PARALLEL PRECONDITIONERS

| ntroduction

w In recent years: Big thrust of parallel computing techniques in

applications areas. Problems becoming larger and harder

w In general: very large machines (e.g. Cray T3E) are gone. Excep-

tion: big US government labs.

w Replaced by ‘medium’ size machine (e.g. IBM SP2, SGI Origin)
w Programming model: Message-passing seems to be King (MPI)
w Open MP and threads for small number of processors

w Important new reality: parallel programming has penetrated the

‘applications’ areas [Sciences and Engineering + industry]

m February 7, 2005 m

Parallel preconditioners. A few approaches

“Parallel matrix computation’ viewpoint: I

e Local preconditioners: Polynomial (in the 80s), Sparse Approxi-

mate Inverses, [M. Benzi-Tuma & al ’99., E. Chow ’00]

e Distributed versions of ILU [Ma & YS '94, Hysom & Pothen ’00]

e Use of multicoloring to unaravel parallelism

m February 7, 2005 m

Domain Decomposition ideas: |

e Schwarz-type Preconditioners [e.g. Widlund, Bramble-Pasciak-
Xu, X. Cal, D. Keyes, Smith, ...]

e Schur-complement techniques [Gropp & Smith, Ferhatetal. (FETI),
T.F. Chan et al., YS and Sosonkina 97, J. Zhang ’00, ...]

Multigrid / AMG viewpoint: I

e Multi-level Multigrid-like preconditioners [e.g., Shadid-Tuminaro et

al (Aztec project), ...]

w In practice: Variants of additive Schwarz very common (simplic-

ity)

m February 7, 2005 m

Intrinsically parallel preconditioners

Some alternatives I

(1) Polynomial preconditioners;
(2) Approximate inverse preconditioners;
(3) Multi-coloring + independent set ordering;

(4) Domain decomposition approach.

m February 7, 2005 m

POLYNOMIAL PRECONDITIONING
Principle: IM—1 = s(A) where s is a (low) degree polynomial:

s(A)Ax = s(A)b

Problem: Jhow to obtain s? Note: s(A) =~ A~}

* Chebyshev polynomials
w Several approaches. * Least squares polynomials

* Others
w Polynomial preconditioners are seldom used in practice.

m February 7, 2005 m

Multicoloring

w General technique that can be exploited in many different ways

to introduce parallelism — generally of order IN.

w Constitutes one of the most successful techniques (when appli-

cable) on (vector) supercomputers.

Simple example: ! Red-Black ordering.

18 (9) 19 10 20
(©) 15) @) 1) ®)
13 @) 1) s) 15)
@ 1y @ 12) ©

m February 7, 2005 m

Corresponding matrix

w Observe: L-U solves (or SOR sweeps) will require only diagonal

scalings + matrix-vector products with matrices of size N /2.

m February 7, 2005 m

Solution of Red-black systems

Red-Black ordering leads to equations of the form:

r olla)=l

D, and D, are diagonal.

Question: I How to solve such a system?

Method 1: Juse ILU(O) on this block system. O(IN) Parallelism.

w Often, the number of iterations is higher than with the natural

ordering. But still competitive for easy problems.

w Could use a more accurate preconditioner [e.g., ILUT]. However:

O(N) parallelism lost.

m February 7, 2005 m

Method 2: ISOR/SSOR(k) preconditioner.

w No such difficulty with SOR/SSOR...

w A 'more accurate preconditioner’ means more SOR/ SSOR steps.

[SOR(K) — k steps of SOR]. Can perform quite well.

2.0 |

GMRES(10)

15 |\

lteration times versus
k for SOR(k) precon-
ditioned GMRES

1.0 |

o3 —d cUoo

8 _—
"\ _GMRES(20). - -~~~

0.50 |

Number of SOR steps

m February 7, 2005 m

Method 3: I Eliminate the red unknowns from the system

w Reduced system: (Dy — FD;'E)xs = by — FD;'b;.

e Again a sparse linear system with half as many unknowns.

e Can often be efficiently solved with only diagonal preconditioning.

Question: | Can we recursively color the reduced system and get

|

a “second-level” reduced system?

Answer: IYes but need to generalize red-black ordering.

m February 7, 2005 m

How to generalize Red-Black ordering?

