
A short course on:
Preconditioned Krylov subspace methods

Yousef Saad
University of Minnesota

Dept. of Computer Science and
Engineering

Universite du Littoral, Jan 19-30, 2005

1

Outline

Part 1

• Introd., discretization of PDEs

• Sparse matrices and sparsity

• Basic iterative methods (Relax-

ation..)

Part 2

• Projection methods

• Krylov subspace methods

Part 3

• Preconditioned iterations

• Preconditioning techniques

• Parallel implementations

Part 4

• Eigenvalue problems

• Applications –

Calais February 7, 2005 2

2

PROJECTION METHODS FOR LINEAR SYSTEMS

3

THE PROBLEM

We consider the linear system

Ax = b

where A is N ×N and can be

• Real symmetric positive definite

• Real nonsymmetric

• Complex

Focus: A is large and sparse, possibly with an irregular structure

Calais February 7, 2005 4

4

PROJECTION METHODS

Initial Problem: b−Ax = 0

Given two subspacesK andL of RN de£ne the approximate problem:

Find x̃ ∈ K such that b−Ax̃ ⊥ L

II Leads to a small linear system (‘projected problems’) This is a

basic projection step. Typically: sequence of such steps are applied

II With a nonzero initial guess x0, the approximate problem is

Find x̃ ∈ x0 +K such that b−Ax̃ ⊥ L

Write x̃ = x0 + δ and r0 = b−Ax0. Leads to a system for δ:

Find δ ∈ K such that r0 −Aδ ⊥ L

Calais February 7, 2005 5

5

Matrix representation:

Let
• V = [v1, . . . , vm] a basis of K &

•W = [w1, . . . , wm] a basis of L

Then letting x be the approximate solution x̃ = x0 + δ ≡ x0 + V y

where y is a vector of Rm, the Petrov-Galerkin condition yields,

W T (r0 −AV y) = 0

and therefore

x̃ = x0 + V [W TAV]−1W Tr0

Remark: In practice W TAV is known from algorithm and has a sim-

ple structure [tridiagonal, Hessenberg,..]

Calais February 7, 2005 6

6

PROTOTYPE PROJECTION METHOD

Until Convergence Do:

1. Select a pair of subspaces K, and L;

2. Choose bases V = [v1, . . . , vm] for K and W = [w1, . . . , wm]

for L.

3. Compute

r ← b−Ax,

y ← (W TAV)−1W Tr,

x← x+ V y.

Calais February 7, 2005 7

7

OPERATOR FORM REPRESENTATION

Let P be the orthogonal projector onto K and

Q the (oblique) projector onto K and orthogonally to L.

K

L

?

x

Pxª
Qx

The P andQ projectors

Px ∈ K, x− Px ⊥ K
Qx ∈ K, x−Qx ⊥ L

Calais February 7, 2005 8

8

Approximate problem amounts to solving

Q(b−Ax) = 0, x ∈ K

or in operator form

Q(b−APx) = 0

Question: what accuracy can one expect?

Let x∗ be the exact solution. Then

1) we cannot get better accuracy than ‖(I − P)x∗‖2, i.e.,

‖x̃− x∗‖2 ≥ ‖(I − P)x
∗‖2

2) the residual of the exact solution for the approximate problem satisfies:

‖b−QAPx∗‖2 ≤ ‖QA(I − P)‖2‖(I − P)x
∗‖2

Calais February 7, 2005 9

9

Two Important Particular Cases.

1. L = AK . Then ‖b−Ax̃‖2 = minz∈K ‖b−Az‖2

→ Class of Minimal Residual Methods: CR, GCR, ORTHOMIN,

GMRES, CGNR, ...

2. L = K → Class of Galerkin or Orthogonal projection methods.

When A is SPD then ‖x∗ − x̃‖A = minz∈K ‖x
∗ − z‖A.

Calais February 7, 2005 10

10

One-dimensional projection processes

K = span{d}
and

L = span{e}

Then x̃← x+ αd and Petrov-Galerkin condition r −Aδ ⊥ e yields

α = (r,e)
(Ad,e)

Three popular choices:

(I) Steepest descent. A is SPD. Take at each step d = r and e = r.

Iteration:
r ← b−Ax,
α← (r, r)/(Ar, r)
x← x+ αr

II Each step minimizes f(x) = ‖x− x∗‖2A = (A(x− x∗), (x− x∗))

in direction −∇f . Convergence guaranteed if A is SPD.
Calais February 7, 2005 11

11

(II) Residual norm steepest descent . A is arbitrary (nonsingular). Take

at each step d = ATr and e = Ad.

Iteration:
r ← b−Ax, d = ATr
α← ‖d‖22/‖Ad‖

2
2

x← x+ αd

II Each step minimizes f(x) = ‖b−Ax‖22 in direction −∇f .

