A short course on:
Preconditioned Krylov subspace methods

Yousef Saad
University of Minnesota
Dept. of Computer Science and
Engineering

Universite du Littoral, Jan 19-30, 2005




uPart - Part 3 I

e Introd., discretization of PDEs

_ _ e Preconditioned iterations
e Sparse matrices and sparsity

. _ e Preconditioning techniques
e Basic iterative methods (Relax-

_ e Parallel implementations
ation..)
Part 4 I
Part 2 I

e Eigenvalue problems

e Projection methods o
e Applications —

e Krylov subspace methods

Calais February 7, 2005



PROJECTION METHODSFOR LINEAR SYSTEMS




THE PROBLEM

We consider the linear system

Ax = b
where Ais N X N and can be
e Real symmetric positive definite

e Real nonsymmetric

e Complex

Focus: | A is large and sparse, possibly with an irregular structure
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PROJECTION METHODS

Initial Problem: b— Ax =0

Given two subspaces K and L of RY defne the approximate problem:

Findx € Ksuchthatb — Ax 1 L

w Leads to a small linear system (‘projected problems’) This is a

basic projection step. Typically: sequence of such steps are applied

w With a nonzero initial guess x, the approximate problem is
Find z € x9g+ K suchthat b— Ax L L

Write x = x¢ + 6 and ro = b — Ax(. Leads to a system for 4:

Findd € K suchthatry — Ad L L

Calais February 7, 2005




Matrix representation:

oV = [vy,...,v,,] abasis of K &

Let
oW = [wy,...,w,,] abasis of L

Then letting « be the approximate solution € = g+ 6 = oy + Vy

where y Is a vector of R™, the Petrov-Galerkin condition yields,
Wh(rg— AVy) =0

and therefore

Tr = Lo —+ V[WTAV]_IWTT‘O

Remark: In practice WT AV is known from algorithm and has a sim-

ple structure [tridiagonal, Hessenberg,..]
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PROTOTYPE PROJECTION METHOD

Until Convergence Do:

1. Select a pair of subspaces K, and L;

2.Choose bases V = [vy,...,v,] for Kand W = [wq,..., wy,]
for L.
3. Compute
r«—b— Ax,

y — (WTAV) "Wy,

x «— x+ Vy.
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OPERATOR FORM REPRESENTATION

Let P be the orthogonal projector onto K and

Q the (oblique) projector onto K and orthogonally to L.

xr

Q$/ Px

The P and Q projectors
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Approximate problem amounts to solving
Qb— Ax) =0, € K

or in operator form

Qb— APx) =0

Question: Iwhat accuracy can one expect?

Let £* be the exact solution. Then

1) we cannot get better accuracy than |[(I — P)x*||2, i.e.,

|2 — x|z 2 [[(I = P)az*||

2) the residual of the exact solution for the approximate problem satisfies:
b — QAPx||2 < [[ QAT — P)|2||(I — P)x~||2
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Two | mportant Particular Cases.

1.|L = AK|. Then ||b — AZ||s = min,ck ||b — Az||2
— Class of Minimal Residual Methods: CR, GCR, ORTHOMIN,
GMRES, CGNR, ...

2.| L = K| — Class of Galerkin or Orthogonal projection methods.

When A is SPD then ||z* — Z||4 = min,ck ||* — z||a.
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One-dimensional projection processes

K = span{d}
and
L = span{e}

Then x +— x + ad and Petrov-Galerkin condition » — Ad L e yields

a= )

Three popular choices:

(1) Stegpest descent. A is SPD. Take ateach stepd = rande = r.

r«—b— Ax,

lteration: « «— (r,7)/(Ar,7)
r «— x+ ar

» Each step minimizes f(z) = ||z — z*||} = (A(z — =*), (x — =*))

In direction —V f. Convergence guaranteed if A is SPD.
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(I) Residual norm steepest descent . A is arbitrary (nonsingular). Take

at each step d = ATr and e = Ad.

