A short course on: Preconditioned Krylov subspace methods

Yousef Saad University of Minnesota Dept. of Computer Science and Engineering

Universite du Littoral, Jan 19-30, 2005

Outline

Part 1

- Introd., discretization of PDEs
- Sparse matrices and sparsity
- Basic iterative methods (Relax-

ation..)

Part 2

- Projection methods
- Krylov subspace methods

Part 3

- Preconditioned iterations
- Preconditioning techniques
- Parallel implementations

Part 4

- Eigenvalue problems
- Applications –

2

PROJECTION METHODS FOR LINEAR SYSTEMS

THE PROBLEM

We consider the linear system

$$Ax = b$$

where A is $N \times N$ and can be

- Real symmetric positive definite
- Real nonsymmetric
- Complex

Focus: A is large and sparse, possibly with an irregular structure

PROJECTION METHODS

Initial Problem:
$$b - Ax = 0$$

Given two subspaces K and L of \mathbb{R}^N de£ne the <u>approximate problem</u>: Find $\tilde{x} \in K$ such that $b - A\tilde{x} \perp L$

► Leads to a small linear system ('projected problems') This is a basic projection step. Typically: sequence of such steps are applied

With a nonzero initial guess x_0 , the approximate problem is

Find $ilde{x} \in x_0 + K$ such that $b - A ilde{x} \perp L$

Write $\tilde{x} = x_0 + \delta$ and $r_0 = b - Ax_0$. Leads to a system for δ :

Find $\delta \in K$ such that $r_0 - A\delta \perp L$

Calais February 7, 2005

Matrix representation:

$$ullet V = [v_1, \dots, v_m]$$
 a basis of K &

$$ullet oldsymbol{W} = [w_1, \dots, w_m]$$
 a basis of L

Then letting x be the approximate solution $\tilde{x} = x_0 + \delta \equiv x_0 + Vy$ where y is a vector of \mathbb{R}^m , the Petrov-Galerkin condition yields,

$$W^T(r_0 - AVy) = 0$$

and therefore

Let

$$ilde{x} = x_0 + V [W^T A V]^{-1} W^T r_0$$

<u>Remark:</u> In practice $W^T A V$ is known from algorithm and has a simple structure [tridiagonal, Hessenberg,..]

PROTOTYPE PROJECTION METHOD

Until Convergence Do:

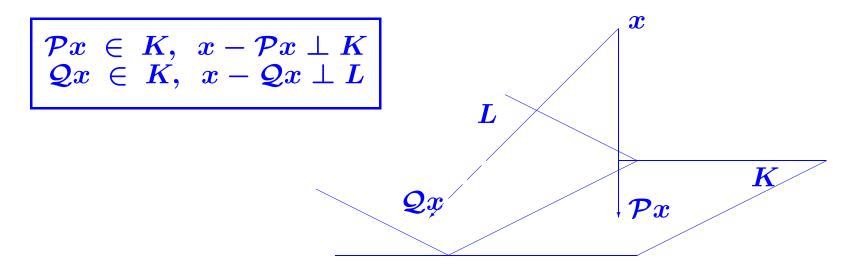
- **1.** Select a pair of subspaces K, and L;
- 2. Choose bases $V = [v_1, \ldots, v_m]$ for K and $W = [w_1, \ldots, w_m]$ for L.
- 3. Compute

 $egin{aligned} & r \leftarrow b - Ax, \ & y \leftarrow (W^TAV)^{-1}W^Tr, \ & x \leftarrow x + Vy. \end{aligned}$

OPERATOR FORM REPRESENTATION

Let \mathcal{P} be the orthogonal projector onto K and

Q the (oblique) projector onto K and orthogonally to L.



The ${\mathcal P}$ and ${\mathcal Q}$ projectors

Approximate problem amounts to solving

$$\mathcal{Q}(b-Ax)=0, \;\; x \;\; \in K$$

or in operator form

$$\mathcal{Q}(b-A\mathcal{P}x)=0$$

Question: what accuracy can one expect?

Let x^* be the exact solution. Then

1) we cannot get better accuracy than $\|(I - \mathcal{P})x^*\|_2$, i.e.,

$$\| ilde{x}-x^*\|_2\geq \|(I-\mathcal{P})x^*\|_2$$

2) the residual of the *exact solution* **for the** *approximate problem* **satisfies:**

$$\|b-\mathcal{Q}A\mathcal{P}x^*\|_2 \leq \|\mathcal{Q}A(I-\mathcal{P})\|_2\|(I-\mathcal{P})x^*\|_2$$

Two Important Particular Cases.

1. L = AK. Then $\|b - A\tilde{x}\|_2 = \min_{z \in K} \|b - Az\|_2$

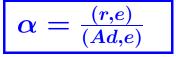
 \rightarrow Class of Minimal Residual Methods: CR, GCR, ORTHOMIN, GMRES, CGNR, ...

2. L = K \rightarrow Class of Galerkin or Orthogonal projection methods. When A is SPD then $\|x^* - \tilde{x}\|_A = \min_{z \in K} \|x^* - z\|_A$.

One-dimensional projection processes

 $K = span\{d\}$ and $L = span\{e\}$

Then $\tilde{x} \leftarrow x + \alpha d$ and Petrov-Galerkin condition $r - A\delta \perp e$ yields



Three popular choices:

(I) Steepest descent. A is SPD. Take at each step d = r and e = r.

 $\begin{array}{c|c} \textbf{lteration:} & r \leftarrow b - Ax, \\ \alpha \leftarrow (r, r) / (Ar, r) \\ x \leftarrow x + \alpha r \end{array}$

Each step minimizes $f(x) = \|x - x^*\|_A^2 = (A(x - x^*), (x - x^*))$

in direction $-\nabla f$. Convergence guaranteed if A is SPD. Calais February 7, 2005 (II) Residual norm steepest descent . A is arbitrary (nonsingular). Take

at each step $d = A^T r$ and e = Ad.

Iteration:
$$egin{array}{c} r \leftarrow b - Ax, d = A^T r \ lpha \leftarrow \|d\|_2^2 / \|Ad\|_2^2 \ x \leftarrow x + lpha d \end{array}$$

Each step minimizes $f(x) = \|b - Ax\|_2^2$ in direction $-\nabla f$.

Important Note: equivalent to usual steepest descent applied to normal equations $A^T A x = A^T b$.

Converges under the condition that *A* **is nonsingular.**

(III) <u>Minimal residual iteration</u>. A positive definite $(A + A^T \text{ is SPD})$. Take at each step d = r and e = Ar.