II Important Note: equivalent to usual steepest descent applied to

normal equations ATAx = ATb .

II Converges under the condition that A is nonsingular.

Calais February 7, 2005 12

12

(III) Minimal residual iteration. A positive definite (A + AT is SPD).

Take at each step d = r and e = Ar.

Iteration:
r ← b−Ax,
α← (Ar, r)/(Ar,Ar)
x← x+ αr

II Each step minimizes f(x) = ‖b−Ax‖22 in direction r.

II Converges under the condition that A+AT is SPD.

Calais February 7, 2005 13

13

KRYLOV SUBSPACE METHODS

Principle: Projection methods on Krylov subspaces, i.e., on

Km(A, v1) = span{v1, Av1, · · · , Am−1v1}

• probably the most important class of iterative methods.

• many variants exist depending on the subspace L.

Simple properties of Km . Let µ = deg. of minimal polynomial of

v

•Km = {p(A)v|p = polynomial of degree ≤ m− 1}

•Km = Kµ for all m ≥ µ. Moreover, Kµ is invariant under A.

• dim(Km) = m iff µ ≥ m.
Calais February 7, 2005 14

14

A little review: Gram-Schmidt process

→ Goal: given X = [x1, . . . , xm] compute an orthonormal set Q =

[q1, . . . , qm] which spans the same susbpace.

ALGORITHM : 1 Classical Gram-Schmidt

1. For j = 1, ...,m Do:

2. Compute rij = (xj, qi) for i = 1, . . . , j − 1

3. Compute q̂j = xj −
∑j−1
i=1 rijqi

4. rjj = ‖q̂j‖2 If rjj == 0 exit

5. qj = q̂j/rjj

6. EndDo

Calais February 7, 2005 15

15

ALGORITHM : 2 Modified Gram-Schmidt

1. For j = 1, ...,m Do:

2. q̂j := xj

3. For i = 1, . . . , j − 1 Do

4. rij = (q̂j, qi)

5. q̂j := q̂j − rijqi

6. EndDo

7. rjj = ‖q̂j‖2. If rjj == 0 exit

8. qj := q̂j/rjj

9. EndDo

Calais February 7, 2005 16

16

Let:

X = [x1, . . . , xm] (n×m matrix)

Q = [q1, . . . , qm] (n×m matrix)

R = {rij} (m×m upper triangular matrix)

II At each step,

xj =
j
∑

i=1
rijqi

Result:

X = QR

Calais February 7, 2005 17

17

ARNOLDI’S ALGORITHM

II Goal: to compute an orthogonal basis of Km.

II Input: Initial vector v1, with ‖v1‖2 = 1 and m.

For j = 1, ...,m do

• Compute w := Avj

• for i = 1, . . . , j, do

hi,j := (w, vi)

w := w − hi,jvi

• hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j

Calais February 7, 2005 18

18

Vm

O

Hm =

Result of orthogonalization process (Arnoldi’s algorithm:)

1. Vm = [v1, v2, ..., vm] orthonormal basis of Km.

2. AVm = Vm+1Hm

3. V T
mAVm = Hm ≡ Hm− last row.

19

Arnoldi’s Method (Lm = Km)

From Petrov-Galerkin condition when Lm = Km, we get

xm = x0 + VmH
−1
m V T

mr0

If, in addition we choose v1 = r0/‖r0‖2 ≡ r0/β in Arnoldi’s algo-

rithm, then

xm = x0 + βVmH
−1
m e1

Several algorithms mathematically equivalent to this approach:

* FOM [Saad, 1981] (above formulation)

* Young and Jea’s ORTHORES [1982].

* Axelsson’s projection method [1981].
Calais February 7, 2005 20

20

Minimal residual methods (Lm = AKm)

When Lm = AKm, we let Wm ≡ AVm and obtain relation

xm = x0+Vm[W
T
mAVm]

−1W T
mr0 = x0+Vm[(AVm)

TAVm]
−1(AVm)

Tr0.

Use again v1 := r0/(β := ‖r0‖2) and the relation AVm = Vm+1H̄m:

xm = x0 + Vm[H̄
T
mH̄m]

−1H̄T
mβe1 = x0 + Vmym

where ym minimizes ‖βe1 − H̄my‖2 over y ∈ Rm. Therefore, (Gen-

eralized Minimal Residual method (GMRES) [Saad-Schultz, 1983]):

xm = x0 + Vmym where ym : miny ‖βe1 − H̄my‖2

Equivalent methods:
• Axelsson’s CGLS • Orthomin (1980)

• Orthodir • GCR
Calais February 7, 2005 21

21

Restarting and Truncating

Difficulty: Asm increases, storage and work per step increase fast.