r<—b—A£L‘,d:AT’r
lteration: | o « ||d||%/|| Ad]||?
Tr «— xr+ od

» Each step minimizes f(x) = ||b — Ax||5 in direction —V f.

w Important Note: equivalent to usual steepest descent applied to

normal equations ATAx = ATb.

w Converges under the condition that A is nonsingular.
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1) _Minimal residual iteration. A positive definite (A + AT is SPD).
( p

Take at each stepd = r and e = Ar.

r«— b— Ax,

lteration: o« «— (Ar,7)/(Ar, Ar)
r «— T+ ar

» Each step minimizes f(x) = ||b — Ax||3 in direction r.

w Converges under the condition that A + AT is SPD.
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KRYLOV SUBSPACE METHODS
M Projection methods on Krylov subspaces, i.e., on

K,,(A,vy) = span{v;, Avy, -+, A" v}

e probably the most important class of iterative methods.

e many variants exist depending on the subspace L.

Simple properties of K, I Let o = deg. of minimal polynomial of

(¥

e K,, = {p(A)v|p = polynomial of degree < m — 1}
o K,, = K, forall m > u. Moreover, K, is invariant under A.

edim(K,,) = miff u > m.
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A littlereview. Gram-Schmidt process

— Goal: given X = [x,...,x,;| compute an orthonormal set Q =

lq15 - - - s gm] Which spans the same susbpace.

ALGORITHM : 1. Classical Gram-Schmidt

Forjy =1,...,m Do:
Compute r;; = (xj,q;) fore =1,...,7 —1

A~ ) —1
Compute §; = x; — >I21 7i;q;

q; = q4;/Tj;

1

2

3

4, ri; = ||gGjl|2 If rj; == 0 exit
5

6. EndDo
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ALGORITHM : 2. Modified Gram-Schmidt

1. Fory =1,...,m Do:

2. §ji=wx;

3 For:=1,...,57 — 1 Do

4 rij = (4> qi)

S. qdj := qj — T4

6 EndDo

7. 1y = ||gjll2. If r;; == 0 exit
8. qj:i=q;/T

9. EndDo
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Let:
X = [x1,. .. T (N X m matrix)
Q = [q1,--.-,qn] (n X m matrix)

R = {r;;} (m X m upper triangular matrix)

» At each step,
J
Tj = ,;1 Tijqi

Result:
X =QR
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ARNOLDI'SALGORITHM

w Goal: to compute an orthogonal basis of K,,.

w [nput: Initial vector vy, with ||v¢||]2 = 1 and m.

Forjy =1,....,mdo

e Compute w := Av;

h;; = (w,v;
efori=1,...,j5,do i #= (w0, 03)

w = w — h; jv;
® hji1; = |lwllzand vj 1 = w/hji1,
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Result of orthogonalization process (Arnoldi’s algorithm:)

1. V,, = [v1, v, ..., vy] Orthonormal basis of K,,.
2. AVm — m—l—lﬁm

3. vIAv,, = H,, = H,,— last row.



Arnoldi’s Method (L., = Ky,)

From Petrov-Galerkin condition when L,, = K,,, we get

Tm = To + Vi H Vi

If, in addition we choose v; = 7y/||ro||]2 = r0/8 in Arnoldi’s algo-
rithm, then
Ty = Lo + ,BVmH;fel

Several algorithms mathematically equivalent to this approach:
* FOM [Saad, 1981] (above formulation)
*Young and Jea’s ORTHORES [1982].

* Axelsson’s projection method [1981].
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Minimal residual methods (L,, = AK:,)

When L,, = AK,,,, we let W,,, = AV,,, and obtain relation

T = To+ Vi [WE AV, "Whry = 2o+ V,u[(AVR) T AV, 7H(AV,,) .