Answer: | Multicoloring |& Independent sets I

A greedy multicoloring technique:

e |nitially assign color number zero (uncolored) to every node.
e Choose an order in which to traverse the nodes.

e Scan all nodes in the chosen order and at every node 2z do
Color(i) = min{k # 0|k # Color(j),Vj € Adj (i)}

Adj(i) = set of nearest neighbors of : = {k | a;x # 0}.

m February 7, 2005 m

o

m February 7, 2005 m

| ndependent Sets

An independent set (I1S) Is a set of nodes that are not coupled by

an equation. The set is maximal if all other nodes in the graph are

coupled to a node of IS. If the unknowns of the IS are labeled first,

then the matrix will have the form:
= o
E C
In which B is a diagonal matrix, and E, F', and C are sparse.

Greedy algorithm: Scan all nodes in a certain order and at every
node 2 do: if 2 iIs not colored color it Red and color all its neighbors

Black. Independent set: set of red nodes. Complexity: O(|E|+ |V]).

m February 7, 2005 m

Domain Decomposition

Problem:
Au = finQ 23
u = uronI = 9. I'i3
Domain: |
Ql F12 92
Q=0 Q,
=1

w Domain decomposition or substructuring methods attempt to solve
a PDE problem (e.g.) on the entire domain from problem solutions

on the subdomains ;.

m February 7, 2005 m

30———By———B2—3
o) ———@3——9)
Q)@
(40——39——@39——37—(19——(0——&
(——8—o—B————y
(——(o—B——09—3
O—2—G—06——a—@

Discretization of domain

T T
- |
" I
. |
I . I
| |
| |
| |
| |
===
] n .._
" n lll"
| n EEE
" n L BN | "
1 n [l u|
“ n] l“
|] L I |] |
"l [l n "
|] [|
“ [] n “
"lll] "
P e 1
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
S 4
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
]]

Coeffcient Matrix

m February 7, 2005 m

Types of mappings

(b)

S

|
| AA | AN 0 a0
| © io——a 12 | (9) 19 1 {12
/7
| | | /7
| | | Ql 7/
| [[d
AL A A n e \’/ /e
i (5) (6 | 0 (8) | (5/ /}@/) @)
| | | yd
| | | /
| : - e
| [| ¢
] (D 2) § (3) @) (1) (2 3 (@)

(a) Vertex-based, (b) edge-based, and (c) element-based partitioning

m February 7, 2005 m

DISTRIBUTED SPARSE MATRICES

Generalization: Distributed Sparse Systems

w Simple illustration:
Block assignment

Assign equation ¢ and
unknown 2 to a given

processor.

m February 7, 2005 m

Partitioning a sparse matrix

w Use a graph partitioner to partition the adjacency graph:

e~ ~ =~ = |
(o) 10— 12) |
] :
B — 1| |
| | |
~ N = e
} (5) 6 | 0, (8) }
| | |
A R e
: NI
)|

w Can allow overlap.

w Partition can be very general.

m February 7, 2005 m

Given: a general mapping of pairs equation/unknown to proces-

sors. =| { set of p subsets of variables } |

w Subsets can be arbitrary + allow ‘overlap’. Mapping can be
obtained by graph partitioners.

Problem: build local data structures needed for iteration phase.

w Several graph partitioners available: Metis, Chaco, Scotch, ...

5] :_P o ™
PR ol g
z q:

AVaw, -
Y v,

vy,

m February 7, 2005 m

Distributed Sparse matrices (continued)

w Once a good partitioning is found, questions are:
1. How to represent this partitioning?

2. What is a good data structure for representing dis-

tributed sparse matrices?

3. How to set up the various “local objects” (matrices,

vectors, ..)

4. What can be done to prepare for communication that will

be required during execution?

m February 7, 2005 m

Two views of a distributed sparse matrix

External interface
nodes
/

Internal A

N VI e

w Local interface variables always ordered last.

m February 7, 2005 m

Local view of distributed matrix: !