First remedy: Restarting. Fix the dimension m of the subspace

ALGORITHM : 3 Restarted GMRES (resp. Arnoldi)

1. Start/Restart: Compute r0 = b−Ax0, and v1 = r0/(β := ‖r0‖2).

2. Arnoldi Process: generate H̄m and Vm.

3. Compute ym = H−1
m βe1 (FOM), or

ym = argmin‖βe1 − H̄my‖2 (GMRES)

4. xm = x0 + Vmym

5. If ‖rm‖2 ≤ ε‖r0‖2 stop else set x0 := xm and go to 1.

Calais February 7, 2005 22

22

Second remedy: Truncate the orthogonalization

The formula for vj+1 is replaced by

hj+1,jvj+1 = Avj −
j
∑

i=j−k+1
hijvi

→ each vj is made orthogonal to the previous k vi’s.

→ xm still computed as xm = x0 + VmH
−1
m βe1.

→ It can be shown that this is again an oblique projection process.

II IOM (Incomplete Orthogonalization Method) = replace orthogo-

nalization in FOM, by the above truncated (or ‘incomplete’) orthog-

onalization.
Calais February 7, 2005 23

23

The direct version of IOM [DIOM]:

Writing the LU decomposition of Hm as Hm = LmUm we get

xm = x0 + VmU−1
m L−1

m βe1 ≡ x0 + Pmzm

II Structure of Lm, Um when k = 3

Lm =

1

x 1

x 1

x 1

x 1

x 1

x 1

Um =

x x x

x x x

x x x

x x x

x x x

x x

x

24

pm = u−1mm[vm −
∑m−1
i=m−k+1 uimpi] zm =

zm−1

ζm

II Can update xm at each step:

xm = xm−1 + ζmpm

Note: Several existing pairs of methods have a similar link: they

are based on the LU, or other, factorizations of the Hm matrix

II CG-like formulation of IOM called DIOM [Saad, 1982]

II ORTHORES(k) [Young & Jea ’82] equivalent to DIOM(k)

II SYMMLQ [Paige and Saunders, ’77] uses LQ factorization of Hm.

II Can incorporate partial pivoting in LU factorization of Hm

Calais February 7, 2005 25

25

Some implementation details: GMRES

II Issue 1 : how to solve least-squares problem ?

II Issue 2: How to compute residual norm (without computing solu-

tion at each step)?

II Several solutions to both issues. Simplest: use Givens rotations.

II Recall: we want to solve least-squares problem

miny ‖βe1 −Hmy‖2

II Transform the problem into upper triangular one.

Calais February 7, 2005 26

26

II Rotation matrices of dimension m+ 1. Define (with s2i + c2i = 1):

Ωi =

1

. . .

1

ci si

−si ci

1

. . .

1

← row i

← row i+ 1

II Multiply H̄m and right-hand side ḡ0 ≡ βe1 by a sequence of such

matrices from the left. II si, ci selected to eliminate hi+1,i

Calais February 7, 2005 27

27

H̄5 =

h11 h12 h13 h14 h15

h21 h22 h23 h24 h25

h32 h33 h34 h35

h43 h44 h45

h54 h55

h65

, ḡ0 =

β

0

0

0

0

0

.

II 1-st Rotation

Ω1 =

c1 s1

−s1 c1

1

1

1

with

s1 =
h21

√

h211 + h221
, c1 =

h11
√

h211 + h221
Calais February 7, 2005 28

28

H̄(1)
m =

h
(1)
11 h

(1)
12 h

(1)
13 h

(1)
14 h

(1)
15

h
(1)
22 h

(1)
23 h

(1)
24 h

(1)
25

h32 h33 h34 h35

h43 h44 h45

h54 h55

h65

, ḡ1 =

c1β

−s1β

0

0

0

0

.

II repeat with Ω2, . . . , Ωi. Result:

H̄(5)
5 =

h
(5)
11 h

(5)
12 h

(5)
13 h

(5)
14 h

(5)
15

h
(5)
22 h

(5)
23 h

(5)
24 h

(5)
25

h
(5)
33 h

(5)
34 h

(5)
35

h
(5)
44 h

(5)
45

h
(5)
55

0

, ḡ5 =

γ1

γ2

γ3

.

.

γ6

.

29

Define

Qm = ΩmΩm−1 . . .Ω1

R̄m = H̄(m)
m = QmH̄m,

ḡm = Qm(βe1) = (γ1, . . . , γm+1)
T .

II Since Qm is unitary,

min ‖βe1 − H̄my‖2 = min ‖ḡm − R̄my‖2.

II Delete last row and solve resulting triangular system.

Rmym = gm

Calais February 7, 2005 30

30

PROPOSITION:

1. The rank of AVm is equal to the rank of Rm. In particular, if

rmm = 0 then A must be singular.