Use again vy := ro/(8 := ||7o||2) and the relation [ AVm = Viny1 Ho):

Lm = Lo + Vm[ﬂiﬁm]_lﬂ'ﬁ/@el — Lo + mem

where y,,, minimizes ||Be; — H,,y||. over y € R™. Therefore, (Gen-

eralized Minimal Residual method (GMRES) [Saad-Schultz, 1983]):

Tm = o+ Viuym  Where y,, : min, ||Be; — I:Imy||2

e Axelsson’s CGLS e Orthomin (1980)

e Orthodir e GCR
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Restarting and Truncating

Difficulty: As m increases, storage and work per step increase fast.

First remedy: Restarting. Fix the dimension m of the subspace

ALGORITHM : 3. Restarted GMRES (resp. Arnoldi)

1.
2.
3.

Start/Restart: Compute ro = b — Axg, and vy = ro/(8 := ||70]|2)-
Arnoldi Process: generate H,,, and V,,,.
Compute y.,, = H_'Be; (FOM), or
Ym = argminl||Be; — H,,y||> (GMRES)
Ty = To + VinYm

If (|72 < €]|ro]|2 StOp else set xy := x,,, and go to 1.
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Second remedy: Truncate the orthogonalization

The formula for v, is replaced by

j
hji1,jvj = Avj — > hijo;
1=7—k+1

— each v; Is made orthogonal to the previous k v;’s.
— @, still computed as x,, = xo + V,, H_'Be;.

— It can be shown that this is again an oblique projection process.

w IOM (Incomplete Orthogonalization Method) = replace orthogo-

nalization in FOM, by the above truncated (or ‘incomplete’) orthog-

onalization.
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Thedirect version of IOM [DIOM]:

Writing the LU decomposition of H,,, as H,, = L,,U,,, we get
T = xo+ Vi, U-Y L-'Be; = xo+ Pz

w Structure of L,,,,U,, when k = 3

1 r T X
r 1 r T T
r 1 r T X
L, = r 1 U,, = r T
r 1 r T T
r 1 r T
x 1 T




— g — —1 —
Pm = umm[vm o Z?;m—k—l—l uzmpl] Zm =

w Can update x,, at each step:

Tm = Tm—1 + Cmpm

Note: I Several existing pairs of methods have a similar link: they

are based on the LU, or other, factorizations of the H,,, matrix

w CG-like formulation of IOM called DIOM [Saad, 1982]

w ORTHORES(K) [Young & Jea ’82] equivalent to DIOM(K)

w SYMMLQ [Paige and Saunders, '77] uses LQ factorization of H,,.

w Can incorporate partial pivoting in LU factorization of H,,
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Some implementation details:. GMRES

w Issue 1 : how to solve least-squares problem ?

» Issue 2: How to compute residual norm (without computing solu-

tion at each step)?

w Several solutions to both issues. Simplest: use Givens rotations.

w Recall: we want to solve least-squares problem

miny ||Be; — Hmyl|2

w Transform the problem into upper triangular one.
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» Rotation matrices of dimension m + 1. Define (with s7 + ¢ = 1):

c; S; «— IrOW %

—8; C; «— rowze-+1

w Multiply H,,, and right-hand side g, = Be; by a sequence of such

matrices from the left. w» s;, ¢; selected to eliminate h; 4, ;

Calais February 7, 2005 s




>
w
nNo
>
&
>
w
N
>
&
O O O O O W

» 1-st Rotation

=
|
ek

with
h21 hll

C1 —
2 2
\/hll _l_ h21
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» repeat with €2, ..

hiy

hiy
hy
hy

., €2;. Result:

Y1
Y2
Y3

Yo




Define

QO
S
|
2
S
2
7
=

Om = Qm(ﬁel) — (717 <o 97m+1)T'

» Since @, IS unitary,

min ||Be; — Hy,y|l2 = min ||gn, — Rmy”2°

w Delete last row and solve resulting triangular system.

