A short course on: Preconditioned Krylov subspace methods

Yousef Saad University of Minnesota Dept. of Computer Science and Engineering

Universite du Littoral, Jan 19-30, 2005

PROJECTION METHODS FOR LINEAR SYSTEMS

Outline

Part 1

- Introd., discretization of PDEs
- Sparse matrices and sparsity
- Basic iterative methods (Relax-

ation..) Part 2

- Projection methods
- Krylov subspace methods

Part 3

- Preconditioned iterations
- Preconditioning techniques
- Parallel implementations

Part 4

- Eigenvalue problems
- Applications –

Calais February 7, 2005

THE PROBLEM

We consider the linear system

$$Ax = b$$

where A is $N \times N$ and can be

- Real symmetric positive definite
- Real nonsymmetric
- Complex

Focus: A is large and sparse, possibly with an irregular structure

PROJECTION METHODS

Initial Problem:

$$b - Ax = 0$$

Given two subspaces K and L of \mathbb{R}^N de£ne the approximate problem:

Find
$$ilde{x} \in K$$
 such that $b - A ilde{x} \perp L$

- ▶ Leads to a small linear system ('projected problems') This is a basic projection step. Typically: sequence of such steps are applied
- \blacktriangleright With a nonzero initial guess x_0 , the approximate problem is

Find
$$\tilde{x} \in x_0 + K$$
 such that $b - A\tilde{x} \perp L$

Write $\tilde{x}=x_0+\delta$ and $r_0=b-Ax_0$. Leads to a system for δ :

Find
$$\delta \in K$$
 such that $r_0 - A\delta \perp L$

Calais February 7, 2005

Matrix representation:

Let

$$ullet$$
 $V=[v_1,\ldots,v_m]$ a basis of K &

 $ullet W = [w_1, \dots, w_m]$ a basis of L

Then letting x be the approximate solution $\tilde{x}=x_0+\delta\equiv x_0+Vy$ where y is a vector of \mathbb{R}^m , the Petrov-Galerkin condition yields,

$$W^T(r_0 - AVy) = 0$$

and therefore

$$ilde{x} = x_0 + V[W^TAV]^{-1}W^Tr_0$$

Remark: In practice W^TAV is known from algorithm and has a simple structure [tridiagonal, Hessenberg,..]

Calais February 7, 2005

PROTOTYPE PROJECTION METHOD

Until Convergence Do:

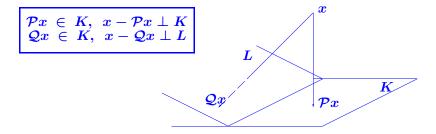
- 1. Select a pair of subspaces K, and L;
- 2. Choose bases $V=[v_1,\ldots,v_m]$ for K and $W=[w_1,\ldots,w_m]$ for L.
- 3. Compute

$$r \leftarrow b - Ax,$$

 $y \leftarrow (W^T A V)^{-1} W^T r,$
 $x \leftarrow x + V y.$

OPERATOR FORM REPRESENTATION

Let $\mathcal P$ be the orthogonal projector onto K and $\mathcal Q$ the (oblique) projector onto K and orthogonally to L.



The P and Q projectors

Approximate problem amounts to solving

$$\mathcal{Q}(b-Ax)=0, \ x \in K$$

or in operator form

$$\mathcal{Q}(b - A\mathcal{P}x) = 0$$

Question: what accuracy can one expect?

Let x^* be the exact solution. Then

1) we cannot get better accuracy than $||(I-\mathcal{P})x^*||_2$, i.e.,

$$\| ilde{x}-x^*\|_2\geq \|(I-\mathcal{P})x^*\|_2$$

2) the residual of the exact solution for the approximate problem satisfies:

$$\|b-\mathcal{Q}A\mathcal{P}x^*\|_2 \leq \|\mathcal{Q}A(I-\mathcal{P})\|_2\|(I-\mathcal{P})x^*\|_2$$

Calais February 7, 2005

One-dimensional projection processes

$$K = span\{d\}$$
 and $L = span\{e\}$

Then $ilde{x} \leftarrow x + \alpha d$ and Petrov-Galerkin condition $r - A\delta \perp e$ yields

$$lpha=rac{(r,e)}{(Ad,e)}$$

Three popular choices:

(I) Steepest descent. A is SPD. Take at each step d=r and e=r.

lacktriangle Each step minimizes $f(x) = \|x-x^*\|_A^2 = (A(x-x^*), (x-x^*))$ in direction $-\nabla f$. Convergence guaranteed if A is SPD.

Two Important Particular Cases.

- 1. L = AK. Then $\|b A\tilde{x}\|_2 = \min_{z \in K} \|b Az\|_2$
 - → Class of Minimal Residual Methods: CR, GCR, ORTHOMIN, GMRES, CGNR, ...
- 2. $L = K \rightarrow \text{Class of Galerkin or Orthogonal projection methods.}$ When A is SPD then $\|x^* - \tilde{x}\|_A = \min_{z \in K} \|x^* - z\|_A$.

(II) Residual norm steepest descent . A is arbitrary (nonsingular). Take at each step $d = A^T r$ and e = Ad.

$$\begin{array}{|c|c|c|c|} \hline r \leftarrow b - Ax, d = A^T r \\ \alpha \leftarrow \|d\|_2^2 / \|Ad\|_2^2 \\ x \leftarrow x + \alpha d \end{array}$$

- **Each step minimizes** $f(x) = \|b Ax\|_2^2$ in direction $-\nabla f$.
- ▶ Important Note: equivalent to usual steepest descent applied to normal equations $A^TAx = A^Tb$.
- **▶** Converges under the condition that *A* is nonsingular.

(III) Minimal residual iteration. A positive definite ($A + A^T$ is SPD). Take at each step d = r and e = Ar.

- ightharpoonup Each step minimizes $f(x) = \|b Ax\|_2^2$ in direction r.
- **\blacktriangleright** Converges under the condition that $A + A^T$ is SPD.