2. The vector ym which minimizes ‖βe1 − H̄my‖2 is given by

ym = R−1
m gm.

3. The residual vector at step m satisfies

b−Axm = Vm+1
(

βe1 − H̄mym
)

= Vm+1Q
T
m(γm+1em+1)

and, as a result,

‖b−Axm‖2 = |γm+1|.

Calais February 7, 2005 31

31

THE SYMMETRIC CASE: Observation

Observe: When A is real symmetric then in Arnoldi’s method:

Hm = V T
mAVm

must be symmetric. Therefore

Theorem. When Arnoldi’s algorithm is applied to a (real) symmetric

matrix then the matrix Hm is symmetric tridiagonal:

hij = 0 1 ≤ i < j−1; and hj,j+1 = hj+1,j, j = 1, . . . ,m

Calais February 7, 2005 32

32

II We can write

Hm =

α1 β2

β2 α2 β3

β3 α3 β4

. . .

. . .

βm αm

(1)

The vi’s satisfy a three-term recurrence [Lanczos Algorithm]:

βj+1vj+1 = Avj − αjvj − βjvj−1

→ simplified version of Arnoldi’s algorithm for sym. systems.

Symmetric matrix + Arnoldi→ Symmetric Lanczos

Calais February 7, 2005 33

33

The Lanczos algorithm

ALGORITHM : 4 Lanczos

1. Choose an initial vector v1 of norm unity. Set β1 ≡ 0, v0 ≡ 0

2. For j = 1, 2, . . . ,m Do:

3. wj := Avj − βjvj−1

4. αj := (wj, vj)

5. wj := wj − αjvj

6. βj+1 := ‖wj‖2. If βj+1 = 0 then Stop

7. vj+1 := wj/βj+1

8. EndDo

Calais February 7, 2005 34

34

Lanczos algorithm for linear systems

II Usual orthogonal projection method setting:

• Lm = Km = span{r0, Ar0, . . . , A
m−1r0}

• Basis Vm = [v1, . . . , vm] of Km generated by the Lanczos algo-

rithm

II Three different possible implementations.

(1) Arnoldi-like; (2) Exploit tridigonal nature of Hm (DIOM); (3) Con-

jugate gradient.

Calais February 7, 2005 35

35

ALGORITHM : 5 Lanczos Method for Linear Systems

1. Compute r0 = b−Ax0, β := ‖r0‖2, and v1 := r0/β

2. For j = 1, 2, . . . ,m Do:

3. wj = Avj − βjvj−1 (If j = 1 set β1v0 ≡ 0)

4. αj = (wj, vj)

5. wj := wj − αjvj

6. βj+1 = ‖wj‖2. If βj+1 = 0 set m := j and go to 9

7. vj+1 = wj/βj+1

8. EndDo

9. Set Tm = tridiag(βi, αi, βi+1), and Vm = [v1, . . . , vm].

10. Compute ym = T−1
m (βe1) and xm = x0 + Vmym

Calais February 7, 2005 36

36

ALGORITHM : 6 D-Lanczos

1. Compute r0 = b−Ax0, ζ1 := β := ‖r0‖2, and v1 := r0/β

2. Set λ1 = β1 = 0, p0 = 0

3. For m = 1, 2, . . ., until convergence Do:

4. Compute w := Avm − βmvm−1 and αm = (w, vm)

5. If m > 1 then compute λm = βm
ηm−1

and ζm = −λmζm−1

6. ηm = αm − λmβm

7. pm = η−1m (vm − βmpm−1)

8. xm = xm−1 + ζmpm

9. If xm has converged then Stop

10. w := w − αmvm

11. βm+1 = ‖w‖2, vm+1 = w/βm+1

12. EndDo

Calais February 7, 2005 37

37

The Conjugate Gradient Algorithm (A S.P.D.)

II Note: the pi’s are A-orthogonal

II The r′i’s are orthogonal.

II And we have xm = xm−1 + ξmpm

So there must be an update of the form:

1. pm = rm−1 + βmpm−1

2. xm = xm−1 + ξmpm

3. rm = rm−1 − ξmApm

Calais February 7, 2005 38

38

The Conjugate Gradient Algorithm (A S.P.D.)

1. Start: r0 := b−Ax0, p0 := r0.

2. Iterate: Until convergence do,

(a) αj := (rj, rj)/(Apj, pj)

(b) xj+1 := xj + αjpj

(c) rj+1 := rj − αjApj

(d) βj := (rj+1, rj+1)/(rj, rj)

(e) pj+1 := rj+1 + βjpj

• rj = scaling × vj+1. The rj’s are orthogonal.