Iteration:
$$r \leftarrow b - Ax,$$

 $\alpha \leftarrow (Ar, r)/(Ar, Ar)$
 $x \leftarrow x + \alpha r$

Each step minimizes $f(x) = \|b - Ax\|_2^2$ in direction r.

\blacktriangleright Converges under the condition that $A + A^T$ is SPD.

KRYLOV SUBSPACE METHODS

Principle: Projection methods on Krylov subspaces, i.e., on

$$K_m(A,v_1)= extsf{span}\{v_1,Av_1,\cdots,A^{m-1}v_1\}$$

- probably the most important class of iterative methods.
- many variants exist depending on the subspace L.

Simple properties of K_m . Let $\mu = \deg$. of minimal polynomial of v

- $K_m = \{p(A)v | p = \text{polynomial of degree} \le m-1\}$
- $K_m = K_\mu$ for all $m \ge \mu$. Moreover, K_μ is invariant under A.
- $ullet dim(K_m)=m ext{ iff } \mu \geq m.$

Calais February 7, 2005

A little review: Gram-Schmidt process

ightarrow Goal: given $X=[x_1,\ldots,x_m]$ compute an orthonormal set $Q=[q_1,\ldots,q_m]$ which spans the same susbpace.

ALGORITHM : 1 . Classical Gram-Schmidt

- 1. For j = 1, ..., m Do:
- 2. Compute $r_{ij} = (x_j, q_i)$ for $i = 1, \ldots, j-1$
- 3. Compute $\hat{q}_j = x_j \sum_{i=1}^{j-1} r_{ij} q_i$

4.
$$r_{jj} = \|\hat{q}_j\|_2$$
 If $r_{jj} == 0$ exit

- 5. $q_j = \hat{q}_j/r_{jj}$
- 6. EndDo

ALGORITHM : 2 Modified Gram-Schmidt

- 1. For j = 1, ..., m Do:
- $2. \quad \hat{q}_j := x_j$
- 3. For i = 1, ..., j 1 Do

4. $r_{ij}=(\hat{q}_j,q_i)$

- $\hat{q}_j := \hat{q}_j r_{ij}q_i$
- 6. EndDo

7.
$$r_{jj} = \|\hat{q}_j\|_2$$
. If $r_{jj} == 0$ exit

- 8. $q_j := \hat{q}_j / r_{jj}$
- 9. EndDo

Let:

- $X = [x_1, \ldots, x_m]$ (n imes m matrix)
- $Q = [q_1, \dots, q_m]$ (n imes m matrix)
- $R = \{r_{ij}\}$ (m imes m upper triangular matrix)

▶ At each step,

$$x_j = \sum \limits_{i=1}^j r_{ij} q_i$$

Result:

$$X = QR$$

ARNOLDI'S ALGORITHM

b Goal: to compute an orthogonal basis of K_m .

IDENTIFY and Provide Arrow IDENTIFY and ProvideArrow IDENTIFY and ProvideArrow IDENTIFY and ProvideA

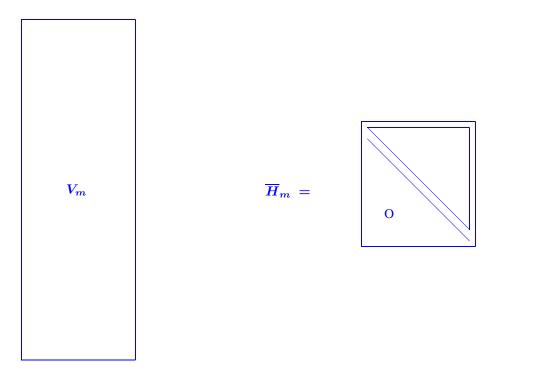
For j=1,...,m do

• Compute $w := Av_j$

$$ullet$$
 for $i=1,\ldots,j,$ do $egin{cases} h_{i,j}:=(w,v_i)\ w:=w-h_{i,j}v_i \end{cases}$

• $h_{j+1,j} = \|w\|_2$ and $v_{j+1} = w/h_{j+1,j}$

Calais February 7, 2005



Result of orthogonalization process (Arnoldi's algorithm:)

- **1.** $V_m = [v_1, v_2, ..., v_m]$ orthonormal basis of K_m .
- **2.** $AV_m = V_{m+1}\overline{H}_m$
- 3. $V_m^T A V_m = H_m \equiv \overline{H}_m \text{last row.}$

Arnoldi's Method $(L_m = K_m)$

From Petrov-Galerkin condition when $L_m = K_m$, we get

$$x_m = x_0 + V_m H_m^{-1} V_m^T r_0$$

If, in addition we choose $v_1 = r_0/\|r_0\|_2 \equiv r_0/eta$ in Arnoldi's algorithm, then

$$x_m=x_0+eta V_m H_m^{-1}e_1$$

Several algorithms mathematically equivalent to this approach:

- * FOM [Saad, 1981] (above formulation)
- * Young and Jea's ORTHORES [1982].
- * Axelsson's projection method [1981].

Minimal residual methods $(L_m = AK_m)$

When $L_m = AK_m$, we let $W_m \equiv AV_m$ and obtain relation

 $x_m = x_0 + V_m [W_m^T A V_m]^{-1} W_m^T r_0 = x_0 + V_m [(A V_m)^T A V_m]^{-1} (A V_m)^T r_0.$

Use again $v_1 := r_0/(eta := \|r_0\|_2)$ and the relation $|AV_m = V_{m+1}H_m|$:

$$x_m = x_0 + V_m [ar{H}_m^T ar{H}_m]^{-1} ar{H}_m^T eta e_1 = x_0 + V_m y_m$$

where y_m minimizes $\|\beta e_1 - \overline{H}_m y\|_2$ over $y \in \mathbb{R}^m$. Therefore, (Generalized Minimal Residual method (GMRES) [Saad-Schultz, 1983]):

 $x_m = x_0 + V_m y_m$ where $y_m : \min_y \|eta e_1 - ar H_m y\|_2$

Difficulty: As *m* increases, storage and work per step increase fast.