Calais February 7, 2005

A little review: Gram-Schmidt process

 \rightarrow Goal: given $X = [x_1, \dots, x_m]$ compute an orthonormal set Q = $[q_1,\ldots,q_m]$ which spans the same susbpace.

ALGORITHM: 1 . Classical Gram-Schmidt

- 1. For j = 1, ..., m Do:
- Compute $r_{ij} = (x_i, q_i)$ for $i = 1, \ldots, j-1$ 2.
- Compute $\hat{q}_i = x_i \sum_{i=1}^{j-1} r_{ii} q_i$
- $r_{ij} = \|\hat{q}_i\|_2$ If $r_{ij} == 0$ exit
- $q_i = \hat{q}_i/r_{ii}$
- 6. EndDo

KRYLOV SUBSPACE METHODS

Principle: Projection methods on Krylov subspaces, i.e., on

$$K_m(A,v_1) = \mathsf{span}\{v_1,Av_1,\cdots,A^{m-1}v_1\}$$

- probably the most important class of iterative methods.
- \bullet many variants exist depending on the subspace L.

Simple properties of K_m . Let $\mu=\deg$ of minimal polynomial of

- $K_m = \{p(A)v|p = \text{polynomial of degree} \le m-1\}$
- $K_m = K_\mu$ for all $m \ge \mu$. Moreover, K_μ is invariant under A.
- $ullet dim(K_m)=m ext{ iff } \mu \geq m.$

Calais February 7, 2005

ALGORITHM: 2. Modified Gram-Schmidt

- 1. For j = 1, ..., m Do:
- $\hat{q}_i := x_i$
- 3. For i = 1, ..., j 1 Do
- $r_{ij} = (\hat{q}_i, q_i)$ 4.
- 5. $\hat{q}_i := \hat{q}_i - r_{ii}q_i$
- 6. **EndDo**
- 7. $r_{ij} = \|\hat{q}_i\|_2$. If $r_{ij} == 0$ exit
- $q_i := \hat{q}_i/r_{ii}$
- 9. EndDo

$$X = [x_1, \ldots, x_m]$$
 ($n \times m$ matrix)

$$Q = [q_1, \ldots, q_m]$$
 ($n \times m$ matrix)

 $R = \{r_{ij}\}$ ($m \times m$ upper triangular matrix)

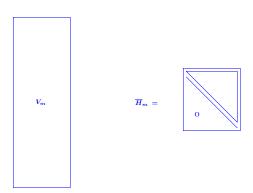
At each step,

$$x_j = \sum\limits_{i=1}^j r_{ij} q_i$$

Result:

$$X = QR$$

Calais February 7, 2005



Result of orthogonalization process (Arnoldi's algorithm:)

- 1. $V_m = [v_1, v_2, ..., v_m]$ orthonormal basis of K_m .
- 2. $AV_m = V_{m+1}\overline{H}_m$
- 3. $V_m^T A V_m = H_m \equiv \overline{H}_m$ last row.

ARNOLDI'S ALGORITHM

- ightharpoonup Goal: to compute an orthogonal basis of K_m .
- ▶ Input: Initial vector v_1 , with $||v_1||_2 = 1$ and m.

For i = 1, ..., m do

- ullet Compute $w:=Av_i$
- ullet for $i=1,\ldots,j,$ do $egin{cases} h_{i,j}:=(w,v_i)\ w:=w-h_{i,j}v_i \end{cases}$
- $\bullet \ h_{i+1,i} = \|w\|_2 \ \text{and} \ v_{i+1} = w/h_{i+1,i}$

Calais February 7, 2005

Arnoldi's Method $(L_m = K_m)$

From Petrov-Galerkin condition when $L_m=K_m$, we get

$$x_m = x_0 + V_m H_m^{-1} V_m^T r_0$$

If, in addition we choose $v_1=r_0/\|r_0\|_2\equiv r_0/eta$ in Arnoldi's algorithm, then

$$x_m = x_0 + \beta V_m H_m^{-1} e_1$$

Several algorithms mathematically equivalent to this approach:

- * FOM [Saad, 1981] (above formulation)
- * Young and Jea's ORTHORES [1982].
- * Axelsson's projection method [1981].

Minimal residual methods ($L_m = AK_m$)

When $L_m = AK_m$, we let $W_m \equiv AV_m$ and obtain relation

$$x_m = x_0 + V_m [W_m^T A V_m]^{-1} W_m^T r_0 = x_0 + V_m [(A V_m)^T A V_m]^{-1} (A V_m)^T r_0.$$

Use again $v_1:=r_0/(\beta:=\|r_0\|_2)$ and the relation $AV_m=V_{m+1}\bar{H_m}$:

$$x_m = x_0 + V_m [ar{H}_m^T ar{H}_m]^{-1} ar{H}_m^T eta e_1 = x_0 + V_m y_m$$

where y_m minimizes $\|\beta e_1 - \bar{H}_m y\|_2$ over $y \in \mathbb{R}^m$. Therefore, (Generalized Minimal Residual method (GMRES) [Saad-Schultz, 1983]):

$$x_m = x_0 + V_m y_m$$
 where $y_m : \min_y \|eta e_1 - ar{H}_m y\|_2$

• Axelsson's CGLS • Orthomin (1980) **Equivalent methods:**

> Orthodir • GCR

> > Calais February 7, 2005 21

Second remedy: Truncate the orthogonalization

The formula for v_{i+1} is replaced by

$$h_{j+1,j}v_{j+1}=Av_j-\sum\limits_{i=j-k+1}^jh_{ij}v_i$$

- \rightarrow each v_i is made orthogonal to the previous k v_i 's.
- $x_m o x_m$ still computed as $x_m = x_0 + V_m H_m^{-1} eta e_1$.
- → It can be shown that this is again an oblique projection process.
- **▶** IOM (Incomplete Orthogonalization Method) = replace orthogonalization in FOM, by the above truncated (or 'incomplete') orthogonalization.

Calais February 7, 2005 23

Restarting and Truncating

Difficulty: As m increases, storage and work per step increase fast.