Rmym = dm
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THE SYMMETRIC CASE: Observation

Observe: When A is real symmetric then in Arnoldi’s method:
H,, = VTAV,,

must be symmetric. Therefore

Theorem. When Arnoldi’s algorithm is applied to a (real) symmetric

matrix then the matrix H,, iIs symmetric tridiagonal:

hz‘j =0 1<1<y—-1; and hj,j_{_l = hj_|_1,j, 17=1,....,m
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w \We can write

a; B
B2 o2 (s
B3 a3 B4

H,, = (1)

The v,;’s satisfy a three-term recurrence [Lanczos Algorithm]:

Bj+1vj41 = Av; — ov; — Bvja

— simplified version of Arnoldi’s algorithm for sym. systems.

Symmetric matrix + Arnoldi — Symmetric Lanczos
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The Lanczos algorithm

ALGORITHM : 4. Lanczos

Choose an initial vector v; of norm unity. Set 3; = 0,v9 =0
Forjy; =1,2,...,m Do:
Wy = A’Uj - ijuj_l

aj = (wj, vj)

Bii1 = ||w;||2- If Bj11 = 0 then Stop
V1 = Wj/ Bt

1

2

3

4

S. Wj 1= Wj — OV
6

I

8. EndDo
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L anczos algorithm for linear systems

w Usual orthogonal projection method setting:

o L, = K,, = span{ry, Arg,..., A" 1y}
e Basis V,,, = [vy,...,v,] Of K,, generated by the Lanczos algo-
rithm

w Three different possible implementations.

(1) Arnoldi-like; (2) Exploit tridigonal nature of H,,, (DIOM); (3) Con-

jugate gradient.
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ALGORITHM : 5. Lanczos Method for Linear Systems
Compute rg = b — Axg, B := ||rol|2, and vy := r¢/3

Forg =1,2,...,m Do:
w; = A’l)j — ijj_l (|f] = 1set Bivyg = 0)

o = (wj, vj)

Bit1 = ||lwjl|l2. f Bj4+1 = 0setm :=jandgoto9

Vit1 = w;/Bjt1
EndDo

1
2
3
4
. Wj = W; — OV
6
7
8
9. SetT,, = tridiag(B;, o, Bir1), and V,,, = [v, ..., V).

10. Compute y,, = T, *(Be1) and x,, = o + VinYm
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ALGORITHM : 6. D-Lanczos
COmpUte o = b — Awo, Cl = /3 = ||’T‘0||2, and V1 = ’I”()/,B

SetA\i =06:=0,py =0

Form =1, 2,..., until convergence Do:

Compute w := Av,,, — BmVm—1 anNd a,;, = (W, vy,)

1
2
3
4
5.  Ifm > 1then compute \,, = % and G = —AmCm—1
6 Nm = Cm — AmOm

7 Pm = "7,;,1 (Vm — BmPm—1)

8 T = Tm—1 + CmPm

9

If x,,, has converged then Stop

10. w:=w — o,
11 Bmtr = ||lwll2, vmi1 = w/Bmta
12. EndDo
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The Conjugate Gradient Algorithm (A S.P.D.)

w Note: the p;’s are A-orthogonal
»w The r!’s are orthogonal.

» And we have z,,, = T;y—1 + EmPm

So there must be an update of the form:

1. Pm = "m—1 + BmPm—1
2. Tm = Tm—1 + Smpm

3. T = Tm—-1 — EnADm
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The Conjugate Gradient Algorithm (A S.P.D.)

1. Start: r¢ := b — Az, po := 70.
2. Iterate: Until convergence do,
(@) o := (75, 7;5)/(Apj, P;)
(b) ;1 := x; + a;p;
(C) rjt1:= 1) — 0; Ap;
(d) Bj := (741, 7j4+1) / (v, 75)
(€) Djt1 := Tjr1 + Bip;

o r; = scaling X v;;1. The r;’s are orthogonal.

e The p;’s are A-conjugate, i.e., (Ap;,p;) = 0 for e # j.
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METHODSBASED ON LANCZOSBIORTHOGONALIZATION




ALGORITHM : 7. The Lanczos Bi-Orthogonalization Procedure
Choose two vectors vy, w; such that (v, wy) = 1.

