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THE PROBLEM

We consider the linear system
Ax =1b

where A is N x N and can be
e Real symmetric positive definite

e Real nonsymmetric

e Complex

Focus: |A is large and sparse, possibly with an irregular structure
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PROJECTION METHODS

Initial Problem: b— Ax =0

Given two subspaces K and L of RY defne the approximate problem:

Findz € K suchthatb — Az L L

» Leads to a small linear system (‘projected problems’) This is a

basic projection step. Typically: sequence of such steps are applied

» With a nonzero initial guess x,, the approximate problem is
Find 2z € xy+ K suchthat b— Az 1 L

Write £ = o + 6 and 79 = b — Axy. Leads to a system for §:
Findd € K suchthatry— A6 L L
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PROTOTYPE PROJECTION METHOD

Until Convergence Do:

1. Select a pair of subspaces K, and L;

2.Choose bases V = [vy,...,v,] for K and W = [w1, ..., w,]
for L.
3. Compute
r«—b— Ax,

y — (WTav)"'wTy,

x— x+ Vy.
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Matrix representation:

oV = [vy,...,v,] abasis of K &

Let
oW = [wy,...,w,]| abasis of L

Then letting « be the approximate solution € = zo+ 6§ = o+ Vy

where y is a vector of R™, the Petrov-Galerkin condition yields,
WT(rg— AVy) =0

and therefore

T = xo+ V[WTAV]ile’I‘O

Remark: In practice WT AV is known from algorithm and has a sim-

ple structure [tridiagonal, Hessenberg,..]
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OPERATOR FORM REPRESENTATION

Let P be the orthogonal projector onto K and

Q the (oblique) projector onto K and orthogonally to L.

The P and Q projectors
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Approximate problem amounts to solving
Qb—Ax) =0, x € K

or in operator form
Q(b— APx) =0

Question: Jwhat accuracy can one expect?

Let * be the exact solution. Then

1) we cannot get better accuracy than ||(I — P)x*||», i.e.,
2 —z*l2 2 (T — P)z"|l2

2) the residual of the exact solution for the approximate problem satisfies:
b — QAPz||> < | QAL — P)ll2[|(I — P)z*||2
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One-dimensional projection processes

K = span{d}
and
L = span{e}

Then £ «— = 4+ ad and Petrov-Galerkin condition » — Ad L e yields

o= (Xz}i)

Three popular choices:

(I) Steepest descent. A is SPD. Take at each stepd = rand e = r.

r«—b— Ax,
Iteration: | « «— (r,7)/(Ar,7)
Tr <— T+ ar

w Each step minimizes f(z) = ||z — z*||3 = (A(z — z*), (z — x¥))

in direction —V f. Convergence guaranteed if A is SPD.
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Two I mportant Particular Cases.

1.|L = AK]. Then [|b — AZ||2 = min.cx ||b — Az||2
— Class of Minimal Residual Methods: CR, GCR, ORTHOMIN,
GMRES, CGNR, ...

2. —s Class of Galerkin or Orthogonal projection methods.

When A is SPD then ||z* — Z||4 = min,ck ||z* — z|| a.
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(I Residual norm steepest descent . A is arbitrary (nonsingular). Take
at each step d = ATr and e = Ad.

re—b— Azx,d = ATr
Iteration: | o « |[|d||2/||Ad)|?
r<+— x+ ad

w Each step minimizes f(z) = ||b — Az||3 in direction —V f.

» Important Note: equivalent to usual steepest descent applied to

normal equations ATAz = ATb .

» Converges under the condition that A is nonsingular.
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() Minimal residual iteration. A positive definite (A + AT is SPD). KRYLOV SUBSPACE METHODS

Take at each stepd = r and e = Ar.

r <« b— Ax, Principle: | Projection methods on Krylov subspaces, i.e., on
Iteration: | « «— (Ar,r)/(Ar, Ar)
Tz +ar Km(A, ’Ul) = Span{vl, Avyy e, Am_l’Ul}

o T 9 .
» Each step minimizes f(z) = [|b — Az|; in direction r. e probably the most important class of iterative methods.

w Converges under the condition that A + A” is SPD. e many variants exist depending on the subspace L.