• The pj’s are A-conjugate, i.e., (Api, pj) = 0 for i 6= j.
Calais February 7, 2005 39

39

METHODS BASED ON LANCZOS BIORTHOGONALIZATION

40

ALGORITHM : 7 The Lanczos Bi-Orthogonalization Procedure

1. Choose two vectors v1, w1 such that (v1, w1) = 1.

2. Set β1 = δ1 ≡ 0, w0 = v0 ≡ 0

3. For j = 1, 2, . . . ,m Do:

4. αj = (Avj, wj)

5. v̂j+1 = Avj − αjvj − βjvj−1

6. ŵj+1 = ATwj − αjwj − δjwj−1

7. δj+1 = |(v̂j+1, ŵj+1)|
1/2. If δj+1 = 0 Stop

8. βj+1 = (v̂j+1, ŵj+1)/δj+1

9. wj+1 = ŵj+1/βj+1

10. vj+1 = v̂j+1/δj+1

11. EndDo

Calais February 7, 2005 41

41

II Extension of the symmetric Lanczos algorithm

II Builds a pair of biorthogonal bases for the two subspaces

Km(A, v1) and Km(A
T , w1)

II Different ways to choose δj+1, βj+1 in lines 7 and 8.

Let

Tm =

α1 β2

δ2 α2 β3

. . .

δm−1 αm−1 βm

δm αm

.

II vi ∈ Km(A, v1) and wj ∈ Km(A
T , w1).

42

If the algorithm does not break down before step m, then

the vectors vi, i = 1, . . . ,m, and wj, j = 1, . . . ,m, are

biorthogonal, i.e.,

(vj, wi) = δij 1 ≤ i, j ≤ m .

Moreover, {vi}i=1,2,...,m is a basis of Km(A, v1) and

{wi}i=1,2,...,m is a basis of Km(AT , w1) and

AVm = VmTm + δm+1vm+1e
T
m,

ATWm =WmT
T
m + βm+1wm+1e

T
m,

W T
mAVm = Tm .

43

The Lanczos Algorithm for Linear Systems

ALGORITHM : 8 Lanczos Algorithm for Linear Systems

1. Compute r0 = b−Ax0 and β := ‖r0‖2

2. Run m steps of the nonsymmetric Lanczos Algorithm i.e.,

3. Start with v1 := r0/β, and any w1 such that (v1, w1) = 1

4. Generate the Lanczos vectors v1, . . . , vm, w1, . . . , wm

5. and the tridiagonal matrix Tm from Algorithm ??.

6. Compute ym = T−1
m (βe1) and xm := x0 + Vmym.

II BCG can be derived from the Lanczos Algorithm similarly to CG

in symmetric case.

Calais February 7, 2005 44

44

The BCG and QMR Algorithms

II Let Tm = LmUm (LU factorization of Tm). Define Pm = VmU
−1
m

Then, solution is

xm = x0+VmT
−1
m (βe1) = x0+VmU

−1
m L−1

m (βe1) = x0+PmL
−1
m (βe1)

II xm is updatable from xm−1 similar to the CG algorithm.

II rj and r∗j are in the same direction as vj+1 and wj+1 respectively.

II they form a biorthogonal sequence.

II The p∗i ’s pi’s are are A-conjugate.

II Utilizing this information, a CG-like algorithm can be easily de-

rived from the Lanczos procedure.

Calais February 7, 2005 45

45

ALGORITHM : 9 BiConjugate Gradient (BCG)

1. Compute r0 := b−Ax0. Choose r∗0 such that (r0, r∗0) 6= 0.

2. Set, p0 := r0, p∗0 := r∗0

3. For j = 0, 1, . . ., until convergence Do:,

4. αj := (rj, r
∗
j)/(Apj, p

∗
j)

5. xj+1 := xj + αjpj

6. rj+1 := rj − αjApj

7. r∗j+1 := r∗j − αjA
Tp∗j

8. βj := (rj+1, r
∗
j+1)/(rj, r

∗
j)

9. pj+1 := rj+1 + βjpj

10. p∗j+1 := r∗j+1 + βjp
∗
j

11. EndDo

Calais February 7, 2005 46

46

Quasi-Minimal Residual Algorithm

II The Lanczos algorithm gives the relations AVm = Vm+1T̄m with

T̄m = (m+ 1)×m tridiagonal matrix T̄m =

Tm

δm+1e
T
m

.

II Let v1 ≡ βr0 and x = x0 + Vmy. Residual norm ‖b−Ax‖2 is

‖r0 −AVmy‖2 = ‖βv1 − Vm+1T̄my‖2 = ‖Vm+1
(

βe1 − T̄my
)

‖2

II Column-vectors of Vm+1 are not orthonormal (6= GMRES).

II But: reasonable idea to minimize the function J(y) ≡ ‖βe1 − T̄my‖2

II Quasi-Minimal Residual Algorithm (Freund, 1990).

