=zandgoto3
13. EndDo
14. EndDo
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CONVERGENCE THEORY

» Bounds for A\; easy to £nd — similar to linear systems.

» Ritz values approximate eigenvalues of A inside out:
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The Lanczos Algorithm in the Hermitian Case

Assume eigenvalues sorted increasingly
A< A< S Ay

» Orthogonal projection method onto K,,,;

» To derive error bounds, use the Courant characterization

. O (Auu)  (Ad, i)

AL = =
1 = W e K, uzo (u, w) (i1, @iy)
- Au,u A, u;
5 o A (i)
{ we K uzo  (u,u) (1, ;)
u J_ul,...,uj_l
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A-priori error bounds

Theorem [Kaniel, 1966]:

tan /(vy, uy) 1?

Tr—1(1+ 2m)

where v, = ;‘137_—);\12 and /(vy,u;) = acute angle between v; and u;.

0<A™ — A < (Av =)

+ results for other eigenvalues. [Kaniel, Paige, YS]

Theorem [YS,1980]

(m) (m) tan /(vi, u;) 2
0N = NS (AN—XN) ki
Dol =F 2

(m)
Air1—A; (m) AT =AN
where ~; = S K; | =1l
1 ’\N_)\z'Jrl ) 7 1<% )"m _/\i

J
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Theory for nonhermitian case

» More difEcult. No convincing results on ‘global convergence’.
» Can get a general a-priori — a-posteriori error bound

Let P be the orthogonal projector onto K and

Q be the (oblique) projector onto K and orthogonally to L.
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How to estimate ||(I — P)u;]||2?

» Assume that A is diagonizable and expand v, in the eigen-basis

— N U
CHIE A

w Assume a; # 0, ||uj||2 = 1 for all 5. Then:

(I = P)uillz < &iel™

where

ti=rx |2
B =5

) i ,
and ™" = min max|p(};)|

o { POD=1
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Approximate problem amounts to solving
O(Ax — Ax) =0, * € K orinoperatorform QAPz = Az
» Set A, = QAP

THEOREM. Lety = || Q(A—AI)(I—P)||2. Then the residual norms
of the pairs A\, Pu and \,u for the linear operator A,, satisfy,

respectively
|(Am — A Pull2 < y[|( — P)ull:

[(Am = ADullz < VA2 + 92 [[(T = P)ull2 -
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Particular case : = 1

» Assume: A(A)\{\.} is C an ellipse E(c, e, a).

Im(z)

Cc— c-e C Cct+e \ c+a
% ; % ~ Re(2)

Egm) S Cm—l}\(;_)
|G (752
where C,,,—; = Chebyshev polynomial of degree m — 1 of the £rst

kind.
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Harmonic Ritz values: Literature

e Morgan ’91 [Hermitian case]

e Freund '93 [Non-Hermitian case, Starting point: GMRES]
e Morgan 93 [Nonhermitian case]

e Paige, Parlett, Van der Vorst '95.

e Chapman & Y.S. '95. [use in Derated GMRES]

e Many publications in the 40s and 50s (Intermediate eigenvalue

problems, Lehman intervals, etc..)
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HARMONIC RITZ VALUES

Harmonic Ritz values (continued)

Main idea: |take L = AK in projection process

» In context of Arnoldi’s method. Write & = V,,,y then:
(A—XD)V,y L {AV,,}

Using AV,, =V, .1H,,, »
HEVHE Vo Hopy — AViyy| =0

Notation: H,, = H,,— last row. Then

ﬂgﬂmy — S\Hnlfy =0
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or
(HTI:l[Hm—i—h2 emeg)y = AHHy

m—+1,m

Remark: |

Assume H,, is nonsingular and multiply both sides by H#. Then,

the problem is equivalent to
(Hm iy zmeg) Yy = 5‘y
with z,, = han’mH;lHem.

» Modifed from H,, only in the last column.
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Davidson’s algorithm and two variants

DAVIDSON’s ALGORITHM. 1 DAVIDSON’S ALGORITHM. 2

Start: select v;. Start: select r.

Forj=1,...,mDo: Forj=1,...,mDo:
Update V" AV;. z=M""r
Compute Ritz pair @, A vj = ORTHN (z,V;_;)

Compute r = Ad — Au Compute w = Aw; and

z=M"1r Update V" AV;.
vj41 = ORTHN(z,Vj) Compute Ritz pair i, A
EndDo Compute r = A — Au
EndDo

w» Difference: start with a preconditioning operation instead of a

matvec. In general minor differences.

Implementation within Davidson framework

w Slight varation to standard Davidson: Introduce z; = M, 'r; to

subspace. Proceed as in FGMRES: v;; = Orthn(Az;, Vj).