Simple properties of K, | Let p = deg. of minimal polynomial of

v

e K,, = {p(A)v|p = polynomial of degree < m — 1}
e K,, = K, for all m > u. Moreover, K, is invariant under A.

edim(K,,) = miff u > m.
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A little review: Gram-Schmidt process ALSOR'THl'V' 2 '\[:"d'f'ed Gram-Schmidt
. Forj =1,...,m Do:

1
— Goal: given X = [x4,...,x,,] compute an orthonormal set Q = 2 qj =,
[q1, - - - » gm] Which spans the same susbpace. 3 Foréi=1,...,j —1Do
4 rij = (4j, qi)
ALGORITHM : 1. Classical Gram-Schmidt 5. 4j :=q; — rijq
1. Forj=1,...,mDo: 6 EndDo
2 Compute r;; = (xj,q;) fori=1,...,5 —1 7 ri; = ||gjll2. If rj; == 0 exit
3.  Compute §; = z; — =I=] 74q; 8. g = d;/ri;
4. ri; = 1gjll2 If rj; == 0 exit 9. EndDo
5 g =4qi/rj
6. EndDo
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Let:
X = [wh oo 7$m] (TL X m matriX)
Q = [q1,- -, qm] (n X m matrix)

R = {r;;} (m X m upper triangular matrix)

» At each step,

Result:
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Result of orthogonalization process (Arnoldi’s algorithm:)

1. V,, = [v1,v2, ..., vy] Orthonormal basis of K,,.
2. Avm = m—l—lﬁm

3.VI'AV,, = H,, = H,,— last row.

ARNOLDI'SALGORITHM

» Goal: to compute an orthogonal basis of K,,.

w Input: Initial vector vy, with ||v;||. = 1 and m.

Forj =1,...,mdo

e Compute w := Av;

h;;:= (w,v;
efori=1,...,4,do i 1= (w0, 00)

w = w — h;v;
® hji1; = |lwllzand vj11 = w/hji1,;

Calais February 7, 2005

Arnoldi’s Method (L, = Kn)

From Petrov-Galerkin condition when L., = K,,, we get

T = To + Vi H,' V.7

If, in addition we choose v; = ro/||ro|l2 = ro/B in Arnoldi’s algo-
rithm, then
Tm = o + BVinH, 'e:

Several algorithms mathematically equivalent to this approach:
* FOM [Saad, 1981] (above formulation)
* Young and Jea’s ORTHORES [1982].

* Axelsson’s projection method [1981].
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Minimal residual methods (L., = AK,,) Restarting and Truncating

When L,, = AK,,, we let W,,, = AV,,, and obtain relation Difficulty: As m increases, storage and work per step increase fast.
T = Lo+ Vi [W AV, ] 7' W rg = 20+ Vi [(AVin) T AV, ~H(AV,,) o, First remedy: Restarting. Fix the dimension m of the subspace
Use again v := ro/(8 := ||ro|2) and the relation AVin = Vi1 Ho: ALGORITHM : 3. Restarted GMRES (resp. Arnoldi)

T = 20 + Vi [HL H,,) " HE Bey = 20 + Vintm 1. Start/Restart: Compute ro = b — Az, and vy = 7o/ (8 := ||7ro||2).

2. Arnoldi Process. generate H,, and V,,.
3. Compute y.,, = H'Be; (FOM), or
Ym = argmin||Be; — I-_Imy||2 (GMRES)

where y,, minimizes ||Be; — H,,y||. over y € R™. Therefore, (Gen-

eralized Minimal Residual method (GMRES) [Saad-Schultz, 1983]):

ZTm = To + VinYym  Where y,, : min, ||Ber — Hyyl|2 4. x,, = x0+ Vintym
. If |7l < €llr stop else set ¢y := x,,, and go to 1.
_ o Axelsson’s CGLS e Orthomin (1980) I7mllz < €flmoll> stop 0 9
Equivalent methods:
e Orthodir e GCR
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Second remedy: Truncate the orthogonalization Thedirect version of IOM [DIOM]:

The formula for v;, is replaced by Writing the LU decomposition of H,, as H,,, = L,,U,,, we get
. Tm = o+ ViuU,' L 'Be; = xo+ Pnzm
J
hj1,jvj41 = Avj — X hiju;
i=j—k+1 w Structure of L,,, U,, when k = 3
1 r T
— each v; is made orthogonal to the previous k v;’s.
x 1 r x x
— @, still computed as x,,, = o + V;, H,,,' Be. r 1 r T T
— It can be shown that this is again an oblique projection process. L = z 1 Um = ror oz
xz 1 r T x
» |IOM (Incomplete Orthogonalization Method) = replace orthogo- L
i r X
nalization in FOM, by the above truncated (or ‘incomplete’) orthog- 1
T X

onalization.
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— 1 m—1
DPm = U, [Um - Zi:m—k—i—l uzmpz]

» Can update x,, at each step:

Ty = Typ—1 + Cmpm

Note: ISeveraI existing pairs of methods have a similar link: they

are based on the LU, or other, factorizations of the H,,, matrix

» CG-like formulation of IOM called DIOM [Saad, 1982]
» ORTHORES(K) [Young & Jea ’'82] equivalent to DIOM(k)
» SYMMLQ [Paige and Saunders, '77] uses LQ factorization of H,,.

» Can incorporate partial pivoting in LU factorization of H,,
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» Rotation matrices of dimension m + 1. Define (with s? 4 ¢ = 1):

1

C; S; «— row ¢

—8; C; —rowz+1

» Multiply H,, and right-hand side g, = Be; by a sequence of such

matrices from the left. » s;, ¢c; selected to eliminate h;11;
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Some implementation details: GMRES

» Issue 1 : how to solve least-squares problem ?

» Issue 2: How to compute residual norm (without computing solu-

tion at each step)?
» Several solutions to both issues. Simplest: use Givens rotations.

» Recall: we want to solve least-squares problem

miny | Be; — Hpmyll

» Transform the problem into upper triangular one.
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hi1 hiz hiz his his
ha1 hoz hoz hay has
_ hsz hss hss hss
hys hyy hys
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» 1-st Rotation
(&1 S1

—S81 C1

1
with
hay hii

Cha o A
JRE + R3S T R+ RE
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Define

hYY R R A A .8
ny hE) RS gy —518 @ = Lafls.--
gL — hsy hzz hss hss g — 0 R, = Hr(nm) = QmHm,
m has ha  has | 0 Gm = Qm(Ber) = (Vs -+ s Yms1)" -
hsi  hss 0 _ N
» Since Q,, is unitary,
fro2 0 min [|Ber — Hoyllz = min [|gm — Bomylfo-
w repeat with €2z, ..., £2;. Result: w Delete last row and solve resulting triangular system.
Y rE nY AY AP o Ry = Gm
hy RS hE) KY) Y
a0 h§) n) g o |
h hE |
hy
0 ~6 Calais February 7, 2005

PROPOSITION: THE SYMMETRIC CASE: Observation

1. The rank of AV, is equal to the rank of R,,. In particular, if
rmm = 0 then A must be singular. Observe: When A is real symmetric then in Arnoldi’s method:
H,, =VZTrAv,

2. The vector y,, which minimizes ||Be; — H,,y||» is given by

_ must be symmetric. Therefore
Ym = legm- y

3. The residual vector at step m satisfies Theorem. When Arnoldi’s algorithm is applied to a (real) symmetric

_ . matrix then the matrix H,, is symmetric tridiagonal:
b— Az = Viny (Ber — Hiym) = Vi 1Qy, (Ym41€m+1)

h;j=0 1<1i<j—1; and hjjt1=hjt, J=1,...,m
and, as a result,

|6 — Azp|l2 = |Ymtal-
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» We can write

ay (B
Bz oz (B3
Bs a3 By

H,, = @)

Igm am
The v;’s satisfy a three-term recurrence [Lanczos Algorithm]:

Bjt1vj1 = Avj — ajvj — Bjvj

— simplified version of Arnoldi’s algorithm for sym. systems.