First remedy: Restarting. Fix the dimension m of the subspace

ALGORITHM : 3 • Restarted GMRES (resp. Arnoldi)

- 1. Start/Restart: Compute $r_0 = b Ax_0$, and $v_1 = r_0/(\beta := \|r_0\|_2)$.
- **2.** Arnoldi Process: generate \overline{H}_m and V_m .
- 3. Compute $y_m = H_m^{-1} eta e_1$ (FOM), or

 $y_m = argmin \|eta e_1 - ar{H}_m y\|_2$ (GMRES)

4. $x_m = x_0 + V_m y_m$

5. If $||r_m||_2 \leq \epsilon ||r_0||_2$ stop else set $x_0 := x_m$ and go to 1.

Second remedy: Truncate the orthogonalization

The formula for v_{j+1} is replaced by

$$h_{j+1,j}v_{j+1}=Av_j-\sum\limits_{i=j-k+1}^jh_{ij}v_i$$

 \rightarrow each v_j is made orthogonal to the previous $k v_i$'s.

 $ightarrow x_m$ still computed as $x_m = x_0 + V_m H_m^{-1} eta e_1$.

 \rightarrow It can be shown that this is again an oblique projection process.

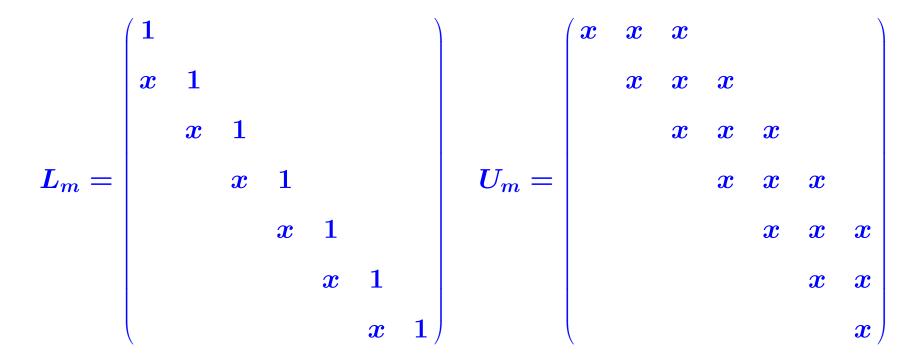
IOM (Incomplete Orthogonalization Method) = replace orthogonalization in FOM, by the above truncated (or 'incomplete') orthogonalization.

The direct version of IOM [DIOM]:

Writing the LU decomposition of H_m as $H_m = L_m U_m$ we get

 $x_m = x_0$ + $\left| oldsymbol{V}_m U_m^{-1}
ight| \left| oldsymbol{L}_m^{-1} eta e_1
ight| \equiv x_0 + P_m z_m$

Structure of L_m, U_m when k = 3



$$p_m = u_{mm}^{-1} [v_m - {\scriptscriptstyle \Sigma}_{i=m-k+1}^{m-1} u_{im} p_i] \qquad z_m = egin{bmatrix} z_{m-1} \ \zeta_m \end{bmatrix}$$

Can update x_m at each step:

$$x_m = x_{m-1} + \zeta_m p_m$$

Note: Several existing pairs of methods have a similar link: they are based on the LU, or other, factorizations of the H_m matrix

- **CG-like formulation of IOM called DIOM [Saad, 1982]**
- ORTHORES(k) [Young & Jea '82] equivalent to DIOM(k)
- **SYMMLQ** [Paige and Saunders, '77] uses LQ factorization of H_m .
- **\blacktriangleright** Can incorporate partial pivoting in LU factorization of H_m

Some implementation details: GMRES

▶ Issue 1 : how to solve least-squares problem ?

Issue 2: How to compute residual norm (without computing solution at each step)?

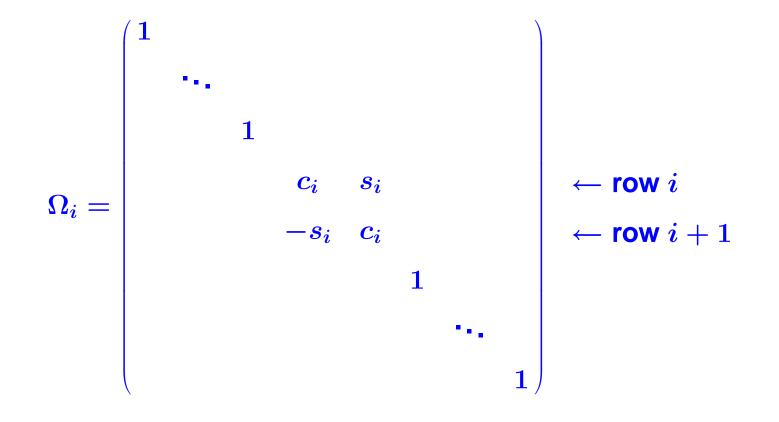
Several solutions to both issues. Simplest: use Givens rotations.

Recall: we want to solve least-squares problem

 $\min_y \|eta e_1 - \overline{H}_m y\|_2$

Transform the problem into upper triangular one.

▶ Rotation matrices of dimension m + 1. Define (with $s_i^2 + c_i^2 = 1$):



Multiply \overline{H}_m and right-hand side $\overline{g}_0 \equiv \beta e_1$ by a sequence of such matrices from the left. $\triangleright s_i, c_i$ selected to eliminate $h_{i+1,i}$

$$\bar{H}_{5} = \begin{pmatrix} h_{11} & h_{12} & h_{13} & h_{14} & h_{15} \\ h_{21} & h_{22} & h_{23} & h_{24} & h_{25} \\ h_{32} & h_{33} & h_{34} & h_{35} \\ h_{43} & h_{44} & h_{45} \\ & & h_{54} & h_{55} \\ & & & h_{65} \end{pmatrix}, \quad \bar{g}_{0} = \begin{pmatrix} \beta \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

$$\bullet \text{ 1-st Rotation}$$

$$\Omega_{1} = \begin{pmatrix} c_{1} & s_{1} \\ -s_{1} & c_{1} \\ & & 1 \\ & & & 1 \\ & & & 1 \end{pmatrix}$$
with
$$s_{1} = \frac{h_{21}}{\sqrt{h_{11}^{2} + h_{21}^{2}}}, \quad c_{1} = \frac{h_{11}}{\sqrt{h_{11}^{2} + h_{21}^{2}}}$$
Calais February 7, 2005

$$ar{H}_m^{(1)} = egin{pmatrix} h_{11}^{(1)} & h_{12}^{(1)} & h_{13}^{(1)} & h_{14}^{(1)} & h_{15}^{(1)} \ & h_{22}^{(1)} & h_{23}^{(1)} & h_{24}^{(1)} & h_{25}^{(1)} \ & h_{32} & h_{33} & h_{34} & h_{35} \ & & h_{43} & h_{44} & h_{45} \ & & & h_{54} & h_{55} \ & & & & h_{65} \ \end{pmatrix}, egin{pmatrix} ar{g}_1 = egin{pmatrix} c_1eta \ -s_1eta \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ \end{pmatrix}.$$

repeat with $\Omega_2, \ldots, \Omega_i$. Result:

Define

$$egin{aligned} Q_m &= \ \Omega_m \Omega_{m-1} \dots \Omega_1 \ ar{R}_m &= ar{H}_m^{(m)} = Q_m ar{H}_m, \ ar{g}_m &= \ Q_m (eta e_1) = (\gamma_1, \dots, \gamma_{m+1})^T. \end{aligned}$$

Since Q_m is unitary,

$$\min \|eta e_1 - ar{H}_m y\|_2 = \min \|ar{g}_m - ar{R}_m y\|_2.$$

Delete last row and solve resulting triangular system.