First remedy: Restarting. Fix the dimension m of the subspace

ALGORITHM: 3 Restarted GMRES (resp. Arnoldi)

- 1. Start/Restart: Compute $r_0=b-Ax_0$, and $v_1=r_0/(\beta:=\|r_0\|_2)$.
- **2.** Arnoldi Process: generate \bar{H}_m and V_m .
- 3. Compute $y_m = H_m^{-1} \beta e_1$ (FOM), or $y_m = argmin \|eta e_1 - ar{H}_m y\|_2$ (GMRES)
- **4.** $x_m = x_0 + V_m y_m$
- 5. If $\|r_m\|_2 \leq \epsilon \|r_0\|_2$ stop else set $x_0 := x_m$ and go to 1.

Calais February 7, 2005 22

The direct version of IOM [DIOM]:

Writing the LU decomposition of H_m as $H_m = L_m U_m$ we get

$$|x_m=x_0$$
 + $|V_mU_m^{-1}|$ $|L_m^{-1}eta e_1|\equiv x_0+P_mz_m$

▶ Structure of L_m, U_m when k=3

$$egin{aligned} p_m &= u_{mm}^{-1}[v_m - \mathbf{b}_{i=m-k+1}^{m-1}\,u_{im}p_i] \qquad z_m = egin{bmatrix} z_{m-1} \ \zeta_m \end{bmatrix} \end{aligned}$$

ightharpoonup Can update x_m at each step:

$$x_m = x_{m-1} + \zeta_m p_m$$

Note: Several existing pairs of methods have a similar link: they are based on the LU, or other, factorizations of the $oldsymbol{H}_m$ matrix

- ► CG-like formulation of IOM called DIOM [Saad, 1982]
- ▶ ORTHORES(k) [Young & Jea '82] equivalent to DIOM(k)
- **SYMMLQ** [Paige and Saunders, '77] uses LQ factorization of H_m .
- \blacktriangleright Can incorporate partial pivoting in LU factorization of H_m

Calais February 7, 2005 25

ightharpoonup Rotation matrices of dimension m+1. Define (with $s_i^2+c_i^2=1$):

lacktriangle Multiply $ar{H}_m$ and right-hand side $ar{g}_0 \equiv eta e_1$ by a sequence of such matrices from the left. \triangleright s_i, c_i selected to eliminate $h_{i+1,i}$

Some implementation details: GMRES

- ▶ Issue 1 : how to solve least-squares problem ?
- Issue 2: How to compute residual norm (without computing solution at each step)?
- Several solutions to both issues. Simplest: use Givens rotations.
- ► Recall: we want to solve least-squares problem

$$\min_y \|eta e_1 - \overline{H}_m y\|_2$$

► Transform the problem into upper triangular one.

▶ 1-st Rotation

$$\Omega_1 = egin{pmatrix} c_1 & s_1 & & & \ -s_1 & c_1 & & & \ & & 1 & & \ & & & 1 & \ & & & 1 \end{pmatrix}$$

with

$$s_1 = rac{h_{21}}{\sqrt{h_{11}^2 + h_{21}^2}}, \quad c_1 = rac{h_{11}}{\sqrt{h_{11}^2 + h_{21}^2}}$$

$$ar{H}_m^{(1)} = egin{pmatrix} h_{11}^{(1)} & h_{12}^{(1)} & h_{13}^{(1)} & h_{14}^{(1)} & h_{15}^{(1)} \ & h_{22}^{(1)} & h_{23}^{(1)} & h_{24}^{(1)} & h_{25}^{(1)} \ & h_{32} & h_{33} & h_{34} & h_{35} \ & & h_{43} & h_{44} & h_{45} \ & & & h_{54} & h_{55} \ & & & & h_{65} \end{pmatrix}, \quad ar{g}_1 = egin{pmatrix} c_1eta \ -s_1eta \ -s_1eta \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \end{pmatrix}.$$

ightharpoonup repeat with $\Omega_2, \ldots, \Omega_i$. Result:

PROPOSITION:

- 1. The rank of AV_m is equal to the rank of R_m . In particular, if $r_{mm}=0$ then A must be singular.
- 2. The vector y_m which minimizes $\|eta e_1 ar{H}_m y\|_2$ is given by

$$y_m = R_m^{-1} g_m$$
.

3. The residual vector at step m satisfies

$$b - Ax_m = V_{m+1} \left(eta e_1 - ar{H}_m y_m
ight) = V_{m+1} Q_m^T (\gamma_{m+1} e_{m+1})$$

and, as a result,

$$\|b-Ax_m\|_2=|\gamma_{m+1}|.$$

Define

$$egin{aligned} Q_m &= \ \Omega_m \Omega_{m-1} \dots \Omega_1 \ &ar{R}_m &= ar{H}_m^{(m)} = Q_m ar{H}_m, \ &ar{g}_m &= Q_m (eta e_1) = (\gamma_1, \dots, \gamma_{m+1})^T. \end{aligned}$$

ightharpoonup Since Q_m is unitary,

$$\min \|eta e_1 - ar{H}_m y\|_2 = \min \|ar{g}_m - ar{R}_m y\|_2.$$

Delete last row and solve resulting triangular system.

$$R_m y_m = g_m$$

Calais February 7, 2005

THE SYMMETRIC CASE: Observation

Observe: When A is real symmetric then in Arnoldi's method:

$$oldsymbol{H}_m = oldsymbol{V}_m^T A oldsymbol{V}_m$$

must be symmetric. Therefore

Theorem. When Arnoldi's algorithm is applied to a (real) symmetric matrix then the matrix H_m is symmetric tridiagonal:

$$h_{ij} = 0 \quad 1 \leq i < j{-}1; \qquad ext{and} \qquad h_{j,j+1} = h_{j+1,j}, \quad j = 1,\ldots,m$$

We can write

The v_i 's satisfy a three-term recurrence [Lanczos Algorithm]:

$$oxed{eta_{j+1}v_{j+1}=Av_j-lpha_jv_j-eta_jv_{j-1}}$$

→ simplified version of Arnoldi's algorithm for sym. systems.