Symmetric matrix + Arnoldi — Symmetric Lanczos
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Lanczos algorithm for linear systems

» Usual orthogonal projection method setting:

o L,, = K,, = span{ry, Arg, ..., A" 1y}
e Basis V,,, = [vy,...,v,] Oof K, generated by the Lanczos algo-
rithm

» Three different possible implementations.

(1) Arnoldi-like; (2) Exploit tridigonal nature of H,, (DIOM); (3) Con-

jugate gradient.
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The Lanczos algorithm

ALGORITHM : 4. Lanczos

Choose an initial vector v, of norm unity. Set 3, = 0,v9 =0
Forjy =1,2,...,m Do:

'wj = AUj — 5jvj,1

w; 1= w; — ;U
Bj+1 = ||lwj]|2. If Bj4+1 = 0 then Stop
Vjt1 = wi/Bin

1

2

3

4 ;= (w),v5)
5

6

7

8. EndDo
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ALGORITHM : 5. Lanczos Method for Linear Systems

Compute rg = b — Axy, 3 := ||rol|2, and vy := r¢/B
Forjy =1,2,...,m Do:
w; = A’Uj — ,Qj’l)j_l (lfj = 1set Bivg = 0)

o = (wj,vj)

Bj+1 = ||lwjl|2. If Bj4+1 = 0setm := jand goto 9
Vi1 = w;/Bin
EndDo

1
2
3
4
5. wj = W, — Qv
6
7
8
9. SetT,, = tridiag(Bi, ai, Bi+1), and V,, = [v1,..., V).

10. Compute y,,, = T,,,*(Be1) and z,, = o + VinYm
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ALGORITHM : 6. D-Lanczos

1
2
3
4
5.
6
7
8
9

Compute rg = b — Axy, {1 := B := ||7ol|2, and vy := 1r¢/3
SetA\;1=01=0,py=0
Form = 1,2,..., until convergence Do:
Compute w := Av,, — BiUm—1 and a,,, = (w, vyy,)
If m > 1 then compute \,,, = % and ¢ = —AmCm-_1
M = Qm — AmPBm
Pm =1, (Vm — BmPm-1)
Ty = Tm—1 + CmPm

If x,,, has converged then Stop

10. w:=w — a,v,

11. /Bm—i-l = ||w||2, Um+1 = w/ﬂm+1
12. EndDo
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The Conjugate Gradient Algorithm (A S.P.D.)

1

2

CStart: rg := b — Az, po := To.
. Iterate: Until convergence do,
@) aj = (rj,75)/(Apj> pj)

(b) zjt1 == x; + a;p;

(©) 71 :=1j — aj Ap;

(d) Bj := (rjt1,mj41) /(55 75)

(€) pjt1 :=7jt1 + Bip;

e r; = scaling X v;y,. The r;’s are orthogonal.

e The p;’s are A-conjugate, i.e., (Ap;,p;) = 0fori # j.
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The Conjugate Gradient Algorithm (A S.P.D.)

» Note: the p;’s are A-orthogonal
» The r!’s are orthogonal.
» And we have x,,, = mn_1 + EnPm

1. Pm = T"m—1 + IBmpm—l
So there must be an update of the form:| 2. x,, = m_1 + EmPm

3. Pm =Tm_1— EnADn
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METHODSBASED ON LANCZOSBIORTHOGONALIZATION




ALGORITHM : 7. The Lanczos Bi-Orthogonalization Procedure

Choose two vectors vy, w; such that (vy, w;) = 1.
Set,@lzélEO,’u}o:’UgEO
Forjy =1,2,...,m Do:

aj = (Avj, wj)