Calais February 7, 2005 47

47

ALGORITHM : 10 QMR

1. Compute r0 = b−Ax0 and γ0 := ‖r0‖2, w1 := v1 := r0/γ1

2. For m = 1, 2, . . . , until convergence Do:

3. Compute αm, δm+1 and vm+1, wm+1 as in Lanczos Algor. [alg. ??]

4. Update the QR factorization of T̄m, i.e.,

5. Apply Ωi, i = m− 2,m− 1 to the m-th column of T̄m

6. Compute the rotation coefficients cm, sm

7. Apply rotation Ωm, to T̄m and ḡm, i.e., compute:

8. γm+1 := −smγm; γm := cmγm; and αm := cmαm + smδm+1

9. pm =
(

vm −
∑m−1
i=m−2 timpi

)

/tmm

10. xm = xm−1 + γmpm

11. If |γm+1| is small enough Stop

12. EndDo

Calais February 7, 2005 48

48

Transpose-Free Variants

II BCG and QMR require a matrix-by-vector product with

A and AT at each step. The products with AT do not

contribute directly to xm. II They allow to determine the

scalars (αj and βj in BCG).

II QUESTION: is it possible to bypass the use of AT?

II Motivation: in nonlinear equations, A is often not available ex-

plicitly but via the Frechet derivative:

J(uk)v =
F (uk + εv)− F (uk)

ε
.

Calais February 7, 2005 49

49

Conjugate Gradient Squared

* Clever variant of BCG which avoids using AT [Sonneveld, 1984].

In BCG:

ri = ρi(A)r0

where ρi = polynomial of degree i.

In CGS:

ri = ρ2i (A)r0

Calais February 7, 2005 50

50

II Define rj = φj(A)r0, pj = πj(A)r0, r∗j = φj(A
T)r∗0, p∗j =

πj(A
T)r∗0.

Scalar αj in BCG is given by

αj =
(φj(A)r0, φj(A

T)r∗0)

(Aπj(A)r0, πj(AT)r∗0)
=

(φ2j(A)r0, r
∗
0)

(Aπ2j(A)r0, r
∗
0)

II Possible to get a recursion for the φ2j(A)r0 and π2j(A)r0?

φj+1(t) = φj(t)− αjtπj(t),

πj+1(t) = φj+1(t) + βjπj(t)

Square the equalities

φ2j+1(t) = φ2j(t)− 2αjtπj(t)φj(t) + α2jt
2π2j(t),

π2j+1(t) = φ2j+1(t) + 2βjφj+1(t)πj(t) + β2jπj(t)
2.

II Problem: Cross terms
Calais February 7, 2005 51

51

II Solution: Let φj+1(t)πj(t), be a third member of the recurrence.

For πj(t)φj(t), note:

φj(t)πj(t) = φj(t) (φj(t) + βj−1πj−1(t)) = φ2j(t)+βj−1φj(t)πj−1(t).

II Result:

φ2j+1 = φ2j − αjt
(

2φ2j + 2βj−1φjπj−1 − αjt π
2
j

)

φj+1πj = φ2j + βj−1φjπj−1 − αjt π
2
j

π2j+1 = φ2j+1 + 2βjφj+1πj + β2jπ
2
j .

II Define:

rj = φ2j(A)r0, pj = π2j(A)r0, qj = φj+1(A)πj(A)r0

Calais February 7, 2005 52

52

Recurrences become:

rj+1 = rj − αjA (2rj + 2βj−1qj−1 − αjA pj) ,

qj = rj + βj−1qj−1 − αjA pj,

pj+1 = rj+1 + 2βjqj + β2jpj.

Define auxiliary vector dj = 2rj + 2βj−1qj−1 − αjApj

II Sequence of operations to compute the approximate solution,

starting with r0 := b−Ax0, p0 := r0, q0 := 0, β0 := 0.

1. αj = (rj, r
∗
0)/(Apj, r

∗
0)

2. dj = 2rj +2βj−1qj−1−αjApj

3. qj = rj + βj−1qj−1 − αjApj

4. xj+1 = xj + αjdj

5. rj+1 = rj − αjAdj

6. βj = (rj+1, r
∗
0)/(rj, r

∗
0)

7. pj+1 = rj+1 + βj(2qj + βjpj).

Calais February 7, 2005 53

53

II one more auxiliary vector, uj = rj + βj−1qj−1. So

dj = uj + qj,

qj = uj − αjApj,

pj+1 = uj+1 + βj(qj + βjpj),

II vector dj is no longer needed.