Symmetric matrix + Arnoldi → Symmetric Lanczos

Calais February 7, 2005 33

The Lanczos algorithm

ALGORITHM: 4 Lanczos

- 1. Choose an initial vector v_1 of norm unity. Set $\beta_1 \equiv 0, v_0 \equiv 0$
- **2.** For j = 1, 2, ..., m Do:
- 3. $w_i := Av_i \beta_i v_{i-1}$
- 4. $\alpha_i := (w_i, v_i)$
- $\mathbf{5.} \quad w_i := w_i \alpha_i v_i$
- 6. $\beta_{j+1} := \|w_j\|_2$. If $\beta_{j+1} = 0$ then Stop
- 7. $v_{i+1} := w_i/\beta_{i+1}$
- 8. EndDo

Lanczos algorithm for linear systems

- Usual orthogonal projection method setting:
- $\bullet L_m = K_m = span\{r_0, Ar_0, \dots, A^{m-1}r_0\}$
- ullet Basis $V_m=[v_1,\ldots,v_m]$ of K_m generated by the Lanczos algorithm
- ▶ Three different possible implementations.
- (1) Arnoldi-like; (2) Exploit tridigonal nature of H_m (DIOM); (3) Conjugate gradient.

ALGORITHM: 5 Lanczos Method for Linear Systems

- 1. Compute $r_0 = b Ax_0$, $\beta := \|r_0\|_2$, and $v_1 := r_0/\beta$
- 2. For j = 1, 2, ..., m Do:
- 3. $w_i = Av_i \beta_i v_{i-1}$ (If j = 1 set $\beta_1 v_0 \equiv 0$)
- 4. $\alpha_i = (w_i, v_i)$
- $\mathbf{5.} \qquad w_i := w_i \alpha_i v_i$
- 6. $\beta_{j+1} = \|w_j\|_2$. If $\beta_{j+1} = 0$ set m := j and go to 9
- 7. $v_{i+1} = w_i/\beta_{i+1}$
- 8. EndDo
- 9. Set $T_m = tridiag(\beta_i, \alpha_i, \beta_{i+1})$, and $V_m = [v_1, \dots, v_m]$.
- 10. Compute $y_m = T_m^{-1}(\beta e_1)$ and $x_m = x_0 + V_m y_m$

ALGORITHM: 6 D-Lanczos

1. Compute $r_0 = b - Ax_0$, $\zeta_1 := \beta := \|r_0\|_2$, and $v_1 := r_0/\beta$

2. Set $\lambda_1 = \beta_1 = 0$, $p_0 = 0$

3. For $m = 1, 2, \ldots$, until convergence Do:

Compute $w:=Av_m-\beta_mv_{m-1}$ and $\alpha_m=(w,v_m)$

If m>1 then compute $\lambda_m=rac{eta_m}{\eta_{m-1}}$ and $\zeta_m=-\lambda_m\zeta_{m-1}$

 $\eta_m = \alpha_m - \lambda_m \beta_m$

 $p_m=\eta_m^{-1}\left(v_m-eta_m p_{m-1}
ight)$

 $x_m = x_{m-1} + \zeta_m p_m$

If x_m has converged then Stop

10. $w:=w-\alpha_m v_m$

11. $\beta_{m+1} = ||w||_2, v_{m+1} = w/\beta_{m+1}$

12. EndDo

Calais February 7, 2005

The Conjugate Gradient Algorithm (A S.P.D.)

1. Start: $r_0 := b - Ax_0$, $p_0 := r_0$.

2. Iterate: Until convergence do,

(a) $\alpha_i := (r_i, r_i)/(Ap_i, p_i)$

 $\textbf{(b)}\ x_{i+1} := x_i + \alpha_i p_i$

(c) $r_{i+1} := r_i - \alpha_i A p_i$

(d) $\beta_i := (r_{i+1}, r_{i+1})/(r_i, r_i)$

(e) $p_{i+1} := r_{i+1} + \beta_i p_i$

• $r_i = scaling \times v_{i+1}$. The r_i 's are orthogonal.

• The p_i 's are A-conjugate, i.e., $(Ap_i, p_i) = 0$ for $i \neq j$.

Calais February 7, 2005

The Conjugate Gradient Algorithm (A S.P.D.)

 \blacktriangleright Note: the p_i 's are A-orthogonal

▶ The r'_i 's are orthogonal.

ightharpoonup And we have $x_m=x_{m-1}+\xi_m p_m$

So there must be an update of the form:

1.
$$p_m = r_{m-1} + \beta_m p_{m-1}$$

2.
$$x_m = x_{m-1} + \xi_m p_m$$

3.
$$r_m = r_{m-1} - \xi_m A p_m$$

Calais February 7, 2005

METHODS BASED ON LANCZOS BIORTHOGONALIZATION

ALGORITHM: 7. The Lanczos Bi-Orthogonalization Procedure

- 1. Choose two vectors v_1, w_1 such that $(v_1, w_1) = 1$.
- 2. Set $\beta_1=\delta_1\equiv 0$, $w_0=v_0\equiv 0$
- 3. For j = 1, 2, ..., m Do:
- 4. $\alpha_i = (Av_i, w_i)$
- 5. $\hat{v}_{i+1} = Av_i \alpha_i v_i \beta_i v_{i-1}$
- **6.** $\hat{w}_{i+1} = A^T w_i \alpha_i w_i \delta_i w_{i-1}$
- 7. $\delta_{i+1} = |(\hat{v}_{i+1}, \hat{w}_{i+1})|^{1/2}$. If $\delta_{i+1} = 0$ Stop
- 8. $\beta_{i+1} = (\hat{v}_{i+1}, \hat{w}_{i+1})/\delta_{i+1}$
- **9.** $w_{i+1} = \hat{w}_{i+1}/\beta_{i+1}$
- 10. $v_{i+1} = \hat{v}_{i+1}/\delta_{i+1}$
- 11. EndDo

Calais February 7, 2005 41

If the algorithm does not break down before step m, then the vectors $v_i, i = 1, \ldots, m$, and $w_i, j = 1, \ldots, m$, are biorthogonal, i.e.,

$$(v_j,w_i)=\delta_{ij}$$
 $1\leq i,\ j\leq m$.