1

2

3

4

5. Vjp1 = Av; — v — Bjvia

6 Wi = ATw; — ajw; — §;w;_
7. 8jy1 = |(Dj41,Wji1)|2 If §;11 = O Stop
8. Bjs1 = (0541, Wj11) /0511

9. wjt1 =Wjn1/Bin

10.  vjy1 = 0j41/011
11. EndDo
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If the algorithm does not break down before step m, then
the vectors v;,7 = 1,...,m, and w;,j = 1,...,m, are

biorthogonal, i.e.,

Moreover, {v;}i=12,..m IS a basis of K,,(A,v;) and
{w;}iz1,2,..,m is a basis of K,,, (AT, w,) and

AVy, = VT + S 1Vmirel,

ATW,,, = W TL + Brs1wmyiel,

WrAV,, =T, .

» Extension of the symmetric Lanczos algorithm

» Builds a pair of biorthogonal bases for the two subspaces

Km(A,v) and ICm(AT, wi)

w Different ways to choose 6,1, 3;41 in lines 7 and 8.

Let
a; B

02 o B3

6m—1 Amp—1 /Bm

O Oy

wv; € Kn(A,v1)and w; € IC, (AT, wy).

The Lanczos Algorithm for Linear Systems

ALGORITHM : 8« Lanczos Algorithm for Linear Systems

1. Compute rg = b — Axzoand 3 := ||ro||2

2. Run m steps of the nonsymmetric Lanczos Algorithm i.e.,
3 Start with v, := 7/, and any w; such that (v, w;) =1
4, Generate the Lanczos vectors v, ..., Um, Wiy« .., W

5 and the tridiagonal matrix T;,, from Algorithm ??.

6. Compute y,,, = T.,.*(Be1) and x,, := xo + VinYm.

» BCG can be derived from the Lanczos Algorithm similarly to CG

in symmetric case.
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The BCG and QMR Algorithms

» Let ( LU factorization of T,,). Define

Then, solution is
Tm = Lo + VmTﬁl(ﬁel) = Zo + VmU,;llL;Ll(ﬁel) = To + PmL;Ll(IBel)

» x,, iS updatable from x,,_; similar to the CG algorithm.

» 7; and r; are in the same direction as v, and w;, respectively.

» they form a biorthogonal sequence.
» The p;’s p;’s are are A-conjugate.

w» Utilizing this information, a CG-like algorithm can be easily de-

rived from the Lanczos procedure.
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Quasi-Minimal Residual Algorithm

» The Lanczos algorithm gives the relations AV,,, = V,, 1T, with
_ _ T,
T, = (m + 1) X m tridiagonal matrix T,,, = "

T
5m+16m

w Letv; = Broand ¢ = ¢ + V,,,y. Residual norm ||b — Azx||; is

7o — AVyllz = 1Bv1 — VinpaToyllz = || Vi1 (Ber — Tiny) |2

» Column-vectors of V,,,.; are not orthonormal (% GMRES).
w But: reasonable idea to minimize the function J(y) = ||Be: — Tyll2

» Quasi-Minimal Residual Algorithm (Freund, 1990).
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ALGORITHM : 9. BiConjugate Gradient (BCG)
1. Compute 7y := b — Ax,. Choose r; such that (ro, r5) # 0.

2. Set, pg := 71y, py =T
For j = 0,1,..., until convergence Do:,
aj = (r5,77)/(Apj, P})
Tj41 1= Tj + Q;p;

* e— ¥
Tit1 =15

3

4

5

6. Tjit1 = Tj; — 0;Ap;
7 a]-ATp’]‘f

8. By = (rysnriy)/(rr?)
9 Pjt+1 = Tjt1 + Bipj

10. pjiq += i+ Bipj

11. EndDo
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ALGORITHM :10. QMR

Compute rg = b — Axy and v := ||rol|2, w1 1= v1 := ro/™
Form =1, 2,..., until convergence Do:
Compute .y 0p+1 @and v, 11, w41 @S in Lanczos Algor. [alg. ?7?]