 $R_m y_m = g_m$

30

PROPOSITION:

- 1. The rank of AV_m is equal to the rank of R_m . In particular, if $r_{mm} = 0$ then A must be singular.
- 2. The vector y_m which minimizes $\|eta e_1 ar{H}_m y\|_2$ is given by

$$y_m = R_m^{-1}g_m.$$

3. The residual vector at step m satisfies

$$b - Ax_m = V_{m+1} \left(eta e_1 - ar{H}_m y_m
ight) = V_{m+1} Q_m^T (\gamma_{m+1} e_{m+1})$$

and, as a result,

$$\|b - Ax_m\|_2 = |\gamma_{m+1}|.$$

THE SYMMETRIC CASE: Observation

Observe: When *A* is real symmetric then in Arnoldi's method:

$$H_m = V_m^T A V_m$$

must be symmetric. Therefore

Theorem. When Arnoldi's algorithm is applied to a (real) symmetric matrix then the matrix H_m is symmetric tridiagonal:

 $h_{ij} = 0 \quad 1 \leq i < j - 1;$ and $h_{j,j+1} = h_{j+1,j}, \quad j = 1, \dots, m$

The v_i 's satisfy a three-term recurrence [Lanczos Algorithm]:

$$eta_{j+1}v_{j+1}=Av_j-lpha_jv_j-eta_jv_{j-1}$$

 \rightarrow simplified version of Arnoldi's algorithm for sym. systems.

Symmetric matrix + Arnoldi \rightarrow Symmetric Lanczos

(1)

The Lanczos algorithm

ALGORITHM : 4 Lanczos

- 1. Choose an initial vector v_1 of norm unity. Set $\beta_1 \equiv 0, v_0 \equiv 0$
- **2.** For j = 1, 2, ..., m Do:

3.
$$w_j := Av_j - \beta_j v_{j-1}$$

$$\textbf{4.} \quad \alpha_j := (w_j, v_j)$$

$$5. w_j := w_j - \alpha_j v_j$$

6. $eta_{j+1} := \|w_j\|_2$. If $eta_{j+1} = 0$ then Stop

7.
$$v_{j+1}:=w_j/eta_{j+1}$$

8. EndDo

Lanczos algorithm for linear systems

Usual orthogonal projection method setting:

$$ullet L_m = K_m = span\{r_0, Ar_0, \dots, A^{m-1}r_0\}$$

- Basis $V_m = [v_1, \dots, v_m]$ of K_m generated by the Lanczos algorithm
- **Three different possible implementations.**

(1) Arnoldi-like; (2) Exploit tridigonal nature of H_m (DIOM); (3) Conjugate gradient.

ALGORITHM : 5 Lanczos Method for Linear Systems

- 1. Compute $r_0 = b Ax_0$, $eta := \|r_0\|_2$, and $v_1 := r_0/eta$
- **2.** For j = 1, 2, ..., m Do:
- 3. $w_j = Av_j eta_j v_{j-1}$ (If j = 1 set $eta_1 v_0 \equiv 0$)
- 4. $\alpha_j = (w_j, v_j)$
- $5. w_j := w_j \alpha_j v_j$
- 6. $eta_{j+1} = \|w_j\|_2$. If $eta_{j+1} = 0$ set m := j and go to 9

7.
$$v_{j+1} = w_j/eta_{j+1}$$

8. EndDo

9. Set $T_m = tridiag(\beta_i, \alpha_i, \beta_{i+1})$, and $V_m = [v_1, \ldots, v_m]$.

10. Compute $y_m = T_m^{-1}(eta e_1)$ and $x_m = x_0 + V_m y_m$

ALGORITHM : 6 D-Lanczos

1. Compute $r_0 = b - Ax_0$, $\zeta_1 := eta := \|r_0\|_2$, and $v_1 := r_0/eta$

2. Set
$$\lambda_1 = eta_1 = 0$$
, $p_0 = 0$

- 3. For $m = 1, 2, \ldots$, until convergence Do:
- 4. Compute $w := Av_m \beta_m v_{m-1}$ and $\alpha_m = (w, v_m)$
- 5. If m > 1 then compute $\lambda_m = \frac{\beta_m}{\eta_{m-1}}$ and $\zeta_m = -\lambda_m \zeta_{m-1}$

$$\boldsymbol{6.} \quad \boldsymbol{\eta}_m = \boldsymbol{\alpha}_m - \boldsymbol{\lambda}_m \boldsymbol{\beta}_m$$

7.
$$p_m = \eta_m^{-1} (v_m - \beta_m p_{m-1})$$

8.
$$x_m = x_{m-1} + \zeta_m p_m$$

9. If x_m has converged then Stop

10.
$$w := w - \alpha_m v_m$$

11.
$$eta_{m+1} = \|w\|_2$$
, $v_{m+1} = w/eta_{m+1}$

12. EndDo

The Conjugate Gradient Algorithm (A S.P.D.)

- **Note: the** p_i 's are A-orthogonal
- **The** r''_i s are orthogonal.

 \blacktriangleright And we have $x_m = x_{m-1} + \xi_m p_m$

So there must be an update of the form:

1. $p_m = r_{m-1} + eta_m p_{m-1}$ 2. $x_m = x_{m-1} + \xi_m p_m$ 3. $r_m = r_{m-1} - \xi_m A p_m$

The Conjugate Gradient Algorithm (A S.P.D.)

1. Start:
$$r_0 := b - Ax_0$$
, $p_0 := r_0$.

2. Iterate: Until convergence do,

(a) $\alpha_j := (r_j, r_j)/(Ap_j, p_j)$ (b) $x_{j+1} := x_j + \alpha_j p_j$ (c) $r_{j+1} := r_j - \alpha_j Ap_j$ (d) $\beta_j := (r_{j+1}, r_{j+1})/(r_j, r_j)$ (e) $p_{j+1} := r_{j+1} + \beta_j p_j$

• $r_j = scaling imes v_{j+1}$. The r_j 's are orthogonal.