Moreover, $\{v_i\}_{i=1,2,...,m}$ is a basis of $\mathcal{K}_m(A,v_1)$ and $\{w_i\}_{i=1,2,\ldots,m}$ is a basis of $\mathcal{K}_m(A^T,w_1)$ and

$$egin{aligned} AV_m &= V_m T_m + \delta_{m+1} v_{m+1} e_m^T, \ A^T W_m &= W_m T_m^T + eta_{m+1} w_{m+1} e_m^T, \ W_m^T A V_m &= T_m \enspace. \end{aligned}$$

- Extension of the symmetric Lanczos algorithm
- ▶ Builds a pair of biorthogonal bases for the two subspaces

$$\mathcal{K}_m(A,v_1)$$
 and $\mathcal{K}_m(A^T,w_1)$

▶ Different ways to choose δ_{i+1} , β_{i+1} in lines 7 and 8.

Let

 $\mathbf{v}_i \in \mathcal{K}_m(A, v_1)$ and $\mathbf{w}_i \in \mathcal{K}_m(A^T, \mathbf{w}_1)$.

The Lanczos Algorithm for Linear Systems

ALGORITHM: 8 Lanczos Algorithm for Linear Systems

- 1. Compute $r_0 = b Ax_0$ and $\beta := \|r_0\|_2$
- 2. Run m steps of the nonsymmetric Lanczos Algorithm i.e.,
- 3. Start with $v_1 := r_0/\beta$, and any w_1 such that $(v_1, w_1) = 1$
- Generate the Lanczos vectors $v_1, \ldots, v_m, w_1, \ldots, w_m$ 4.
- 5. and the tridiagonal matrix T_m from Algorithm ??.
- 6. Compute $y_m = T_m^{-1}(\beta e_1)$ and $x_m := x_0 + V_m y_m$.
- BCG can be derived from the Lanczos Algorithm similarly to CG in symmetric case.

The BCG and OMR Algorithms

 \blacktriangleright Let $T_m = L_m U_m$ (LU factorization of T_m). Define $P_m = V_m U_m^{-1}$

Then, solution is

$$x_m = x_0 + V_m T_m^{-1}(eta e_1) = x_0 + V_m U_m^{-1} L_m^{-1}(eta e_1) = x_0 + P_m L_m^{-1}(eta e_1)$$

- $ightharpoonup x_m$ is updatable from x_{m-1} similar to the CG algorithm.
- $ightharpoonup r_i^*$ are in the same direction as v_{i+1} and w_{i+1} respectively.
- they form a biorthogonal sequence.
- ▶ The p_i^* 's p_i 's are are A-conjugate.
- ▶ Utilizing this information, a CG-like algorithm can be easily derived from the Lanczos procedure.

Calais February 7, 2005 45

Quasi-Minimal Residual Algorithm

- lacktriangle The Lanczos algorithm gives the relations $AV_m=V_{m+1}ar{T}_m$ with $ar{T}_m$ = (m+1) imes m tridiagonal matrix $ar{T}_m = \left(rac{T_m}{\delta_{m+1}e^T}
 ight)$.
- ightharpoonup Let $v_1 \equiv eta r_0$ and $x = x_0 + V_m y$. Residual norm $\|b Ax\|_2$ is $||r_0 - AV_m u||_2 = ||\beta v_1 - V_{m+1} \bar{T}_m u||_2 = ||V_{m+1} (\beta e_1 - \bar{T}_m u)||_2$
- ▶ Column-vectors of V_{m+1} are not orthonormal (\neq GMRES).
- ▶ But: reasonable idea to minimize the function $J(y) \equiv \|\beta e_1 \bar{T}_m y\|_2$
- Quasi-Minimal Residual Algorithm (Freund, 1990).

ALGORITHM: 9 BiConjugate Gradient (BCG)

- 1. Compute $r_0 := b Ax_0$. Choose r_0^* such that $(r_0, r_0^*) \neq 0$.
- 2. Set, $p_0 := r_0$, $p_0^* := r_0^*$
- 3. For $j = 0, 1, \ldots$, until convergence Do:,
- $lpha_i := (r_i, r_i^*)/(Ap_i, p_i^*)$
- $5. x_{i+1} := x_i + \alpha_i p_i$
- 6. $r_{i+1} := r_i \alpha_i A p_i$
- 7. $r_{i+1}^* := r_i^* \alpha_j A^T p_i^*$
- 8. $\beta_j := (r_{j+1}, r_{j+1}^*)/(r_j, r_j^*)$
- **9.** $p_{i+1} := r_{i+1} + \beta_i p_i$
- 10. $p_{i+1}^* := r_{i+1}^* + \beta_j p_i^*$
- 11. EndDo

Calais February 7, 2005

ALGORITHM: 10 . QMR

- 1. Compute $r_0 = b Ax_0$ and $\gamma_0 := \|r_0\|_2$, $w_1 := v_1 := r_0/\gamma_1$
- 2. For $m = 1, 2, \ldots$, until convergence Do:
- Compute α_m, δ_{m+1} and v_{m+1}, w_{m+1} as in Lanczos Algor. [alg. ??]
- Update the QR factorization of \bar{T}_m , i.e.,
- Apply Ω_i , i=m-2,m-1 to the m-th column of \bar{T}_m 5.
- 6. Compute the rotation coefficients c_m , s_m
- Apply rotation Ω_m , to \bar{T}_m and \bar{g}_m , i.e., compute: 7.
- $\gamma_{m+1}:=-s_m\gamma_m$; $\gamma_m:=c_m\gamma_m$; and $lpha_m:=c_mlpha_m+s_m\delta_{m+1}$ 8.
- $p_m = \left(v_m \sum_{i=m-2}^{m-1} t_{im} p_i\right)/t_{mm}$
- $x_m = x_{m-1} + \gamma_m p_m$
- 11. If $|\gamma_{m+1}|$ is small enough Stop
- 12. EndDo