» From Gram-Schmidt process:

Jj+1
AZJ‘ - 'Zl h,’j’vi
1=

» Hence the relation

AZm = Vm+1Hm
Approximation: A\, v = Z,,y
Galerkin Condition: » L AZ,, gives the generalized problem

HEH, y=XHIVE 7,y

m ~ m+1

Calais February 7, 2005

Calais February 7, 2005




HARMONIC DAVIDSON Relation with GMRES (Freund ’91)

Start: select r. Set v; = 7/||r||2.

Forj =1 m Do The Harmonic Ritz values are the roots of the ‘GMRES’ polyno-
2= M'r mial:
Compute w = Az; and Pm = iy epgfifplm):l = ll¥(A)roll»
vj+1 = ORTHN (w, Vj, h. ;);
Update G = ﬂfﬂj, and S = ﬂfVﬁle ; Proof. GMRES condition is:

Compute Ritz pair @, A :

R ﬁvl - Ame L {AVm}
Gy = ASy,u = Z;

Ym(A)vy L {AV,,}

Compute r = Ad — Au _
(A — )\,'I)mei € {AVm}

EndDo

» Same condition as that of Harmonic Ritz projection. » X; = Ritz

» Arnoldi part identical with that of FGMRES. . - o .
harmonic value, u; = V,,,y; = Ritz Harmonic vector.
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Harmonic values and interior eigenvalues Harmonic Ritz projection in the Hermitian Case

Let Z = A~'% and rewrite the condition [A — AIla L AK as: Order eigenvalues increasingly:
AN 'T—AY21L zelL A< A< <,
w» Orthogonal projection method for A—!. » Recall: Ritz values approximate eigenvalues of A inside out:

» | Note: This is NOT shift-and-invert in disguise|

w Space of approximants is the same as for standard projection. | 5\1 | j‘2 | | 5\;1—1 j‘n‘

» Interesting consequence for Hermitian case. w Defne: KO = {z € K | @ L dn,din, ... i1} (KO = K).

Then
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» Apply principle to Harmonic Ritz values » Alternative Projections
A AT A=A

— N> A<,

w Careful: treat positive and negative eigenvalues separately. Re- » Eigenvalue problems are really non-linear systems of equations..

sult: [Paige, Parlett, Van der Vorst '95] [ldea: £nd p such (A — pI)V is nearly rank-de£cient |

e AT 0 A A Leads to
S D N A — det[VH(A — pI)H(A — pI)V] =0
R T [V (A~ uD)™(A = pI)V]
Assume p = real. Using AV,, = V,,,1H —— quadratic problem
Assume for simplicity that A is SPD. . T )
(H) Hp, — p(Hy,, + H) + p’Iy =0
w Defne: KO ={z € K | Ax L A, Ady,...Ad; 1} (K® =
K). Then
5‘1'_1 = maXg ¢ k; (fﬁ,ﬂfi)
Calais February 7, 2005 Calais February 7, 2005

Alternative formulations » Markov - chain Pb. N = 1024; m = 15

F—k Restarted Arnoldi
v - -V Restarted Harmonic Krylov
©®—-—-¢  Restarted Krylov SVD

e det (VH(A — pI)V) = 0 — orthog. projection

e det ((AV)H(A — pI)V) = 0 — Harmonic projection °

=
5]

® 0min ((A — pI)V) = 0 — SVD projection

it
S)

Iog10 of residual

10 &O\XO ® i
Vg I VIV VVVYYVIVVVY
&

&
(RGN
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0~
A 3N 6 og.
<>\<>\<>
) <

10 I I I I I
0 5 10 15 20 25 30 35
Numbers of iterations

Calais February 7, 2005




CONVD(32,32),0.05,.1) - m = 10

*——*  Restarted Arnoldi
v - -V Restarted Harmonic Krylov
& ©®—-—-¢  Restarted Krylov SVD

Iog10 of residual
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; o
10°F 0000 E
900604
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Introduction via Newton’s metod

Assumptions: M = A+ Fand Az = uz

Goal: to £nd an improved eigenpair (u + 1, z + v).

w» Write A(z 4+ v) = (1 + n)(z + v) and neglect second order terms

+ rearrange w-

(M —pl)v —nz=—r with r=(A— pul)z
» Unknowns: n and v.
» Underdertermined system. Need one constraint.

» Add the condition: w®v = 0 for some vector w.