Set31 =01 =0, wg=v9=0
Forjy; =1,2,...,m Do:
a; = (Avj, w;)
Ujy1 = Avj — a;vj — Bjvjy
Wi = ATw; — ayw; — §;w;_4
djt1 = [(Bj41, Wj1)[/2 If §;11 = 0 Stop
Bit1 = (Dj11, Wjt1)/dj11

wjr1 = Wjt1/Bj+1

© © N o O bk~ 0 DN PRF

10. w41 = j11/0541
11. EndDo
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w Extension of the symmetric Lanczos algorithm

w Builds a pair of biorthogonal bases for the two subspaces

Km(A,v1) and IK,,(AT, w;)

w Different ways to choose d;1,3;+1 In lines 7 and 8.

Let
05

02

B2

8%

Bs

5m—1

Om—1 IBm

O, Oy

» v, € Kn(A,v) and w; € K, (AT, wy).






The Lanczos Algorithm for Linear Systems

ALGORITHM : 8. Lanczos Algorithm for Linear Systems
Compute rg = b — Axg and 3 := ||ro]|2

Run m steps of the nonsymmetric Lanczos Algorithm i.e.,
Start with v, := r¢/3, and any w; such that (v, w;) =1
Generate the Lanczos vectors v, ..., U, Wiy« .., Wy

and the tridiagonal matrix T;,, from Algorithm ?7.

o g A~ W D

Compute y,, = Trgl(,ﬁel) and x,, := o + VinYm.

w BCG can be derived from the Lanczos Algorithm similarly to CG

In symmetric case.
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The BCG and QMR Algorithms

w Let| T,, = L, U, |( LU factorization of T,,). Define|P,, = V,,U*

Then, solution is

T = X0+ Vi T, (Be1) = xo+ ViU, 'L ' (Ber) = xo+ P L' (Be1)

» ., IS updatable from x,,,_; similar to the CG algorithm.

» r; and r; are in the same direction as v, and w;, respectively.

w they form a biorthogonal sequence.
» The p!’s p;’s are are A-conjugate.

w Utilizing this information, a CG-like algorithm can be easily de-

rived from the Lanczos procedure.
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ALGORITHM : 9. BiConjugate Gradient (BCGQG)

Bj = (rj+1,75,1)/ (T4, 75)

Djt1 = Tjy1 + O;p;j

1. Compute ry := b — Ax,. Choose r; such that (rg, ry) # 0.
2. Set, pg := 1y, Dy =T,

3. Forjy =0,1,...,until convergence Do:,

4. o= (rj,7])/(Apj, P})

S. Tjt1 = Tj + QP

6. Tjy1 :=T; — ;Ap;

7. r;'.‘H = r;.‘ - ajATp;‘f

8.

9.

%

10. Piy == 7)1 + BiPj
11. EndDo
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Quasi-Minimal Residual Algorithm

» The Lanczos algorithm gives the relations AV,, = V,,.1T,, with
_ _ T
T,, = (m + 1) x m tridiagonal matrix T,,, = ( ) :

5m+1€£z

w Let vy, = Brgand x = x¢ + V,,,y. Residual norm ||b — Ax||; IS

170 — AViylle = ||Bv1 — Vit 1Twyll2 = || Vit (Ber — Tny) |2

w Column-vectors of V,,,,; are not orthonormal (2 GMRES).
» But: reasonable idea to minimize the function J(y) = ||Be; — T,,yl|>

w Quasi-Minimal Residual Algorithm (Freund, 1990).
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ALGORITHM : 10. QMR
Compute rg = b — Axg and ~g := ||ro]|2, w1 := vy := 1o/

Form = 1,2,..., until convergence Do:
Compute ayy,y 04,01 aNd v, 101, Wi @S IN Lanczos Algor. [alg. ?7]
Update the QR factorization of T,,,, i.e.,
Apply Q;, i = m — 2, m — 1 to the m-th column of T,,
Compute the rotation coefficients c,,,, s,
Apply rotation 2,,,, to T,,, and g,,, i.e., compute:

Ym+1 = —SmYm: Ym ‘= CmYm,; and Ay = CQy 3m5m+1

© © N o a0 bk~ 0D PRF

DPm = (vm - Z?;;;l_z tszz) /tmm

o

Tm = Tm—1 T+ YmPm
11.  If || is small enough Stop
12. EndDo

Calais February 7, 2005 s




Transpose-Free Variants

w BCG and QMR require a matrix-by-vector product with
A and AT at each step. The products with AT do not
contribute directly to x,,. w They allow to determine the
scalars (a; and 3; in BCG).

w QUESTION: is it possible to bypass the use of AT?

w Motivation: in nonlinear equations, A is often not available ex-

plicitly but via the Frechet derivative:
F(ug + ev) — F(ug)

J(ug)v = .
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Conjugate Gradient Squared

* Clever variant of BCG which avoids using AT [Sonneveld, 1984].
In BCG:

r; = pi(A)ro
where p; = polynomial of degree 2.

In CGS:
ri = p;(A)ro
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» Define r; = ¢;(A)ro, p; = mj(A)ro, 75 = »;(AD)rs, pi

J
;i (AT)ry.

Scalar a; iIn BCG is given by

L (@AW)re (AT (A7)
" (A (Ao, mi(AT)r5) T (AmE(A)ro, 7)

» Possible to get a recursion for the ¢7(A)ro and 75(A)ro?
Pjt1(t) = ¢;(t) — aytm;(t),
mi41(t) = @ja(t) + Bjm;(t)
Square the equalities
¢l 1 (t) = ¢l(t) — 20utm;(t)P;(t) + ajt*mi(t),
i1 (t) = &4 () + 28011 (8)7;(t) + Bm;(t)*.

w Problem: Cross terms
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w Solution: Let ¢;1(t)m;(t), be a third member of the recurrence.

For m;(t)¢;(t), note:

d;(t)mj(t) = () (¢j(t) + Bj—17j—1(t)) = ¢5(t)+Bj-10;(t)mj-1(t).

» Result:

¢?+1 = (]5? — Oéjt (2(]5? —|— 2,3j_1¢j71'j_1 — ajt 71'?)
¢j+177j — Qb? + /Bj—lﬁbjﬂ'j—l _ ajt 7732'

2 2 2__2
7Tj_|_1 — ¢j_|_1 + 2/6j¢j+177j + /6]'77]"

w Define:
rj = ¢7(A)ro, pj =7 (A)ro, g = Pj+1(A)m;(A)rg
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Recurrences become:
riv1 = 1; — ;A (2r; + 28191 — ;A p;) ,
q; = rj + Bj-19j—1 — ;A pj,
pj+1 = Tit1 + 28,q; + Bip;.
Define auxiliary vector d; = 2r; + 283,;_1q;_1 — a; Ap;

w Seqguence of operations to compute the approximate solution,

Starting with ro := b — Axy, Po := Tg, qo := 0, ,60 :— 0.

L aj = (rj,15)/(Apj, 75) 0. Tjy1 = Tj — 0jAd;
2.d; = 2r;+2Bj_1qj—1 — ajAp; | 6.8 = (rj41,75)/(T4,75)

3.q; = rj + Bj-1qj—1 — o Ap; 7.pjy1 = Tjt1 + B(2q; + B;p;)-

4, Ljt1 = Ly -+ Ozjdj
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w one more auxiliary vector, u; = r; 4+ 3;_1q;—1. SO

d;

Uj; + qj,

q;i = uj — a; Apj,
pPi+1 = ujy1 + Bi(g; + Bipj),

w vector d; is no longer needed.
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ALGORITHM : 11. Conjugate Gradient Squared

Compute ry := b — Ax; r; arbitrary.
Set pg := ug := 7y.
Fory =0,1,2..., until convergence Do:
aj = (7, 75)/(APj, 1)
qj = uj — o Ap;
rjt1 = zj + aj(u; + gj)
rit1 =1 — a;A(u; + g;)
Bj = (Tj+1,75)/ (75, 75)
Ujp1 = Tj+1 + B;4;
10.  pj+1 = uj+1 + Bi(g; + Bip;)
11. EndDo
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w Note: no matrix-by-vector products with A? but two matrix-by-

vector products with A, at each step.