-~ External data—— loca i External data

Data

The local matrix: |

| nter nal
Points

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

L ocal

I nt_erface Bext
points |

m February 7, 2005 m

Distributed Sparse Matrix-Vector Product Kernel

Algorithm:

1. Communicate: exchange boundary data.

Scatter xpoung to Neighbors - Gather x.,; from neighbors

2. Local matrix — vector product

Yy = Alocmloc

3. External matrix — vector product

y=1vy + Bewtxewt

NOTE: 1 and 2 are independent and can be overlapped.

m February 7, 2005 m

Distributed Sparse Matrix-Vector Product

Main part of the code:

call MSG bdx_send(nl oc, X, y, nproc, proc,ix,ipr,ptrn,ierr)

g do | ocal nmatrix-vector product for |ocal points

: call amux(nloc, x,y, al oc,jaloc,ial oc)

g recei ve the boundary 1 nformation

z call MSG bdx _receive(nloc, X,y, nproc, proc, i X,ipr,ptrn,ie
C do |l ocal matrix-vector product for external points

: nrow = nloc - nbnd + 1

] cal | amux1(nrow, x, y(nbnd), al oc, jal oc, 1 al oc(nloc+1))

return

m February 7, 2005 m

The local exchange information I

w List of adjacent processors (or subdomains)

w For each of these processors, lists of boundary nodes to be sent

/ received to /from adj. PE’s.

w The receiving processor must have a matrix ordered consistently

with the order in which data is received.

Requirements

w The ‘set-up’ routines should handle overlapping

w Should use minimal storage (only arrays of size nloc allowed).

m February 7, 2005 m

Main Operationsin (F) GMRES:

1. Saxpy’s — local operation — no communication
2. Dot products — global operation
3. Matrix-vector products — local operation — local communication

4. Preconditioning operations — locality varies.

m February 7, 2005 m

Distributed Dot Product

R LR call blasl function

—t
o
@)

I
%

—~~

>
X

Il ncx, y, incy);
A L call gl obal reduction
MPI _Allreduce(&l oc, & o, 1, MPI _DOUBLE, MPI _SUM conm ;

m February 7, 2005 m

PARALLEL PRECONDITIONERS

Three approaches.

e Schwarz Preconditioners
e Schur-complement based Preconditioners

e Multi-level ILU-type Preconditioners

w Observation: Often, in practical applications, only Schwarz Pre-

conditioners are used

m February 7, 2005 m

Domain-Decomposition-Type Preconditioners

Local view of distributed matrix:

- External data—- loca 3 External data ;

: ! Data |

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ Al Y
Xi Xi

Block Jacobi Iteration (Additive Schwarz):

1. Obtain external data y;

2. Compute (update) local residual r; = (b— Ax); = b;— A;x;— B;y;
3. Solve A;6; = r;

4. Update solution x; = x; + 9;

m February 7, 2005 m

w Multiplicative Schwarz. Need a coloring of the subdomains.

m February 7, 2005 m

Breaking the sequential color loop

w “Color” loop is sequential. Can be broken in several different

ways.

(1) Have a few subdomains per processors

(2) Separate interior nodes from interface nodes (2-level blocking)

Color 3

|

Color2 — K

Color #1
Interior nodes

A

Color 2

Color 3

(3) Use a block-GMRES algorithm - with Block-size = number of

colors. SOR step targets a different color on each column of the

block w» no iddle time.

m February 7, 2005 m

Local Solves

w Each local system A;d; = r; can be solved in three ways:

1. By a (sparse) direct solver
2. Using a standard preconditioned Krylov solver

3. Doing a backward-forward solution associated with an accurate

ILU (e.g. ILUT) precondioner

w We only use (2) with a small number of inner steps (up to 10) or

(3).

m February 7, 2005 m

Performance comparison for different machines

Overlapped Schwarz with ILU solver. Matrix VENKATO1
8 T T T T T T

a1
T
l

Time in seconds
N
I
|

BN

\

v\ +IBM-COW (FC)
% N

w
T
-

— *_-_. o
~._ 7 T = —xSGI-COW (HiPPI)
2t ~SP2 -

| |
0 5 10 15 20 25 30 35
Number of processors

62 »

N

time in seconds

Jacobi overlap with LU solver. Matrix VENKATO01. CRAY-T3E

precon
......... matvec

- —*——fgmres

15 20
Number of processors

35

25

20

[EEN
a1

[EEN
o

time in seconds

Multicolor SOR preconditioning. Matrix VENKATO1.