In matrix form:
M—pl —z)\(v —-r
( wh 0 )(n] :[ 0 )
» Eliminate v from second equation:

M — pl —z CAN —r
( 0 wH(M—uI)_lz)(n]_['wH(M—uI)_l'r)

» Solution: [Olsen’s method]

~ w(M — pI)™'r
C wH(M — pl)1z

n v=—(M — pI) ' (r — nz)

» When M = A, corresponds to Newton’s method for solving
(A=—AHu =0

wTu = Constant

The Jacobi-Davidson approach

» In orthogonal projection methods (e.g. Arnoldi) we have » L =z

» Also it is natural to take w = z. Assume ||z||. =1

With the above assumptions, Olsen’s correction equation is mathe-

matically equivalent to £nding v such that :

(I — zzB)(M — puI)(I — zzF)v = —r vlz

» Main attraction: can use iterative method for the solution of the
correction equation. (M -solves not explicitly required).
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Note: Another way to characterize the solution is:
v=—(M — pIl)~'r + n(M — uI)~'z, mnsuchthat wfv =0

» Involves inverse of (M — AI). Jacobi-Davidson rewrites solution

using projectors.
» Let P, be a projector in the direction of z which leaves r invariant.

It is of the form
H

where s L r. Similarly let P, any projector which leaves v in-

changed. Then the Olsen’s solution can be written as

[P.,(M — pl)Pylv = —r wlv =0

The two solutions are mathematically equivalent.
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Automatic Multi-Level Substructuring

Origin: Extention of substructuring for eigenvalue problems.

Background: Domain decomposition. Let A € C "*™, Hermitian

B
E*
Note: B is block-diagonal

— A = ( E] B € C (n—p)x(n—p)

» B= block-diagonal - represents local matrices -

» E represent coupling - C operates on interface variables.
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The problem Au = Au, can be written as:
B E)\ (aP U
J(5s) =
E* C ,aS ~ S
Basic idea of the method for two levels

u
First step: | eliminate the blocks E, E*.

I —-B7'E
v-|
0 I

B

~

B 0
]—»U*AU:[ J; S=C—-E*B'E.
0o S
Original problem is equivalent to U*AUu = AU*Uu —
B 0 I
PR B
0o S Ms
» with Mg =TI + E*B%E
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Then use this subspace for a Rayleigh-Ritz projection applied to

o ol =20

(Note: not the original problem.)

Final step: | exploit recursion —

NOTE: algorithm does only one shot of descent - ascent (no iterative

improvement).
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Second step: | neglect the coupling in right-hand side matrix:

(B 0 Bv=pv

I
ol e
0o S Mg

» Compute a few of the smallest eigenvalues of above problem.

Third step: | Build a’good’ subspace to approximate to eigenfunc-

tions of original problem. For projection, use basis the form

Sw =n Mgw

. CHN . 0} .
vi:( ) 1=1,...,mp; w; = J=1...,mg;,
0 wj

where mp < (n — p) and mg < p.
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Spectral Schur complements

» Can interpret AMLS in terms of Schur complements. Start with

B E)\(uP uB

5 ol =2

E* C)\u® u’

w For A ¢ A(B) defne S(A)=C —E*(B—-XI)"'E

When A ¢ A(B) then A € A(A) < X € A(S(N)), i.e., iff

SA\)u® = Au’

Observation: | The Schur complement problem solved by AMLS

can be viewed as the problem resulting from £rst order approxima-

tion of S(\) around A = 0. ,
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Approximating the eigenvectors

Let A, u5 be an eigenpair of the nonlinear eigenvalue problem i.e.,
such that: S(A\)u® = Au® Then, X is an eigenvalue of A with

associated eigenvector:
—(B—)\I)_lEuS) (I —(B—)\I)_lE]( 0 J
o I s
U\

US u

» AMLS approximates the exact prolongator U (\) by U (0) = U;

» It then adds approximate eigenvectors from B to construct a

subspace of approximants to perform a projection process.
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The standard expansion of the resolvent

(B—AI)"'=B"1'5 AB Y= 5 AkBF1,
k=0 k=0
around A = 0, leads to the series
S(A) =C—E*(B'+AB 24+ B 4...)E = S—k"z° MNE*B*E
=1
» Zeroth order approximation [~ shift-and-invert with zero shift]
Su® = Au®

» First order approximation [AMLS]
Su® = X(I + E*B2E)u’

» Second order approximation [See Bekas and YS '04]
SuS = A(I + E*B%2E + AE*B*E)u’
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» the space of approximants is spanned by the family of vectors:

[13/R e BT B

u~
J
in which v? are eigenvectors of B associated with the smallest eigen-

values

» When X is small, then U(\) = U(0) — some simple bounds can
obtained for the distance between this space of approximants and

exact eigenvectors of A.
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AN APPLICATION

Several approximations/theories used

» Born-Oppenheimer approximation: Neglects motion of nuclei [heav-

ier than electrons]

» Many electrons — one electron systems: each electron sees only

the average potential from other electrons/ nuclei.