Update the QR factorization of T;,, i.e.,

1
2
3
4
5. Apply ©;, i = m — 2, m — 1 to the m-th column of T,,
6 Compute the rotation coefficients ¢,,, s,

7 Apply rotation £2,,, to T,, and g,,, i.e., compute:

8 Y1l = —SmYmi Ym ‘= CmYm; and a,, = CnQm + Smmat
9 P = (vm — Z?;;ll_2 timpi) [tmm

10. =z, = -1 + YmPm

11.  If |yma1| is small enough Stop

12. EndDo
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Transpose-Free Variants

» BCG and QMR require a matrix-by-vector product with
A and AT at each step. The products with AT do not
contribute directly to x,,. » They allow to determine the
scalars (a; and 3; in BCG).

» QUESTION: is it possible to bypass the use of AT?

» Motivation: in nonlinear equations, A is often not available ex-

plicitly but via the Frechet derivative:
F(up + ev) — F(ug)

€

J(up)v =
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w Define 7; = ¢;j(A)ro, pj = mj(A)ro, 75 = ¢;(AT)rs, pi =

TI']‘(AT)T';.

Scalar o; in BCG is given by

o, — (@i(A)ro, 65 (AT)r5) _ (&(A)ro, 75)
7 (A (A)ro, mi(AT)TE) (AT2(A)ro, 5)

w Possible to get a recursion for the ¢?(A)r, and 75 (A)r?
Gita(t) = @;(t) — ajtm;(t),
mi+1(t) = @j41(t) + Bim;(t)
Square the equalities
¢7,,(t) = &5(t) — 2atm;(t)p;(t) + aft*n: (1),
() = 61, (8) + 2800 ()m;(t) + Bim;(t)*.

» Problem: Cross terms
Calais February 7, 2005

Conjugate Gradient Squared

* Clever variant of BCG which avoids using AT [Sonneveld, 1984].

In BCG:
T = Pi(A)"“o

where p; = polynomial of degree 3.

In CGS:
r; = p2(A)ro
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w Solution: Let ¢;1(t)7;(t), be a third member of the recurrence.
For 7;(t)¢;(t), note:

dj(t)m;i(t) = bj(t) (9 () + Bj—1mj—1(t)) = ¢5(t)+Bj-10;(t)mj—1(t).
» Result:

2 2 2 2
P = ) — it (207 + 28 1¢5mi 1 — ayt )
Gjim; = ¢ + Bi_1¢mi—1 — oyt T}

2 2 22
v = @i+ 28057 + BT

» Define:
rj = 3 (A)ro, pj =i (A)ro, q; = ir1(A)mi(A)ro
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Recurrences become:
Tiv1 = 15— ajA (21 + 2B 1qj1 — a;A pj) ,
qg; = rj + Bj-19;-1 — a;A pj,
Pj+1 = Tj+1 + 285q; + ﬁJZ-Pj-
Define auxiliary vector d; = 2r; 4+ 28;_19;—1 — a;Ap;
» Sequence of operations to compute the approximate solution,
starting with ¢ := b — Axg, po := 70, go := 0, Bp := 0.
1. o = (r5,75)/(Apj> 75)

2.dj = 2rj +2Bj_1qj—1 — ojAp; | 6.8 = (vj1,75)/ (), 75)

5. Tiy1 =75 — ajAdj

3.q; =7 + Bj-1qj—1 — o; Ap; 7.pj+1 = i1 + B5(29; + Bjp;).

4. Tj1 =T+ a]'dj
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ALGORITHM : 11. Conjugate Gradient Squared

1. Compute ry := b — Az, r; arbitrary.
2. Setpg:= ug:=7y.

3. Forj=0,1,2...,until convergence Do:
4 aj = (rj,75)/(Apj, 15)

5. g =uj — ;jAp;

6.  mjt1 =+ a;(u; + gj)

7. rip =71 — ajA(u; + qj)

8. B = (rjt1,7g)/ (75 75)

9. w1 =171+ 6545

10.  pj+1 = uj+1 + Bj(a; + Bips)

11. EndDo

» one more auxiliary vector, u; = r; + 3;-1g;—1. SO
d;j = u; + gqj,
qj = uj — @;Apj,
Pit1 = uj1 + Bi(q; + Bip;),

» vector d; is no longer needed.

o
EN
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w» Note: no matrix-by-vector products with AT but two matrix-by-

vector products with A, at each step.