• The p_j 's are A-conjugate, i.e., $(Ap_i, p_j) = 0$ for $i \neq j$. Calais February 7, 2005

METHODS BASED ON LANCZOS BIORTHOGONALIZATION

ALGORITHM : 7 The Lanczos Bi-Orthogonalization Procedure

1. Choose two vectors v_1, w_1 such that $(v_1, w_1) = 1$.

2. Set
$$eta_1=\delta_1\equiv 0$$
, $w_0=v_0\equiv 0$

3. For
$$j = 1, 2, ..., m$$
 Do:

4. $\alpha_j = (Av_j, w_j)$

5.
$$\hat{v}_{j+1} = Av_j - \alpha_j v_j - \beta_j v_{j-1}$$

$$\hat{w}_{j+1} = A^T w_j - \alpha_j w_j - \delta_j w_{j-1}$$

7.
$$\delta_{j+1} = |(\hat{v}_{j+1}, \hat{w}_{j+1})|^{1/2}$$
. If $\delta_{j+1} = 0$ Stop

8.
$$eta_{j+1} = (\hat{v}_{j+1}, \hat{w}_{j+1}) / \delta_{j+1}$$

9.
$$w_{j+1} = \hat{w}_{j+1} / eta_{j+1}$$

10.
$$v_{j+1} = \hat{v}_{j+1} / \delta_{j+1}$$

11. EndDo

Extension of the symmetric Lanczos algorithm

Builds a pair of biorthogonal bases for the two subspaces

 $\mathcal{K}_m(A,v_1) \hspace{0.2cm} ext{and} \hspace{0.2cm} \mathcal{K}_m(A^T,w_1)$

b Different ways to choose $\delta_{j+1}, \beta_{j+1}$ in lines 7 and 8.

Let

$$T_m = egin{pmatrix} lpha_1 & eta_2 & & & \ \delta_2 & lpha_2 & eta_3 & & \ & \ddots & \ddots & \ & & \delta_{m-1} & lpha_{m-1} & eta_m & \ & & & \delta_m & lpha_m \end{pmatrix} .$$

 $\blacktriangleright v_i \in \mathcal{K}_m(A,v_1)$ and $w_j \in \mathcal{K}_m(A^T,w_1)$.

If the algorithm does not break down before step m, then the vectors $v_i, i = 1, \ldots, m$, and $w_j, j = 1, \ldots, m$, are biorthogonal, i.e.,

$$(v_j,w_i)=\delta_{ij} \hspace{1em} 1\leq i, \hspace{1em} j\leq m \; .$$

Moreover, $\{v_i\}_{i=1,2,...,m}$ is a basis of $\mathcal{K}_m(A,v_1)$ and $\{w_i\}_{i=1,2,...,m}$ is a basis of $\mathcal{K}_m(A^T,w_1)$ and

$$egin{aligned} & AV_m = V_m T_m + \delta_{m+1} v_{m+1} e_m^T, \ & A^T W_m = W_m T_m^T + eta_{m+1} w_{m+1} e_m^T, \ & W_m^T A V_m = T_m ~~. \end{aligned}$$

The Lanczos Algorithm for Linear Systems

ALGORITHM : 8 Lanczos Algorithm for Linear Systems

- 1. Compute $r_0 = b Ax_0$ and $eta := \|r_0\|_2$
- 2. Run m steps of the nonsymmetric Lanczos Algorithm i.e.,
- 3. Start with $v_1 := r_0/\beta$, and any w_1 such that $(v_1, w_1) = 1$
- 4. Generate the Lanczos vectors v_1, \ldots, v_m , w_1, \ldots, w_m
- 5. and the tridiagonal matrix T_m from Algorithm ??.
- 6. Compute $y_m = T_m^{-1}(\beta e_1)$ and $x_m := x_0 + V_m y_m$.

BCG can be derived from the Lanczos Algorithm similarly to CG in symmetric case.

The BCG and QMR Algorithms

Let $T_m = L_m U_m$ (*LU* factorization of T_m). Define $P_m = V_m U_m^{-1}$ Then, solution is

 $x_m = x_0 + V_m T_m^{-1}(eta e_1) = x_0 + V_m U_m^{-1} L_m^{-1}(eta e_1) = x_0 + P_m L_m^{-1}(eta e_1)$

 $\blacktriangleright x_m$ is updatable from x_{m-1} similar to the CG algorithm.

▶ r_j and r_j^{*} are in the same direction as v_{j+1} and w_{j+1} respectively.
 ▶ they form a biorthogonal sequence.

The p_i^* 's p_i 's are are A-conjugate.

Utilizing this information, a CG-like algorithm can be easily derived from the Lanczos procedure.

ALGORITHM : 9 BiConjugate Gradient (BCG)

1. Compute $r_0 := b - Ax_0$. Choose r_0^* such that $(r_0, r_0^*) \neq 0$.

2. Set,
$$p_0:=r_0$$
, $p_0^*:=r_0^*$

3. For j = 0, 1, ..., until convergence Do:,

4.
$$\alpha_j := (r_j, r_j^*)/(Ap_j, p_j^*)$$

5. $x_{j+1} := x_j + \alpha_j p_j$

$$\textbf{6.} \quad r_{j+1}:=r_j-\alpha_jAp_j$$

- 7. $r_{j+1}^* := r_j^* \alpha_j A^T p_j^*$
- 8. $\beta_j := (r_{j+1}, r_{j+1}^*)/(r_j, r_j^*)$
- 9. $p_{j+1}:=r_{j+1}+eta_jp_j$
- 10. $p_{j+1}^* := r_{j+1}^* + eta_j p_j^*$
- 11. EndDo

Quasi-Minimal Residual Algorithm

▶ The Lanczos algorithm gives the relations $AV_m = V_{m+1}\bar{T}_m$ with $\bar{T}_m = (m+1) \times m$ tridiagonal matrix $\bar{T}_m = \begin{pmatrix} T_m \\ \delta_{m+1}e_m^T \end{pmatrix}$.