— — 0 — - multicolor segregated SOR, ILU solver and GMRES
— — X — — multicolor SOR with ILU solver

.................. multicolor segregated SOR, ILU solver

multicolor SOR

4 6 8 10 12 14
Number of processors

16

m February 7, 2005 m

SCHUR COMPLEMENT-BASED PRECONDITIONERS

Schur complement system

Local system can be written as

Az + XY eart = ;. (1)
3 locd !
-~ Externa data—— ; External data ;
%%%%%%%%%%%%%%%%%%%%%%%%% Al &Y
Xj Xi

x;= vector of local unknowns, y; ..+ = external interface variables,

and b; = local part of RHS.

w Local equations

B;, F;\ | u; 0 fi

+ =" 2

E; C;)\vy; Sien; Eijy; gi
w eliminate u; from the above system:

Siyi+ ¥ Ejy; =g — EB;'f; =g,

JEN;

where S; is the “local” Schur complement

S; = C; — E;B;'F,. (3)

m February 7, 2005 m

Structure of Schur complement system

» Schur complement system

Sy =g
with ,
S1 Ei2 ... Eip) (w1 g;
Eoy So voo FEop || Yo 9;
S — p
Ep Epo1p Sp) \Yp g,

m February 7, 2005 m

Simplest idea: Schur Complement | terations

u; | Internal variables

y; | Interface variables
w Do a global primary iteration (e.g., block-Jacobi)
w Then accelerate only the y variables (with a Krylov method)

Still need to precondition..

m February 7, 2005 m

Approximate Schur-LU

w Two-level method based on induced preconditioner. Global sys-

tem can also be viewed as

B, Fy
B F.
B F\[(u f ? ?
2 2] () wn o
E C)\y g
B, F,
E, E;, --- E, C

Block LU factorization of A:

R EH!

Preconditioning: I

B 0 I B'F
L = () and U = ()
FE Mg 0 I

with Mg = some approximation to S.

w Preconditioning to global system can be induced from any pre-

conditioning on Schur complement.

Rewrite local Schur system as

1

yi +S; ' ¥ Eyy;=S;" g — E:B; fi.
JEN;
w equivalent to Block-Jacobi preconditioner for Schur complement.

w Solve with, e.g., a few steps (e.g., 5) of GMRES

w Question: How to solve with S;?

Two approaches:

(1) can compute approximation S; = S; using approximate inverse

techniques (M. Sosonkina)

(2) we can simply use LU factorization of A;. Exploit the property:

LB,L- 0 UBz‘ Lgle
If A; = ‘
Engl Lsi 0 USz’

(]

) Then LSiUSi = S,

Name Precon |[Ifil 4 |8 |16 24 |36 40
raefskyl | SAPINV 10 |14 |13 |10 |11 8 |8
20 |12 /11 |9 |9 '8 |8
SAPINVS |10 16 |13 |10 11 |8 |8
20 |13 /11 |9 |9 '8 |8

SLU 10 2151197198 194|166 |171
20 48 |50 40 42 41 |41
BJ 10 85 171173273 252|263

20 82 |170|173 271 259259
Number of FGMRES(20) iterations for the RAEFSKY1 problem.

Name | Precon |Ifil |16/24 32|40 56|64 80 96
af23560 | SAPINV |20 [32/36 (2729 73|35|71 /61
30 3235 [23/29 46|60 33|52
SAPINVS |20 32|35 |24/29 5535|3759
30 3234 |23/2843/4523|35

SLU 20 81/105|94 /88 90 7685|771
30 3834 3739|3839 38 35
BJ 20 37153 5360|7780 95 *

30 3641 53|/57|81/87/97 115
Number of FGMRES(20) iterations for the AF23560 problem.

m February 7, 2005 m

360 x 360 Mesh - CPU Time

360 x 360 Mesh - Iterations

450

T3E seconds
5 5 N 5] @)

ol
T

Solid line: BJ

Dash-dot line: SAPINV
Dash-star line: SLU

0

0

Times and iteration counts for solving a 360 x 360 discretized Laplacean

Processors

Solid line: BJ
. 400
Dash-dot line: SAPINV
Dash-star line: SLU i
300
(V)]
c
e
“§ 250
9
- 200
\
\
\ 150+
\
\
~ \
~ e -
\‘—\:> o I _ - 100
R |
1‘0 2‘0 3‘0 4‘0 5‘0 6‘0 7‘0 8‘0 9‘0 100 0

50—

1‘0 25 3‘0 4‘0 55 e‘o 7‘0 50 95 100
Processors

problem with 3 different preconditioners using cexible GMRES(10).

w Solution times for a Laplacean problem with various local sub-
problem sizes using FGMRES(10) with 3 different preconditioners
(BJ, SAPINV, SLU) and the Schur complement iteration (SI).