Vector: «— Polynomial in BCG :
q; ~— Ti(t)Pi—1(t)
u; —— P (t)

r; — Fiz (t)

where 7;(t) = residual polynomial at step ¢ for BCG, .i.e., r; = 7;(A)ro,

and p;(t) = conjugate direction polynomial at step ¢, i.e., p; = p;(A)ro.



BCGSTAB (van der Vorst, 1992)

» In CGS: residual polynomial of BCG is squared. w bad behavior

in case of irregular convergence.

» Bi-Conjugate Gradient Stabilized (BCGSTAB) = a variation of CGS

which avoids this difficulty. w Derivation similar to CGS.

» Residuals in BCGSTAB are of the form, | = 1;(A)p;(A)ro | in

which, ¢;(t) = BCG residual polynomial, and ..

w .. ¢;(t) = a new polynomial defined recursively as
Pit1(t) = (1 — wit);(t)

w; chosen to ‘smooth’ convergence [steepest descent step]
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THEORY

ALGORITHM :12. BCGSTAB

1. Compute ry := b — Axo; r; arbitrary;

2. po:i=To.
3. Forj =0,1,...,until convergence Do:
4. oy = (r4,75)/(Apj, T5)
5. sj i=1T; — 0 Ap;
6. wj := (Asj, sj)/(As;j, Asj)
7. Tji1 = T + jpj + w;s;
8. Tjt1 1= Sj — W;As;
S o 5V ]
9 Bi=Tam X o
10.  pj+1:=r1jp1 + Bi(p; — w;Ap;))
11. EndDo
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Convergence Theory for CG

» Approximation of the form x = xg + py—1(A)re. with o = initial

guess, rg = b — Axo;

» Optimality property:

T, Minimizes ||z — x.||a over o + K,

» [Consequence:| Standard result

Let x,, = m-th CG iterate, =, = exact solution and

n = Amin
Amcm: - Am’in
[l — @olla
Then: Ty — T A < = 0=
o= 2nlla = 7, (1 4 2m)

where T,,, = Chebyshev polynomial of degree m.
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THEORY FOR NONHERMITIAN CASE

» Much more difficult!

» No convincing results on ‘global convergence’ for many algorithms
(bi-CG, FOM, etc..)

» Can get a general a-priori — a-posteriori error bound
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Two useful projectors

Let P be the orthogonal projector onto K and

Q be the (oblique) projector onto K and orthogonally to L.
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Convergence results for nonsymmetric case

» Methods based on minimum residual better understood.

w If (A + AT) is positive definite ((Az, ) > 0 Vz # 0), all minimum
residual-type methods (ORTHOMIN, ORTHODIR, GCR, GMRES,...), +

their restarted and truncated versions, converge.

» Convergence results based on comparison with steepest descent

[Eisenstat, ElIman, Schultz 1982] — not sharp.

Minimum residual methods: if A = XA X!, A diagonal, then

b — Azp,||2 < Condy(X) mingep,, ;p(0)=1 maa:AeA(A)|p()\)|

( Pm—1 = set of polynomials of degree < m — 1, A(A) = spectrum

of A)
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The approximate problem in terms of P and 9

» Approximate problem amounts to solving
Qb— Ax) =0, ¢ € K

or in operator form
Qb — APx) =0
Question: what accuracy can one expect?
» If * is the exact solution, then we cannot get better accuracy

than || (I — P)x*||,, i.e.,
2 —x*l2 2 (I —P)z"|l2




THEOREM. Let vy = ||QA(I —P)||2 and assume that
b belongs to K. Then the residual norm of the exact
solution x* for the (approximate) linear operator A,,
satisfies the inequality,

16— Ama*[l2 < AN — P)a*||

» In other words “if approximate problem is not poorly conditioned
and if || (I — P)z*||2 is small then we will obtain a good approximate

solution”.
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CGNR and CGNE

Can use CG to solve normal equations. Two well-known options.