▶ Let $v_1 \equiv \beta r_0$ and $x = x_0 + V_m y$. Residual norm $\|b - Ax\|_2$ is

$$\|m{r}_0 - m{A}m{V}_mm{y}\|_2 = \|m{eta}m{v}_1 - m{V}_{m+1}ar{m{T}}_mm{y}\|_2 = \|m{V}_{m+1}ig(m{eta}m{e}_1 - ar{m{T}}_mm{y}ig)\|_2$$

- **b** Column-vectors of V_{m+1} are not orthonormal (\neq GMRES).
- **b** But: reasonable idea to minimize the function $J(y) \equiv \|eta e_1 \bar{T}_m y\|_2$
- Quasi-Minimal Residual Algorithm (Freund, 1990).

ALGORITHM : 10 . QMR

1. Compute $r_0 = b - Ax_0$ and $\gamma_0 := \|r_0\|_2$, $w_1 := v_1 := r_0/\gamma_1$

- 2. For $m = 1, 2, \ldots$, until convergence Do:
- 3. Compute α_m, δ_{m+1} and v_{m+1}, w_{m+1} as in Lanczos Algor. [alg. ??]
- 4. Update the QR factorization of \overline{T}_m , i.e.,
- 5. Apply Ω_i , i = m 2, m 1 to the *m*-th column of \overline{T}_m
- 6. Compute the rotation coefficients c_m , s_m
- 7. Apply rotation Ω_m , to \overline{T}_m and \overline{g}_m , i.e., compute:

8.
$$\gamma_{m+1}:=-s_m\gamma_m$$
; $\gamma_m:=c_m\gamma_m$; and $lpha_m:=c_mlpha_m+s_m\delta_{m+1}$

9.
$$p_m = \left(v_m - \sum_{i=m-2}^{m-1} t_{im} p_i \right) / t_{mm}$$

- 10. $x_m = x_{m-1} + \gamma_m p_m$
- 11. If $|\gamma_{m+1}|$ is small enough Stop

12. EndDo

Transpose-Free Variants

BCG and QMR require a matrix-by-vector product with A and A^T at each step. The products with A^T do not contribute directly to x_m . **•** They allow to determine the scalars (α_j and β_j in BCG). **•** QUESTION: is it possible to bypass the use of A^T ?

Motivation: in nonlinear equations, A is often not available explicitly but via the Frechet derivative:

$$J(u_k)v = rac{F(u_k+\epsilon v)-F(u_k)}{\epsilon}\,.$$

Conjugate Gradient Squared

* Clever variant of BCG which avoids using A^T [Sonneveld, 1984].

In BCG:

$$r_i=
ho_i(A)r_0$$

where $\rho_i =$ polynomial of degree *i*.

In CGS:

$$r_i=
ho_i^2(A)r_0$$

50

▶ Define $r_j = \phi_j(A)r_0$, $p_j = \pi_j(A)r_0$, $r_j^* = \phi_j(A^T)r_0^*$, $p_j^* = \pi_j(A^T)r_0^*$.

Scalar α_j in BCG is given by

$$lpha_j = rac{(\phi_j(A)r_0,\phi_j(A^T)r_0^*)}{(A\pi_j(A)r_0,\pi_j(A^T)r_0^*)} = rac{(\phi_j^2(A)r_0,r_0^*)}{(A\pi_j^2(A)r_0,r_0^*)}$$

Possible to get a recursion for the $\phi_i^2(A)r_0$ and $\pi_i^2(A)r_0$?

$$egin{aligned} \phi_{j+1}(t) &= \phi_j(t) - lpha_j t \pi_j(t), \ \pi_{j+1}(t) &= \phi_{j+1}(t) + eta_j \pi_j(t) \end{aligned}$$

Square the equalities

$$egin{aligned} \phi_{j+1}^2(t) &= \phi_j^2(t) - 2lpha_j t \pi_j(t) \phi_j(t) + lpha_j^2 t^2 \pi_j^2(t), \ \pi_{j+1}^2(t) &= \phi_{j+1}^2(t) + 2eta_j \phi_{j+1}(t) \pi_j(t) + eta_j^2 \pi_j(t)^2. \end{aligned}$$

Problem: Cross terms

Calais February 7, 2005

Solution: Let $\phi_{j+1}(t)\pi_j(t)$, be a third member of the recurrence. For $\pi_j(t)\phi_j(t)$, note:

 $\phi_j(t)\pi_j(t)=\phi_j(t)\left(\phi_j(t)+eta_{j-1}\pi_{j-1}(t)
ight)\ =\ \phi_j^2(t)+eta_{j-1}\phi_j(t)\pi_{j-1}(t).$

Result:

$$egin{aligned} \phi_{j+1}^2 &= \phi_j^2 - lpha_j t \left(2 \phi_j^2 + 2 eta_{j-1} \phi_j \pi_{j-1} - lpha_j t \ \pi_j^2
ight) \ \phi_{j+1} \pi_j &= \phi_j^2 + eta_{j-1} \phi_j \pi_{j-1} - lpha_j t \ \pi_j^2 \ \pi_{j+1}^2 &= \phi_{j+1}^2 + 2 eta_j \phi_{j+1} \pi_j + eta_j^2 \pi_j^2. \end{aligned}$$

Define:

$$r_j = \phi_j^2(A) r_0, \hspace{1em} p_j = \pi_j^2(A) r_0, \hspace{1em} q_j = \phi_{j+1}(A) \pi_j(A) r_0$$

Recurrences become:

$$egin{aligned} r_{j+1} &= r_j - lpha_j A \left(2r_j + 2eta_{j-1}q_{j-1} - lpha_j A \, p_j
ight), \ q_j &= r_j + eta_{j-1}q_{j-1} - lpha_j A \, p_j, \ p_{j+1} &= r_{j+1} + 2eta_j q_j + eta_j^2 p_j. \end{aligned}$$

Define auxiliary vector $d_j = 2r_j + 2eta_{j-1}q_{j-1} - lpha_j Ap_j$

Sequence of operations to compute the approximate solution, starting with $r_0 := b - Ax_0$, $p_0 := r_0$, $q_0 := 0$, $\beta_0 := 0$.

1. $\alpha_j = (r_j, r_0^*)/(Ap_j, r_0^*)$ 5. $r_{j+1} = r_j - \alpha_j Ad_j$ 2. $d_j = 2r_j + 2\beta_{j-1}q_{j-1} - \alpha_j Ap_j$ 6. $\beta_j = (r_{j+1}, r_0^*)/(r_j, r_0^*)$ 3. $q_j = r_j + \beta_{j-1}q_{j-1} - \alpha_j Ap_j$ 7. $p_{j+1} = r_{j+1} + \beta_j(2q_j + \beta_j p_j)$.