Vector: «—— Polynomial in BCG :
q; > Ti(t)Di—1(t)
u; < P (t)

r; > 7 (t)

where 7;(t) = residual polynomial at step ¢ for BCG, .i.e., r; = 7;(A)ry,

and p;(t) = conjugate direction polynomial at step ¢, i.e., p; = p;(A)7ro.



BCGSTAB (van der Vorst, 1992)

w In CGS: residual polynomial of BCG is squared. w bad behavior

In case of irregular convergence.

w Bi-Conjugate Gradient Stabilized (BCGSTAB) = a variation of CGS

which avoids this difficulty. w Derivation similar to CGS.

» Residuals in BCGSTAB are of the form, | v’ = 1;(A)¢;(A)ro | IN

which, ¢;(t) = BCG residual polynomial, and ..

» .. ¢,(t) = a new polynomial defined recursively as
Pir1(t) = (1 — wjt)d;(t)

w; chosen to ‘smooth’ convergence [steepest descent step]
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ALGORITHM : 12. BCGSTAB
1. Compute rg := b — Axy; rj arbitrary;

2. Po :— Tg.
3. Forjy =0,1,...,until convergence Do:

4. aj = (rj,7r5)/(Apj, T5)
5. Sj 1= 1T; — 0;Ap;
6. wj = (Asj, s5)/(Asj, As;)
1. Tjt+1 = Tj + O;Pj + W;S;
8. Tjt1 = 8j — w;As;
(rj+1570) o @
9. BJ (v X w;
10.  pjq1 =711+ Bi(p; — wjAp;)
11. EndDo
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Convergence Theory for CG

w Approximation of the form x = x¢ + p.,,—1(A)7ro. With xy = initial

guess, ro = b — Axy;

w Optimality property:

T, Minimizes ||x — x.||4 Over x¢g + K,,

w |Consequence: | Standard result

Let x,,, = m-th CG iterate, x, = exact solution and

Amin

’r’:

Amaaz — Amzn
|Z+ — xol|a

m(1 + 2n)
where T,,, = Chebyshev polynomial of degree m.
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THEORY FOR NONHERMITIAN CASE

» Much more difficult!

w No convincing results on ‘global convergence’ for many algorithms
(bi-CG, FOM, etc..)

w Can get a general a-priori — a-posteriori error bound
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Convergence results for nonsymmetric case

w» Methods based on minimum residual better understood.

w If (A+ AT) is positive definite ((Az,z) > 0 Vz # 0), all minimum
residual-type methods (ORTHOMIN, ORTHODIR, GCR, GMRES,...), +

their restarted and truncated versions, converge.

w Convergence results based on comparison with steepest descent

[Eisenstat, EIman, Schultz 1982] — not sharp.

Minimum residual methods: if A = XA X1, A diagonal, then
b — Azp||2 < Condz(X) mingep,, | p0)=1 ™MaTrca(a)|P(N)]

( Pm—1 = set of polynomials of degree < m — 1, A(A) = spectrum
of A)
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Two useful projectors

Let P be the orthogonal projector onto K and

Q be the (oblique) projector onto K and orthogonally to L.

xr
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The approximate problem in terms of P and Q

» Approximate problem amounts to solving

Qb—Ax) =0, € K

or in operator form

Qb— APx) =0

Question: what accuracy can one expect?

w If * Is the exact solution, then we cannot get better accuracy
than ||[(I — P)x*||2, i.€.,
|2 —*|l2 > [|[(I — P)x*||2




THEOREM. Letv = || QA(I —P)||2 and assume that
b belongs to K. Then the residual norm of the exact
solution x* for the (approximate) linear operator A,

satisfies the inequality,

16— Apa®|ls < Y|I(I = P)x*||2

w In other words “if approximate problem is not poorly conditioned
and if || (I — P)x*||2 is small then we will obtain a good approximate

solution”.
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Methods based on the normal equations

It is possible to obtain the solution of Ax = b from the equivalent

system:

ATAz = ATh

or

AATy =b, 2 = ATy

w Methods based on these approaches are usually slower than pre-

vious ones. (Condition number of system is squared)

w Exception: when A is strongly indefinite (extreme case: A is

orthogonal, AT A = I — convergence in 1 step).
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CGNR and CGNE

Can use CG to solve normal equations. Two well-known options.