Transpose-Free Variants

- **▶** BCG and QMR require a matrix-by-vector product with A and A^T at each step. The products with A^T do not contribute directly to x_m . \blacktriangleright They allow to determine the scalars (α_i and β_i in BCG).
- ightharpoonup QUESTION: is it possible to bypass the use of A^T ?
- Motivation: in nonlinear equations, A is often not available explicitly but via the Frechet derivative:

$$J(u_k)v = rac{F(u_k + \epsilon v) - F(u_k)}{\epsilon} \ .$$

Define $r_i = \phi_i(A)r_0, \quad p_i = \pi_i(A)r_0, \quad r_i^* = \phi_i(A^T)r_0^*, \quad p_i^* =$ $\pi_i(A^T)r_0^*$.

Scalar α_i in BCG is given by

$$lpha_j = rac{(\phi_j(A)r_0,\phi_j(A^T)r_0^*)}{(A\pi_j(A)r_0,\pi_j(A^T)r_0^*)} = rac{(\phi_j^2(A)r_0,r_0^*)}{(A\pi_j^2(A)r_0,r_0^*)}$$

Possible to get a recursion for the $\phi_i^2(A)r_0$ and $\pi_i^2(A)r_0$?

$$\phi_{j+1}(t) = \phi_j(t) - \alpha_j t \pi_j(t),$$
 $\pi_{j+1}(t) = \phi_{j+1}(t) + \beta_j \pi_j(t)$

Square the equalities

$$egin{aligned} \phi_{j+1}^2(t) &= \phi_j^2(t) - 2lpha_j t\pi_j(t)\phi_j(t) + lpha_j^2 t^2\pi_j^2(t), \ \pi_{j+1}^2(t) &= \phi_{j+1}^2(t) + 2eta_j\phi_{j+1}(t)\pi_j(t) + eta_j^2\pi_j(t)^2. \end{aligned}$$

Problem: Cross terms

Conjugate Gradient Squared

* Clever variant of BCG which avoids using A^T [Sonneveld, 1984].

In BCG:

$$r_i =
ho_i(A) r_0$$

where ρ_i = polynomial of degree i.

In CGS:

$$r_i =
ho_i^2(A) r_0$$

Solution: Let $\phi_{i+1}(t)\pi_i(t)$, be a third member of the recurrence.

For $\pi_i(t)\phi_i(t)$, note:

$$\phi_j(t)\pi_j(t) = \phi_j(t)\left(\phi_j(t) + eta_{j-1}\pi_{j-1}(t)
ight) = \phi_j^2(t) + eta_{j-1}\phi_j(t)\pi_{j-1}(t).$$

Result:

$$egin{aligned} \phi_{j+1}^2 &= \phi_j^2 - lpha_j t \left(2\phi_j^2 + 2eta_{j-1}\phi_j\pi_{j-1} - lpha_j t \; \pi_j^2
ight) \ \phi_{j+1}\pi_j &= \phi_j^2 + eta_{j-1}\phi_j\pi_{j-1} - lpha_j t \; \pi_j^2 \ \pi_{j+1}^2 &= \phi_{j+1}^2 + 2eta_j\phi_{j+1}\pi_j + eta_j^2\pi_j^2. \end{aligned}$$

Define:

$$r_j = \phi_j^2(A) r_0, \quad p_j = \pi_j^2(A) r_0, \quad q_j = \phi_{j+1}(A) \pi_j(A) r_0$$

Recurrences become:

$$egin{aligned} r_{j+1} &= r_j - lpha_j A \left(2 r_j + 2 eta_{j-1} q_{j-1} - lpha_j A \ p_j
ight), \ q_j &= r_j + eta_{j-1} q_{j-1} - lpha_j A \ p_j, \ \ p_{j+1} &= r_{j+1} + 2 eta_j q_j + eta_i^2 p_j. \end{aligned}$$

Define auxiliary vector $d_j = 2r_j + 2\beta_{j-1}q_{j-1} - \alpha_j Ap_j$

Sequence of operations to compute the approximate solution, starting with $r_0 := b - Ax_0$, $p_0 := r_0$, $q_0 := 0$, $\beta_0 := 0$.

1.
$$lpha_j=(r_j,r_0^*)/(Ap_j,r_0^*)$$
 $ig|$ 5. $r_{j+1}=r_j-lpha_jAd_j$

$$5. r_{j+1} = r_j - \alpha_j A d_j$$

2.
$$d_j = 2r_j + 2eta_{j-1}q_{j-1} - lpha_j Ap_j$$
 6. $eta_j = (r_{j+1}, r_0^*)/(r_j, r_0^*)$

6.
$$eta_j = (r_{j+1}, r_0^*)/(r_j, r_0^*)$$

3.
$$q_j=r_j+eta_{j-1}q_{j-1}-lpha_jAp_j$$

3.
$$q_j = r_j + eta_{j-1}q_{j-1} - lpha_j Ap_j$$
 7. $p_{j+1} = r_{j+1} + eta_j(2q_j + eta_jp_j)$.

4.
$$x_{j+1}=x_j+lpha_jd_j$$

Calais February 7, 2005 53

ALGORITHM: 11 . Conjugate Gradient Squared

- 1. Compute $r_0 := b Ax_0$; r_0^* arbitrary.
- 2. Set $p_0 := u_0 := r_0$.
- 3. For $j = 0, 1, 2 \dots$, until convergence Do:
- 4. $\alpha_i = (r_i, r_0^*)/(Ap_i, r_0^*)$
- $\mathbf{5.} \qquad q_i = u_i \alpha_i A p_i$
- 6. $x_{i+1} = x_i + \alpha_i(u_i + q_i)$
- 7. $r_{i+1} = r_i \alpha_i A(u_i + q_i)$
- 8. $\beta_i = (r_{i+1}, r_0^*)/(r_i, r_0^*)$
- 9. $u_{i+1} = r_{i+1} + \beta_i q_i$
- 10. $p_{i+1} = u_{i+1} + \beta_i (q_i + \beta_i p_i)$
- 11. EndDo

ightharpoonup one more auxiliary vector, $u_i=r_i+eta_{i-1}q_{i-1}.$ So

$$egin{aligned} d_j &= u_j + q_j, \ & \ q_j &= u_j - lpha_j A p_j, \ & \ p_{j+1} &= u_{j+1} + eta_j (q_j + eta_j p_j), \end{aligned}$$

 \blacktriangleright vector d_i is no longer needed.