4. $x_{j+1} = x_j + \alpha_j d_j$ \blacktriangleright one more auxiliary vector, $u_j = r_j + eta_{j-1} q_{j-1}$. So

$$egin{aligned} d_j \,&=\, u_j + q_j, \ q_j \,&=\, u_j - lpha_j A p_j, \ p_{j+1} \,&=\, u_{j+1} + eta_j (q_j + eta_j p_j), \end{aligned}$$

vector d_j is no longer needed.

ALGORITHM : 11 Conjugate Gradient Squared

1. Compute $r_0 := b - Ax_0$; r_0^* arbitrary.

2. Set
$$p_0 := u_0 := r_0$$
.

3. For j = 0, 1, 2..., until convergence Do:

4.
$$\alpha_j = (r_j, r_0^*)/(Ap_j, r_0^*)$$

5. $q_j = u_j - lpha_j A p_j$

6.
$$x_{j+1} = x_j + \alpha_j (u_j + q_j)$$

7.
$$r_{j+1} = r_j - \alpha_j A(u_j + q_j)$$

8.
$$eta_j = (r_{j+1}, r_0^*)/(r_j, r_0^*)$$

9.
$$u_{j+1}=r_{j+1}+eta_j q_j$$

10.
$$p_{j+1} = u_{j+1} + \beta_j (q_j + \beta_j p_j)$$

11. EndDo

▶ Note: no matrix-by-vector products with A^T but two matrix-by-vector products with A, at each step.

Vector: \longleftrightarrow Polynomial in BCG : $q_i \longleftrightarrow \bar{r}_i(t)\bar{p}_{i-1}(t)$ $u_i \longleftrightarrow \bar{p}_i^2(t)$ $r_i \longleftrightarrow \bar{r}_i^2(t)$

where $\bar{r}_i(t)$ = residual polynomial at step *i* for BCG, .i.e., $r_i = \bar{r}_i(A)r_0$, and $\bar{p}_i(t)$ = conjugate direction polynomial at step *i*, i.e., $p_i = \bar{p}_i(A)r_0$.

BCGSTAB (van der Vorst, 1992)

In CGS: residual polynomial of BCG is squared. bad behavior in case of irregular convergence.

 Bi-Conjugate Gradient Stabilized (BCGSTAB) = a variation of CGS which avoids this difficulty.
 Derivation similar to CGS.

▶ Residuals in BCGSTAB are of the form, $r'_j = \psi_j(A)\phi_j(A)r_0$ in which, $\phi_j(t) =$ BCG residual polynomial, and ..

▶ .. $\psi_j(t)$ = a new polynomial defined recursively as $\psi_{j+1}(t) = (1 - \omega_j t) \psi_j(t)$

 ω_i chosen to 'smooth' convergence [steepest descent step]

ALGORITHM : 12 BCGSTAB

- 1. Compute $r_0 := b Ax_0$; r_0^* arbitrary;
- **2.** $p_0 := r_0$.
- 3. For $j = 0, 1, \ldots$, until convergence Do:
- 4. $\alpha_j := (r_j, r_0^*)/(Ap_j, r_0^*)$
- $5. \quad s_j := r_j \alpha_j A p_j$

$$\boldsymbol{6.} \quad \omega_j := (As_j, s_j)/(As_j, As_j)$$

7.
$$x_{j+1} := x_j + \alpha_j p_j + \omega_j s_j$$

8.
$$r_{j+1} := s_j - \omega_j A s_j$$

9.
$$\beta_j := rac{(r_{j+1},r_0^*)}{(r_j,r_0^*)} imes rac{lpha_j}{\omega_j}$$

10.
$$p_{j+1} := r_{j+1} + \beta_j (p_j - \omega_j A p_j)$$

11. EndDo

THEORY

Convergence Theory for CG

▶ Approximation of the form $x = x_0 + p_{m-1}(A)r_0$. with $x_0 =$ initial guess, $r_0 = b - Ax_0$;

Optimality property:

 x_m minimizes $\|x-x_*\|_A$ over x_0+K_m

Consequence: Standard result

Let $x_m = m$ -th CG iterate, $x_* = exact solution and$ $\eta = \frac{\lambda_{min}}{\lambda_{max} - \lambda_{min}}$ Then: $\|x_* - x_m\|_A \leq \frac{\|x_* - x_0\|_A}{T_m(1 + 2\eta)}$ where T_m = Chebyshev polynomial of degree m. Calais February 7, 2005

THEORY FOR NONHERMITIAN CASE

Much more difficult!

No convincing results on 'global convergence' for many algorithms (bi-CG, FOM, etc..)

Can get a general a-priori – a-posteriori error bound

Convergence results for nonsymmetric case

Methods based on minimum residual better understood.

▶ If $(A + A^T)$ is positive definite $((Ax, x) > 0 \forall x \neq 0)$, all minimum residual-type methods (ORTHOMIN, ORTHODIR, GCR, GMRES,...), + their restarted and truncated versions, converge.

► Convergence results based on comparison with steepest descent [Eisenstat, Elman, Schultz 1982] \rightarrow not sharp.

<u>Minimum residual methods:</u> if $A = X\Lambda X^{-1}$, Λ diagonal, then

 $\|b-Ax_m\|_2 \leq \mathsf{Cond}_2(X)\min_{p\in\mathcal{P}_{m-1},p(0)=1} \ \ max_{\lambda\in\Lambda(A)}|p(\lambda)|$

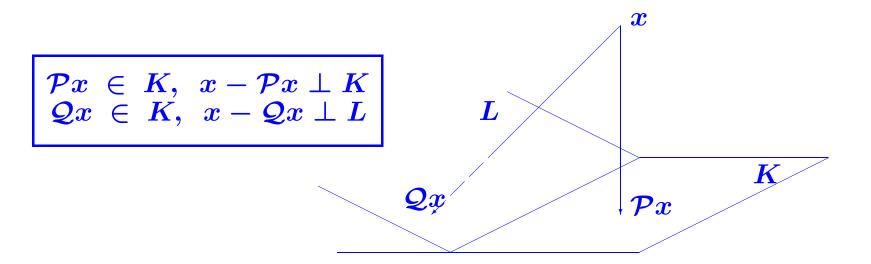
($\mathcal{P}_{m-1}\equiv$ set of polynomials of degree $\leq m-1$, $\Lambda(A)\equiv$ spectrum of A)

Calais February 7, 2005

Two useful projectors

Let \mathcal{P} be the orthogonal projector onto K and

 \mathcal{Q} be the (oblique) projector onto K and orthogonally to L.