(1) CGNR: Conjugate Gradient method on
ATAx = ATb

(2) CGNE: Let x = ATy and use conjugate gradient method on
AATy =b

w» Different optimality properties

» Various ‘efficient’ formulations in both cases

Calais February 7, 2005

Methods based on the normal equations

It is possible to obtain the solution of Az = b from the equivalent

system:

ATAx = ATh

or

AATy =b,xz = ATy

» Methods based on these approaches are usually slower than pre-

vious ones. (Condition number of system is squared)

» Exception: when A is strongly indefinite (extreme case: A is

orthogonal, AT A = I — convergence in 1 step).
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ALGORITHM :13. CGNR

Compute ry = b — Axzg, zo = ATro, po = 2o.
For ¢ = 0,..., until convergence Do:
w; = Ap;

a; = ||z /]|will3

Tiyl = T — 0GW;

1

2

3

4

S, ®Tiy1 =z + aup;
6

7 zip1 = ATri
8

9

Bi = llzinall3/ 1 =ill3,
Pit1 = Ziy1 + Bipi
10. EndDo
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CGNR: The approximation x,, minimizes the residual

norm ||b — Axz||, over the affine Krylov subspace,
xo + span{ATry, (ATA)ATry, ..., (ATA)™1ATry},
where ro = b — Ax.

» The difference with GMRES is the subspace in which the residual

norm is minimized. For GMRES the subspace is x¢ + K,,,(A, 70).
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CGNE produces the approximate solution x in the subspace
zo + ATKm(AAT, ro) = zo + Kn(ATA, ATr)| which minimizes

z, — x, where , = A='b, 7o = b — Aux,.

» Note: Same subspace as CGNR!
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ALGORITHM : 14. CGNE (Craig’s Method)

1. Compute ro = b — Axg, po = ATr.

2. Fori=0,1,...,until convergence Do:
3. a; = (ri, 1)/ (Pir Pi)

4 Tit1 = T; + Q;p;

S) Tiy1 = Ty — 0 Ap;

6.  Bi= (riv1,7iv1)/ (i, i)

7 piy1 = ATri + Bipi

8. EndDo

Calais February 7, 2005

Block GMRES and Block Krylov Methods

Main Motivation: To solve linear systems with several right-

hand sides
Az® = b(i), t=1,...,p

or, in matrix form,
AX =B

» Sometimes Block methods are used as a strategy for

enhancing convergence even for the case p = 1.

Let
Ry = [r{V,r®, ... ,rP)].

each column is r{’ = b® — Ax?.

Krylov methods find an approximation to X from the subspace



K,.(A, Ry) = span{Ry, ARy,..., A" 'Ry}

» For example Block-GMRES (BGMRES) £nds X to
minimize |B — AX||lr for X € Xo+ K,(A, Ryp)

» Various implementations of BGMRES exist

» Simplest one is based on Ruhe’s variant of the Block Arnoldi

procedure.

» p = 1 coincides with standard Arnoldi process.

» Interesting feature: dimension of the subspace need not be a

multiple of the block-size p.
At the end of the algorithm, we have the relation
AV, = Vo pHp.
w The matrix H,, is now of size (m + p) x m.
» Each approximate solution has the form
() — wgi) + Viy®,
where y® must minimize the norm ||b® — Az®||,.

» Plane rotations can be used for this purpose as in the standard

GMRES [p rotations are needed for each step.]
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10.

ALGORITHM : 15. Block Arnoldi—Ruhe’s variant

© © N o g kM o NP

Choose p initial orthonormal vectors {v;};=1....p.
Forj =p,p+1,...,mDo:

Setk: =375 —p+1,

Compute w := Awyg;

Forz:=1,2,...,7 Do:

hig == (w,v;)
w = w — h;Kv;
EndDo
Compute hjiq1x := ||w|l2 and vj4q : = w/hji1 k.
EndDo