Density Functional Theory: observable quantities uniquely deter-
mined by ground state charge density. Consequence: Kohn-Sham

equations
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Electronic structures and Shrodinger’s equation

» Determining matter’s electronic structure can be a major chal-

lenge: [a macroscopic amount contains ~ 1023 electrons and nuclei]

» Solution via the many-body Shroédinger equation:

HY = EV

» The Hamiltonian H is very complex:

o thvf Zh2v§+1 Z;Z;e? . Z;e? W1s e?
- i 2M; i 2m  2iyj |R,—R}| i,jlﬁi—ﬁl 24 |7 — 7]

» Involves sums over all electrons / nuclei and their pairs in terms
involving Laplaceans, distances betweens electrons /nuclei.
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Kohn-Sham:

h? 7! 0FE,.
—ﬂvz + vo(r) + / l:(_ 2/ldr' + 5p Y(r) = E¥(r)

» v, = external potential, E,. = exchange-correlation enery

» Local Density Approximation: exchange-correlation energy E,.

is a simple known funtion

» Pseudopotentials: replace effect of core (inner shell) electrons of

the system by an effective potential
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» In the end:
— 2 V2 o+ Virlp(r), 7]| (1) = B¥(r)
With
Viot = Vion + Vi + Vae

e Vi = Hartree potential
) ) » Local
e V.. = Exchange & Correlation potential

e V,,, = lonic potential » Non-Local

» Electron Density:
p(r) = =7 |®(r) 2

» Above problem can be viewed as a nonlinear eigenvalue problem.
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Self Consistency

L[4 V2 4 Vialp(r), ]| Wilr) = Bilti(r), i = 1, .y oo
2. p(r) =P |W(r)?
3. V2“/H — —47TP(7") — Vit = Vo + Ve + Vion

» Both V. and Vg, depend on p.

» The potentials and charge densities must be self-consistent: Can

be viewed as a nonlinear eigenvalue problem
» Preferred approach: Broyden-type quasi-Newton technique
» Typically, a small number of iterations are required

» Not represented above: time stepping. ,
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The three potential terms

» Hartree Potential Vg is solution of the Poisson equation:
ViVy = —4mp(r)

» Solve using Conjugate Gradient method once p is known.

» Potential V,. (exchange & correlation) is approximated by a po-
tential induced by a local density. [Local Density Approximation].

Valid for slowly varying p(r).

» Potential V;,, is more complex: In matrix terms: a small-rank

matrix localized around each atom.
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Resources

» ARPACK:
http://www.caam.rice.edu/software/ARPACK/indexold.html

» “Templates for the Solution of Algebraic Eigenvalue Problems: A
Practical Guide”, Zhaojun Bai, James Demmel, Jack Dongarra, Axel

Ruhe, and Henk van der Vorst, SIAM, 2000.
» Matrix Algorithms, Vol 2, G. W. Stewart, SIAM, 2001

» Numerical Methods for Large Eigenvalue Problems, Y. Saad, avail-

able from

http://www.cs.umn.edu/~saad/books.html
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e The slides for this talk can be downloaded from my web site:

URL: http://www.cs.umn.edu/~saad
e Follow the “Teaching” icon [w Calais lecture notes]

e Will include all matlab scripts used for demonstrations

e My e-mail address:

e-mail: saad@cs.umn.edu
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The Test — Durée: 20mn

1. | Quel nombre de couleurs trouveriez-vous si vous appliquiez

I'algorithme gourmand de coloriage a une matrice a 5 points [disc.

du Laplacien a 2-D - grille rectangulaire - point de depart = 1]

2. I Montrez les tableaux AA, JA, I A utilisés pour stocker la ma-

trice creuse suivante en format CSR (compressed sparse row)?
1 2 0 O

3 4 0 5
0 0 6 7
8 9 0 0

3. | Lalgorithme “steepest descent” converge-t-il quand A # AT?

Quel (s) algorithmes de projection a une dimension convergent tou-

jours quand A est telle que A + AT est SDP?

MERCI DE VOTRE ATTENTION!
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4, |A quelle methode de projection correspond I'algorithme du

gradient conjugué?

Quelles relations d’orthogonalite sont satisfaites par les residus
preconditiones z; de I'algorithme du gradient conjugue precondi-

tioné?

6. | Quelle est la matrice de preconditionnement SSOR (w = 1)

pour une matrice A quelconque?

7. |A quelle methode de projection correspond I'algorithme des

valeurs de Ritz harmoniques?

8. IQueIIe methode utiliseriez-vous pour calculer toutes les valeurs

propres d’'une matrice symmetrique dense ?
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