The approximate problem in terms of \mathcal{P} and \mathcal{Q}

Approximate problem amounts to solving

$$\mathcal{Q}(b-Ax)=0, \;\; x \;\; \in K$$

or in operator form

$$\mathcal{Q}(b-A\mathcal{P}x)=0$$

Question: what accuracy can one expect?

▶ If x^* is the exact solution, then we cannot get better accuracy than $||(I - P)x^*||_2$, i.e.,

$$\| ilde{x}-x^*\|_2\geq \|(I-\mathcal{P})x^*\|_2$$

THEOREM. Let $\gamma = \|QA(I - P)\|_2$ and assume that b belongs to K. Then the residual norm of the exact solution x^* for the (approximate) linear operator A_m satisfies the inequality,

$$\|oldsymbol{b}-A_mx^*\|_2\leq \gamma\|(I-\mathcal{P})x^*\|_2$$

In other words "if approximate problem is not poorly conditioned and if $||(I - P)x^*||_2$ is small then we will obtain a good approximate solution".

Methods based on the normal equations

It is possible to obtain the solution of Ax = b from the equivalent system:

$$A^T A x = A^T b$$

or

$$egin{array}{l} AA^Ty = b \ , x = A^Ty \end{array}$$

Methods based on these approaches are usually slower than previous ones. (Condition number of system is squared)

Exception: when A is strongly indefinite (extreme case: A is orthogonal, $A^T A = I \rightarrow$ convergence in 1 step).

66

CGNR and **CGNE**

Can use CG to solve normal equations. Two well-known options.

(1) CGNR: Conjugate Gradient method on

$$A^T A x = A^T b$$

(2) CGNE: Let $x = A^T y$ and use conjugate gradient method on

$$AA^Ty = b$$

Different optimality properties

► Various 'efficient' formulations in both cases

ALGORITHM : 13 CGNR

- 1. Compute $r_0 = b Ax_0$, $z_0 = A^T r_0$, $p_0 = z_0$.
- 2. For $i = 0, \ldots$, until convergence Do:

$$3. \quad w_i = A p_i$$

- 4. $lpha_i = \|z_i\|^2 / \|w_i\|_2^2$
- 5. $x_{i+1} = x_i + \alpha_i p_i$

$$6. \quad r_{i+1} = r_i - \alpha_i w_i$$

- 7. $z_{i+1} = A^T r_{i+1}$
- 8. $eta_i = \|z_{i+1}\|_2^2 / \|z_i\|_2^2$,
- 9. $p_{i+1}=z_{i+1}+eta_ip_i$

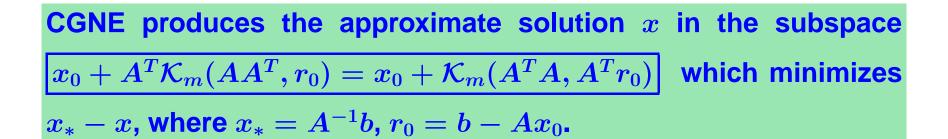
10. EndDo

CGNR: The approximation x_m minimizes the residual norm $||b - Ax||_2$ over the affine Krylov subspace, $x_0 + \operatorname{span}\{A^Tr_0, (A^TA)A^Tr_0, \dots, (A^TA)^{m-1}A^Tr_0\},$ where $r_0 \equiv b - Ax_0$.

The difference with GMRES is the subspace in which the residual norm is minimized. For GMRES the subspace is $x_0 + \mathcal{K}_m(A, r_0)$.

ALGORITHM : 14 . CGNE (Craig's Method)

- 1. Compute $r_0 = b Ax_0$, $p_0 = A^T r_0$.
- **2.** For $i = 0, 1, \ldots$, until convergence Do:
- 3. $lpha_i=(r_i,r_i)/(p_i,p_i)$
- 4. $x_{i+1} = x_i + \alpha_i p_i$
- $5. \quad r_{i+1} = r_i \alpha_i A p_i$
- 6. $eta_i = (r_{i+1}, r_{i+1})/(r_i, r_i)$
- 7. $p_{i+1} = A^T r_{i+1} + \beta_i p_i$
- 8. EndDo



▶ <u>Note:</u> Same subspace as CGNR!

Block GMRES and Block Krylov Methods

Main Motivation: To solve linear systems with several righthand sides

$$Ax^{(i)}=b^{(i)}, \hspace{1em} i=1,\ldots,p$$
 .

or, in matrix form,

AX = B

Sometimes Block methods are used as a strategy for enhancing convergence even for the case p = 1.

Let

$$R_0 \equiv [r_0^{(1)}, r_0^{(2)}, \dots, r_0^{(p)}]$$
 .

each column is $r_0^{(i)} = b^{(i)} - A x_0^{(i)}$.

Krylov methods find an approximation to X from the subspace

$$K_m(A,R_0)= ext{span}\{R_0,AR_0,\ldots,A^{m-1}R_0\}$$

For example Block-GMRES (BGMRES) £nds X to

minimize $\|B - AX\|_F$ for $X \in X_0 + K_m(A, R_0)$

► Various implementations of BGMRES exist

Simplest one is based on Ruhe's variant of the Block Arnoldi procedure.

ALGORITHM : 15 Block Arnoldi–Ruhe's variant

1. Choose *p* initial orthonormal vectors $\{v_i\}_{i=1,...,p}$.

2. For
$$j = p, p + 1, ..., m$$
 Do:

3. Set
$$k := j - p + 1$$
;

4. Compute
$$w := Av_k$$
;

5. For i = 1, 2, ..., j Do:

6.
$$h_{i,k} := (w, v_i)$$

$$w := w - h_{i,k} v_i$$

8. EndDo

9. Compute
$$h_{j+1,k} := \|w\|_2$$
 and $v_{j+1} := w/h_{j+1,k}$.

10. EndDo

 $\blacktriangleright p = 1$ coincides with standard Arnoldi process.

Interesting feature: dimension of the subspace need not be a multiple of the block-size p.

At the end of the algorithm, we have the relation

$$AV_m = V_{m+p}ar{H}_m.$$

▶ The matrix \bar{H}_m is now of size $(m+p) \times m$.

Each approximate solution has the form

$$x^{(i)} = x_0^{(i)} + V_m y^{(i)},$$

where $y^{(i)}$ must minimize the norm $\|b^{(i)} - Ax^{(i)}\|_2$.

Plane rotations can be used for this purpose as in the standard GMRES [p rotations are needed for each step.]

Calais February 7, 2005