50 x 50 Mesh in each PE 70 x 70 Mesh

@
o

30

9
/" Solid line: BJ

2] /" Dash-dot line: SAPINV
// Dash-star line: SLU

o Dash-circle line; SI

-
o
T

D
o
T

Ny
o
T
a1
o
T

T3E seconds
T3E seconds

w
o
T

101

5 -7 T
U —= = R 10r]
g% B
’/\/ — I I I I I | I I I I I

0 10 20 30 4‘0 5‘0 6‘0 70 80 90 100 0 10 20 30 4‘0 5‘0 6‘0 70 80 90 100
Processors Processors

\
\

N

o

m February 7, 2005 m

Three approaches to graph partitioning:

1. Spectral methods (Recursive Spectral Bisection)

2. Geometric techniques [Houstis & Rice et al., Miller, Vavasis, Teng

et al.] Coordinates are required.
3. Graph Theory techniques [use graph, but no coordinates]

e Currently best known technique is Metis (multi-level algorithm)

e Simplest idea: Recursive Graph Bisection; Nested dissection
(George & Liu, 1980; Liu 1992]

e Advantages: simplicity — no coordinates required

m February 7, 2005 m

The Level Set Expansion Algorithm

w Given: p nodes ‘uniformly’ spread in the graph (roughly same

distance from one another).
Do a level-set traversal from each node simultaneously.

Best described for an example on a 15 x 15 £ve — point Finite Differ-

ence grid.

w See [Goehring-Saad '94, See Cai-Saad '95]

"""" (N ()
N N
1 (]
3/ \
1
N

(od
N

(0

~
L/

m February 7, 2005 m

Alternative criteria

Criterion commonly used: Partition so that

1. each subdomain has about the same number of vertices and

2. The total number of edge cuts is ‘minimized’

Question: Is this the best that can be done?

w Hard to predict the effect of partitioning on the number of itera-

tions.

Example: A test problem with discontinuous coeffcient.

a(:l?,y) — b(may) =1

| Qo

a(w,y)=102
b(:z:,y)zl

W[=

TN
N[

p/4 PEs

p/4 PEs

| S

n/8 PES

D

p/4 PEs

/8 PES

| S

p/4 PEs

A macro-partitioning of the problem with discontinuities

m February 7, 2005 m

Partitioning technigues compar ed.

1. Double-Stripe algorithm ((a) do a BFSf traversal - (b) get subdo-

mains along the way (c) repeat for each subdomain)

2. Same as (1) but do in two phases: £rst assign low (shaded) region

to 3p/4 processors. Then the rest to p/4 processors.
3. Straightforward regular partitioning (“partition by hand”)

4. Same as in (3) but separate again low and high regions.

Time Iterations
PEs 16 24 483 |16 24| 48
Doubl eStripe [9.66(14.3451.29 |81 132 341
Doubl eStri pe.m 558 6.33| 6.17|50| 61| 58
By Hand 6.3912.73| 9.98 52 120| 87
ByHand_m 6.3 7.34| 7.25|53| 62| 59

Behavior of the Schur-LU preconditioner with four different parti-

tioning strategies.

m February 7, 2005 m

Example 2. Using a shortest path strategy

Key idea: Take into account matrix values when partitioning.

w Heuristics must be used because there is no way of predicting

behavior of preconditioners for different partitionings

A £rst observation: for load-balancing (Matvecs) — a better criterion

IS to try to equalize “volume” (i.e., number of edges in a subdomain)

instead of “number of nodes”.

w \We can go one step further by adding weights to the edges.

Weights used:

1
la;j|+]ajil

Wi;; =

Criterion used: “group together matrix entries whose added weights

are small .”

w Employ a shortest path algorithm to £nd paths with smallest

length
w Do level-set expansion accordingly

w The cost is high: O((|V| + |E|) log |[V]|) with a standard imple-

mentation.

Result: impact on Schur-LU preconditioner

Test with RAEFSKY3 - a Harwell-Boeing matrix (extended set).

Time |lterations
Standard 175.27 161
Shortest-Path | 122.95 106

w Results are fairly consistent on other tests.

w Only drawback: cost of shortest path alg.

m February 7, 2005 m