Calais February 7, 2005 54

54

ALGORITHM : 11 Conjugate Gradient Squared

1. Compute r0 := b−Ax0; r∗0 arbitrary.

2. Set p0 := u0 := r0.

3. For j = 0, 1, 2 . . . , until convergence Do:

4. αj = (rj, r
∗
0)/(Apj, r

∗
0)

5. qj = uj − αjApj

6. xj+1 = xj + αj(uj + qj)

7. rj+1 = rj − αjA(uj + qj)

8. βj = (rj+1, r
∗
0)/(rj, r

∗
0)

9. uj+1 = rj+1 + βjqj

10. pj+1 = uj+1 + βj(qj + βjpj)

11. EndDo

55

II Note: no matrix-by-vector products with AT but two matrix-by-

vector products with A, at each step.

Vector: ←→ Polynomial in BCG :

qi ←→ r̄i(t)p̄i−1(t)

ui ←→ p̄2i (t)

ri ←→ r̄2i (t)

where r̄i(t) = residual polynomial at step i for BCG, .i.e., ri = r̄i(A)r0,

and p̄i(t) = conjugate direction polynomial at step i, i.e., pi = p̄i(A)r0.

56

BCGSTAB (van der Vorst, 1992)

II In CGS: residual polynomial of BCG is squared. II bad behavior

in case of irregular convergence.

II Bi-Conjugate Gradient Stabilized (BCGSTAB) = a variation of CGS

which avoids this difficulty. II Derivation similar to CGS.

II Residuals in BCGSTAB are of the form, r′j = ψj(A)φj(A)r0 in

which, φj(t) = BCG residual polynomial, and ..

II .. ψj(t) = a new polynomial defined recursively as

ψj+1(t) = (1− ωjt)ψj(t)

ωi chosen to ‘smooth’ convergence [steepest descent step]

Calais February 7, 2005 57

57

ALGORITHM : 12 BCGSTAB

1. Compute r0 := b−Ax0; r∗0 arbitrary;

2. p0 := r0.

3. For j = 0, 1, . . . , until convergence Do:

4. αj := (rj, r
∗
0)/(Apj, r

∗
0)

5. sj := rj − αjApj

6. ωj := (Asj, sj)/(Asj, Asj)

7. xj+1 := xj + αjpj + ωjsj

8. rj+1 := sj − ωjAsj

9. βj :=
(rj+1,r

∗
0)

(rj,r
∗
0)
×

αj

ωj

10. pj+1 := rj+1 + βj(pj − ωjApj)

11. EndDo

Calais February 7, 2005 58

58

THEORY

59

Convergence Theory for CG

II Approximation of the form x = x0 + pm−1(A)r0. with x0 = initial

guess, r0 = b−Ax0;

II Optimality property:

xm minimizes ‖x− x∗‖A over x0 +Km

II Consequence: Standard result

Let xm = m-th CG iterate, x∗ = exact solution and

η =
λmin

λmax − λmin

Then: ‖x∗ − xm‖A ≤
‖x∗ − x0‖A

Tm(1 + 2η)

where Tm = Chebyshev polynomial of degree m.
Calais February 7, 2005 60

60

THEORY FOR NONHERMITIAN CASE

II Much more difficult!

II No convincing results on ‘global convergence’ for many algorithms

(bi-CG, FOM, etc..)

II Can get a general a-priori – a-posteriori error bound

Calais February 7, 2005 61

61

Convergence results for nonsymmetric case

II Methods based on minimum residual better understood.

II If (A+AT) is positive definite ((Ax, x) > 0 ∀x 6= 0), all minimum

residual-type methods (ORTHOMIN, ORTHODIR, GCR, GMRES,...), +

their restarted and truncated versions, converge.

II Convergence results based on comparison with steepest descent

[Eisenstat, Elman, Schultz 1982]→ not sharp.

Minimum residual methods: if A = XΛX−1, Λ diagonal, then

‖b−Axm‖2 ≤ Cond2(X)minp∈Pm−1,p(0)=1 maxλ∈Λ(A)|p(λ)|

(Pm−1 ≡ set of polynomials of degree ≤ m − 1, Λ(A) ≡ spectrum

of A)
Calais February 7, 2005 62

62

Two useful projectors

Let P be the orthogonal projector onto K and

Q be the (oblique) projector onto K and orthogonally to L.

K

L

?

x

Pxª
Qx

Px ∈ K, x− Px ⊥ K
Qx ∈ K, x−Qx ⊥ L

Calais February 7, 2005 63

63

The approximate problem in terms of P and Q

II Approximate problem amounts to solving

Q(b−Ax) = 0, x ∈ K

or in operator form

Q(b−APx) = 0

Question: what accuracy can one expect?

II If x∗ is the exact solution, then we cannot get better accuracy

than ‖(I − P)x∗‖2, i.e.,

‖x̃− x∗‖2 ≥ ‖(I − P)x
∗‖2

64

THEOREM. Let γ = ‖QA(I−P)‖2 and assume that

b belongs toK. Then the residual norm of the exact

solution x∗ for the (approximate) linear operatorAm

satisfies the inequality,

‖b−Amx
∗‖2 ≤ γ‖(I − P)x

∗‖2

II In other words “if approximate problem is not poorly conditioned

and if ‖(I −P)x∗‖2 is small then we will obtain a good approximate

solution”.