Note: no matrix-by-vector products with A^T but two matrix-byvector products with A, at each step.

Calais February 7, 2005 _____ 54

Vector: ←→ **Polynomial in BCG**:

$$q_i \longleftrightarrow \bar{r}_i(t)\bar{p}_{i-1}(t)$$

$$u_i \longleftrightarrow ar{p}_i^2(t)$$

$$r_i \, \longleftrightarrow \, ar{r}_i^2(t)$$

where $\bar{r}_i(t)$ = residual polynomial at step i for BCG, i.e., $r_i = \bar{r}_i(A)r_0$, and $\bar{p}_i(t)$ = conjugate direction polynomial at step i, i.e., $p_i = \bar{p}_i(A)r_0$.

BCGSTAB (van der Vorst, 1992)

- ▶ In CGS: residual polynomial of BCG is squared. ▶ bad behavior in case of irregular convergence.
- Bi-Conjugate Gradient Stabilized (BCGSTAB) = a variation of CGS which avoids this difficulty. > Derivation similar to CGS.
- \blacktriangleright Residuals in BCGSTAB are of the form, $\boxed{r_i' = \psi_j(A)\phi_j(A)r_0}$ in which, $\phi_i(t)$ = BCG residual polynomial, and ...
- ightharpoonup .. $\psi_i(t)$ = a new polynomial defined recursively as

$$\psi_{j+1}(t) = (1 - \omega_j t) \psi_j(t)$$

 ω_i chosen to 'smooth' convergence [steepest descent step]

Calais February 7, 2005

THEORY

ALGORITHM: 12 . BCGSTAB

- 1. Compute $r_0 := b Ax_0$; r_0^* arbitrary;
- 2. $p_0 := r_0$.
- 3. For $j = 0, 1, \ldots$, until convergence Do:
- $\alpha_i := (r_i, r_0^*)/(Ap_i, r_0^*)$
- $5. s_i := r_i \alpha_i A p_i$
- 6. $\omega_i := (As_i, s_i)/(As_i, As_i)$
- 7. $x_{i+1} := x_i + \alpha_i p_i + \omega_i s_i$
- 8. $r_{i+1} := s_i \omega_i A s_i$
- 9. $\beta_j := \frac{(r_{j+1}, r_0^*)}{(r_i, r_0^*)} \times \frac{\alpha_j}{\omega_i}$
- 10. $p_{i+1} := r_{i+1} + \beta_i (p_j \omega_j A p_j)$
- 11. EndDo

Calais February 7, 2005 58

Convergence Theory for CG

- ightharpoonup Approximation of the form $x=x_0+p_{m-1}(A)r_0$. with $x_0=$ initial guess, $r_0 = b - Ax_0$;
- Optimality property:

$$x_m$$
 minimizes $\|x-x_*\|_A$ over x_0+K_m

Consequence: Standard result

Let x_m = m-th CG iterate, x_* = exact solution and

$$\eta = rac{\lambda_{min}}{\lambda_{max} - \lambda_{min}}$$

Then:
$$\|x_*-x_m\|_A \leq rac{\|x_*-x_0\|_A}{T_m(1+2\eta)}$$

where T_m = Chebyshev polynomial of degree m.

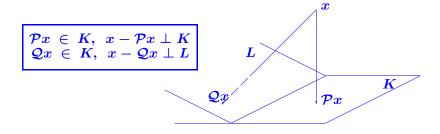
THEORY FOR NONHERMITIAN CASE

- Much more difficult!
- ▶ No convincing results on 'global convergence' for many algorithms (bi-CG, FOM, etc..)
- Can get a general a-priori a-posteriori error bound

Calais February 7, 2005 61

Two useful projectors

Let \mathcal{P} be the orthogonal projector onto K and \mathcal{Q} be the (oblique) projector onto K and orthogonally to L.



Convergence results for nonsymmetric case

- Methods based on minimum residual better understood.
- If $(A + A^T)$ is positive definite $(Ax, x) > 0 \ \forall x \neq 0$, all minimum residual-type methods (ORTHOMIN, ORTHODIR, GCR, GMRES,...), + their restarted and truncated versions, converge.
- Convergence results based on comparison with steepest descent [Eisenstat, Elman, Schultz 1982] → not sharp.

Minimum residual methods: if $A = X\Lambda X^{-1}$, Λ diagonal, then

$$\|b-Ax_m\|_2 \leq \mathsf{Cond}_2(X) \min_{p \in \mathcal{P}_{m-1}, p(0)=1} \quad max_{\lambda \in \Lambda(A)} |p(\lambda)|$$

($\mathcal{P}_{m-1} \equiv$ set of polynomials of degree $\leq m-1$, $\Lambda(A) \equiv$ spectrum of A)

Calais February 7, 2005 62

The approximate problem in terms of P and Q

Approximate problem amounts to solving

$$\mathcal{Q}(b-Ax)=0, \ x \in K$$

or in operator form

$$\mathcal{Q}(b - A\mathcal{P}x) = 0$$

Question: what accuracy can one expect?