(1) CGNR: Conjugate Gradient method on
ATAx = ATh

(2) CGNE: Let x = ATy and use conjugate gradient method on
AATy =b

w Different optimality properties

w Various ‘efficient’ formulations in both cases
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ALGORITHM :13. CGNR

1. Compute rg = b — Axg, zo0 = Alrg, Py = 2o.
2. Forz=20,...,until convergence Do:

3. w; = Ap;

4. oy = |zl |lwill3

5. Tit1 = T; + oyp;

6. Tit1 = T — OGW;

7. ziv1 = Alr; 4

8. Bi=lzitall3/llzll5

9.  piy1 = zit1 + Bip;

10. EndDo
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CGNR: The approximation x,, minimizes the residual

norm ||b — Ax||» over the affine Krylov subspace,
xo + span{Alry, (ATA)ATrg, ..., (ATA)™ ATy},
where ro = b — Axy.

w The difference with GMRES is the subspace in which the residual

norm is minimized. For GMRES the subspace is xy + IC,,(A, 19).
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ALGORITHM : 14. CGNE (Craig’s Method)

COmpUte ro = b — Axy, Po = AT’I"().
Forz = 0,1,...,until convergence Do:
o; = (13, 75)/ (Diy Pi)

Tit1 = T; + O;P;

IBi — (ri—l—la rz’—i—l)/(ria ri)
pit1 = Alriy + Bip

1

2

3

4

5. Tiy1 =71 — aAp;
6

7

8. EndDo
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CGNE produces the approximate solution x in the subspace
xo + ATIC,,(AAT, 1)) = zo + K, (AT A, AT7g)| which minimizes

x, — x,Wherex, = A7'b, rg = b — Ax,.

w Note: Same subspace as CGNR!
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Block GMRES and Block Krylov Methods

Main Motivation: To solve linear systems with several right-

hand sides
Az = p) 4§ = 1,...,p

or, iIn matrix form,
AX =B

w Sometimes Block methods are used as a strategy for

enhancing convergence even for the case p = 1.

Let

Ry = [r(()l), r(()2), e r(()p)] .

each column is r{ = b® — Azl

Krylov methods find an approximation to X from the subspace



Km(A, Ro) = Span{RO, AR(), co e Am_lRo}

w For example Block-GMRES (BGMRES) £nds X to
minimize ||B — AX||r for X € Xo+ K,,(A, Ry)

w Various implementations of BGMRES exist

w Simplest one is based on Ruhe’s variant of the Block Arnoldi

procedure.



=
O

ALGORITHM : 15. Block Arnoldi-Ruhe’s variant

© o N o a0 bk W DNPRF

Choose p initial orthonormal vectors {v; }i=1....p.
Forg =p,p+1,...,m Do:

Setk:=7 —p—+1;

Compute w := Awvy;

For:=1,2,...,7 Do:

hir := (w,v;)
w = w — h;,v;
EndDo
Compute hji1k = ||wl||2 and vj1 := w/hjt1k-
EndDo



w p = 1 coincides with standard Arnoldi process.

w Interesting feature: dimension of the subspace need not be a

multiple of the block-size p.
At the end of the algorithm, we have the relation
AV, = VirpHom.
» The matrix H,, is now of size (m + p) X m.
w Each approximate solution has the form
2@ = 20 4 Vg,
where y® must minimize the norm ||b() — Az®||,.

w Plane rotations can be used for this purpose as in the standard

GMRES [p rotations are needed for each step.]
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