Calais February 7, 2005 65

65

Methods based on the normal equations

It is possible to obtain the solution of Ax = b from the equivalent

system:

ATAx = ATb

or

AATy = b , x = ATy

II Methods based on these approaches are usually slower than pre-

vious ones. (Condition number of system is squared)

II Exception: when A is strongly indefinite (extreme case: A is

orthogonal, ATA = I → convergence in 1 step).

Calais February 7, 2005 66

66

CGNR and CGNE

Can use CG to solve normal equations. Two well-known options.

(1) CGNR: Conjugate Gradient method on

ATAx = ATb

(2) CGNE: Let x = ATy and use conjugate gradient method on

AATy = b

II Different optimality properties

II Various ‘efficient’ formulations in both cases

Calais February 7, 2005 67

67

ALGORITHM : 13 CGNR

1. Compute r0 = b−Ax0, z0 = ATr0, p0 = z0.

2. For i = 0, . . . , until convergence Do:

3. wi = Api

4. αi = ‖zi‖
2/‖wi‖

2
2

5. xi+1 = xi + αipi

6. ri+1 = ri − αiwi

7. zi+1 = ATri+1

8. βi = ‖zi+1‖
2
2/‖zi‖

2
2,

9. pi+1 = zi+1 + βipi

10. EndDo

Calais February 7, 2005 68

68

CGNR: The approximation xm minimizes the residual

norm ‖b−Ax‖2 over the affine Krylov subspace,

x0 + span{ATr0, (A
TA)ATr0, . . . , (A

TA)m−1ATr0},

where r0 ≡ b−Ax0.

II The difference with GMRES is the subspace in which the residual

norm is minimized. For GMRES the subspace is x0 +Km(A, r0).

Calais February 7, 2005 69

69

ALGORITHM : 14 CGNE (Craig’s Method)

1. Compute r0 = b−Ax0, p0 = ATr0.

2. For i = 0, 1, . . . , until convergence Do:

3. αi = (ri, ri)/(pi, pi)

4. xi+1 = xi + αipi

5. ri+1 = ri − αiApi

6. βi = (ri+1, ri+1)/(ri, ri)

7. pi+1 = ATri+1 + βipi

8. EndDo

Calais February 7, 2005 70

70

CGNE produces the approximate solution x in the subspace

x0 +ATKm(AA
T , r0) = x0 +Km(A

TA,ATr0) which minimizes

x∗ − x, where x∗ = A−1b, r0 = b−Ax0.

II Note: Same subspace as CGNR!

Calais February 7, 2005 71

71

Block GMRES and Block Krylov Methods

Main Motivation: To solve linear systems with several right-

hand sides

Ax(i) = b(i), i = 1, . . . , p

or, in matrix form,

AX = B

II Sometimes Block methods are used as a strategy for

enhancing convergence even for the case p = 1.

Let

R0 ≡ [r(1)0 , r
(2)
0 , . . . , r

(p)
0] .

each column is r(i)0 = b(i) −Ax
(i)
0 .

Krylov methods find an approximation to X from the subspace

72

Km(A,R0) = span{R0, AR0, . . . , A
m−1R0}

II For example Block-GMRES (BGMRES) £nds X to

minimize ‖B −AX‖F for X ∈ X0 +Km(A,R0)

II Various implementations of BGMRES exist

II Simplest one is based on Ruhe’s variant of the Block Arnoldi

procedure.

73

ALGORITHM : 15 Block Arnoldi–Ruhe’s variant

1. Choose p initial orthonormal vectors {vi}i=1,...,p.

2. For j = p, p+ 1, . . . ,m Do:

3. Set k := j − p+ 1;

4. Compute w := Avk;

5. For i = 1, 2, . . . , j Do:

6. hi,k := (w, vi)

7. w := w − hi,kvi

8. EndDo

9. Compute hj+1,k := ‖w‖2 and vj+1 := w/hj+1,k.

10. EndDo

74

II p = 1 coincides with standard Arnoldi process.

II Interesting feature: dimension of the subspace need not be a

multiple of the block-size p.

At the end of the algorithm, we have the relation

AVm = Vm+pH̄m.

II The matrix H̄m is now of size (m+ p)×m.

II Each approximate solution has the form

x(i) = x(i)0 + Vmy
(i),

where y(i) must minimize the norm ‖b(i) −Ax(i)‖2.

II Plane rotations can be used for this purpose as in the standard

GMRES [p rotations are needed for each step.]
Calais February 7, 2005 75

75