 \blacktriangleright If x^* is the exact solution, then we cannot get better accuracy than $||(I - P)x^*||_2$, i.e.,

$$\| ilde{x}-x^*\|_2 \geq \|(I-\mathcal{P})x^*\|_2$$

THEOREM. Let $\gamma = \|\mathcal{Q}A(I-\mathcal{P})\|_2$ and assume that b belongs to K. Then the residual norm of the exact solution x^* for the (approximate) linear operator A_m satisfies the inequality,

$$\|b-A_mx^*\|_2 \leq \gamma \|(I-\mathcal{P})x^*\|_2$$

▶ In other words "if approximate problem is not poorly conditioned and if $\|(I-\mathcal{P})x^*\|_2$ is small then we will obtain a good approximate solution".

Calais February 7, 2005 65

CGNR and CGNE

Can use CG to solve normal equations. Two well-known options.

(1) CGNR: Conjugate Gradient method on

$$A^T A x = A^T b$$

(2) CGNE: Let $x = A^T y$ and use conjugate gradient method on

$$AA^Ty = b$$

- **▶** Different optimality properties
- Various 'efficient' formulations in both cases

Methods based on the normal equations

It is possible to obtain the solution of Ax = b from the equivalent system:

$$A^T A x = A^T b$$

or

$$oxed{AA^Ty=b\ ,x=A^Ty}$$

- ▶ Methods based on these approaches are usually slower than previous ones. (Condition number of system is squared)
- \blacktriangleright Exception: when A is strongly indefinite (extreme case: A is orthogonal, $A^TA = I \rightarrow$ convergence in 1 step).

Calais February 7, 2005

ALGORITHM: 13 . CGNR

- 1. Compute $r_0 = b Ax_0$, $z_0 = A^T r_0$, $p_0 = z_0$.
- 2. For $i = 0, \ldots$, until convergence Do:
- $w_i = Ap_i$
- 4. $\alpha_i = \|z_i\|^2/\|w_i\|_2^2$
- $5. x_{i+1} = x_i + \alpha_i p_i$
- 6. $r_{i+1} = r_i \alpha_i w_i$
- 7. $z_{i+1} = A^T r_{i+1}$
- 8. $\beta_i = \|z_{i+1}\|_2^2/\|z_i\|_2^2$
- 9. $p_{i+1} = z_{i+1} + \beta_i p_i$
- 10. EndDo

CGNR: The approximation x_m minimizes the residual norm $||b - Ax||_2$ over the affine Krylov subspace,

$$x_0 + \mathrm{span}\{A^T r_0, (A^T A) A^T r_0, \dots, (A^T A)^{m-1} A^T r_0\},$$

where $r_0 \equiv b - Ax_0$.

▶ The difference with GMRES is the subspace in which the residual norm is minimized. For GMRES the subspace is $x_0 + \mathcal{K}_m(A, r_0)$.

Calais February 7, 2005 69

CGNE produces the approximate solution x in the subspace $x_0 + A^T \mathcal{K}_m(AA^T, r_0) = x_0 + \mathcal{K}_m(A^TA, A^Tr_0)$ which minimizes $x_* - x$, where $x_* = A^{-1}b$, $r_0 = b - Ax_0$.

▶ Note: Same subspace as CGNR!

ALGORITHM: 14 CGNE (Craig's Method)

- 1. Compute $r_0 = b Ax_0$, $p_0 = A^T r_0$.
- 2. For $i = 0, 1, \ldots$, until convergence Do:
- $lpha_i = (r_i, r_i)/(p_i, p_i)$
- 4. $x_{i+1} = x_i + \alpha_i p_i$
- 5. $r_{i+1} = r_i \alpha_i A p_i$
- 6. $\beta_i = (r_{i+1}, r_{i+1})/(r_i, r_i)$
- 7. $p_{i+1} = A^T r_{i+1} + \beta_i p_i$
- 8. EndDo

Calais February 7, 2005 70

Block GMRES and Block Krylov Methods

Main Motivation: To solve linear systems with several righthand sides

$$Ax^{(i)} = b^{(i)}, \quad i = 1, \dots, p$$

or, in matrix form,

$$AX = B$$

Sometimes Block methods are used as a strategy for enhancing convergence even for the case p=1.

Let

$$R_0 \equiv [r_0^{(1)}, r_0^{(2)}, \dots, r_0^{(p)}]$$
 .

each column is $r_0^{(i)} = b^{(i)} - Ax_0^{(i)}.$

Krylov methods find an approximation to X from the subspace

$$K_m(A,R_0)=\mathsf{span}\{R_0,AR_0,\ldots,A^{m-1}R_0\}$$

▶ For example Block-GMRES (BGMRES) £nds X to

minimize
$$\|B-AX\|_F$$
 for $X\in X_0+K_m(A,R_0)$

- **▶** Various implementations of BGMRES exist
- ► Simplest one is based on Ruhe's variant of the Block Arnoldi procedure.

- ightharpoonup p = 1 coincides with standard Arnoldi process.
- lnteresting feature: dimension of the subspace need not be a multiple of the block-size p.

At the end of the algorithm, we have the relation

$$AV_m = V_{m+p}\bar{H}_m$$
.

- ightharpoonup The matrix $ar{H}_m$ is now of size (m+p) imes m.
- **▶** Each approximate solution has the form

$$x^{(i)} = x_0^{(i)} + V_m y^{(i)},$$

where $y^{(i)}$ must minimize the norm $\|b^{(i)} - Ax^{(i)}\|_2$.

▶ Plane rotations can be used for this purpose as in the standard GMRES [p rotations are needed for each step.]

Calais February 7, 2005

ALGORITHM: 15 . Block Arnoldi-Ruhe's variant

- 1. Choose p initial orthonormal vectors $\{v_i\}_{i=1,\dots,p}$.
- 2. For j = p, p + 1, ..., m Do:
- 3. Set k := j p + 1;
- 4. Compute $w := Av_k$;
- 5. For i = 1, 2, ..., j Do:
- $h_{i,k} := (w, v_i)$
- $7. w := w h_{i,k}v_i$
- 8. EndDo
- 9. Compute $h_{i+1,k} := \|w\|_2$ and $v_{i+1} := w/h_{i+1,k}$.
- 10. EndDo