PARALLEL PRECONDITIONERS




| ntroduction

w In recent years: Big thrust of parallel computing techniques in

applications areas. Problems becoming larger and harder

w In general: very large machines (e.g. Cray T3E) are gone. Excep-

tion: big US government labs.

w Replaced by ‘medium’ size machine (e.g. IBM SP2, SGI Origin)
w Programming model: Message-passing seems to be King (MPI)
w Open MP and threads for small number of processors

w Important new reality: parallel programming has penetrated the

‘applications’ areas [Sciences and Engineering + industry]

m February 7, 2005 m



Parallel preconditioners. A few approaches

“Parallel matrix computation’ viewpoint: I

e Local preconditioners: Polynomial (in the 80s), Sparse Approxi-

mate Inverses, [M. Benzi-Tuma & al ’99., E. Chow ’00]

e Distributed versions of ILU [Ma & YS '94, Hysom & Pothen ’00]

e Use of multicoloring to unaravel parallelism
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Domain Decomposition ideas: |

e Schwarz-type Preconditioners [e.g. Widlund, Bramble-Pasciak-
Xu, X. Cal, D. Keyes, Smith, ...]

e Schur-complement techniques [Gropp & Smith, Ferhatetal. (FETI),
T.F. Chan et al., YS and Sosonkina 97, J. Zhang ’00, ...]

Multigrid / AMG viewpoint: I

e Multi-level Multigrid-like preconditioners [e.g., Shadid-Tuminaro et

al (Aztec project), ...]

w In practice: Variants of additive Schwarz very common (simplic-

ity)
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Intrinsically parallel preconditioners

Some alternatives I

(1) Polynomial preconditioners;
(2) Approximate inverse preconditioners;
(3) Multi-coloring + independent set ordering;

(4) Domain decomposition approach.
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POLYNOMIAL PRECONDITIONING
Principle: IM—1 = s(A) where s is a (low) degree polynomial:

s(A)Ax = s(A)b

Problem: Jhow to obtain s? Note: s(A) =~ A~}

* Chebyshev polynomials
w Several approaches. * Least squares polynomials

* Others
w Polynomial preconditioners are seldom used in practice.
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Multicoloring

w General technique that can be exploited in many different ways

to introduce parallelism — generally of order IN.

w Constitutes one of the most successful techniques (when appli-

cable) on (vector) supercomputers.

Simple example: ! Red-Black ordering.
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Corresponding matrix

w Observe: L-U solves (or SOR sweeps) will require only diagonal

scalings + matrix-vector products with matrices of size N /2.
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Solution of Red-black systems

Red-Black ordering leads to equations of the form:

r olla)=l

D, and D, are diagonal.

Question: I How to solve such a system?

Method 1: Juse ILU(O) on this block system. O(IN) Parallelism.

w Often, the number of iterations is higher than with the natural

ordering. But still competitive for easy problems.

w Could use a more accurate preconditioner [e.g., ILUT]. However:

O(N) parallelism lost.
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Method 2: ISOR/SSOR(k) preconditioner.

w No such difficulty with SOR/SSOR...

w A 'more accurate preconditioner’ means more SOR/ SSOR steps.

[SOR(K) — k steps of SOR]. Can perform quite well.

2.0 |
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15 |\
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Method 3: I Eliminate the red unknowns from the system

w Reduced system: (Dy — FD;'E)xs = by — FD;'b;.

e Again a sparse linear system with half as many unknowns.

e Can often be efficiently solved with only diagonal preconditioning.

Question: | Can we recursively color the reduced system and get

|

a “second-level” reduced system?

Answer: IYes but need to generalize red-black ordering.
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How to generalize Red-Black ordering?

Answer: | Multicoloring |& Independent sets I

A greedy multicoloring technique:

e |nitially assign color number zero (uncolored) to every node.
e Choose an order in which to traverse the nodes.

e Scan all nodes in the chosen order and at every node 2z do
Color(i) = min{k # 0|k # Color(j),Vj € Adj (i)}

Adj(i) = set of nearest neighbors of : = {k | a;x # 0}.
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| ndependent Sets

An independent set (I1S) Is a set of nodes that are not coupled by

an equation. The set is maximal if all other nodes in the graph are

coupled to a node of IS. If the unknowns of the IS are labeled first,

then the matrix will have the form:
= o
E C
In which B is a diagonal matrix, and E, F', and C are sparse.

Greedy algorithm: Scan all nodes in a certain order and at every
node 2 do: if 2 iIs not colored color it Red and color all its neighbors

Black. Independent set: set of red nodes. Complexity: O(|E|+ |V]).
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Domain Decomposition

Problem:
Au = finQ 23
u = uronI = 9. I'i3
Domain: |
Ql F12 92
Q=0 Q,
=1

w Domain decomposition or substructuring methods attempt to solve
a PDE problem (e.g.) on the entire domain from problem solutions

on the subdomains ;.
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Types of mappings

(b)
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(a) Vertex-based, (b) edge-based, and (c) element-based partitioning
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DISTRIBUTED SPARSE MATRICES




Generalization: Distributed Sparse Systems

w Simple illustration:
Block assignment

Assign equation ¢ and
unknown 2 to a given

processor.
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Partitioning a sparse matrix

w Use a graph partitioner to partition the adjacency graph:

e~ ~ =~ = |
(o) 10— 12) |
] :
B — 1| |
| | |
~ N = e
} (5) 6 | 0, (8) }
| | |
A R e
: NI
)|

w Can allow overlap.

w Partition can be very general.
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Given: a general mapping of pairs equation/unknown to proces-

sors. =| { set of p subsets of variables } |

w Subsets can be arbitrary + allow ‘overlap’. Mapping can be
obtained by graph partitioners.

Problem: build local data structures needed for iteration phase.

w Several graph partitioners available: Metis, Chaco, Scotch, ...
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Distributed Sparse matrices (continued)

w Once a good partitioning is found, questions are:
1. How to represent this partitioning?

2. What is a good data structure for representing dis-

tributed sparse matrices?

3. How to set up the various “local objects” (matrices,

vectors, ..)

4. What can be done to prepare for communication that will

be required during execution?
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Two views of a distributed sparse matrix

External interface
nodes
/

Internal A

N VI e

w Local interface variables always ordered last.
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Local view of distributed matrix: !

-~ External data—— loca i External data

Data

The local matrix: |

| nter nal
Points

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

L ocal

I nt_erface Bext
points |
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Distributed Sparse Matrix-Vector Product Kernel

Algorithm:

1. Communicate: exchange boundary data.

Scatter xpoung to Neighbors - Gather x.,; from neighbors

2. Local matrix — vector product

Yy = Alocmloc

3. External matrix — vector product

y=1vy + Bewtxewt

NOTE: 1 and 2 are independent and can be overlapped.
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Distributed Sparse Matrix-Vector Product

Main part of the code:

call MSG bdx_send(nl oc, X, y, nproc, proc,ix,ipr,ptrn,ierr)

g do | ocal nmatrix-vector product for |ocal points

: call amux(nloc, x,y, al oc,jaloc,ial oc)

g recei ve the boundary 1 nformation

z call MSG bdx _receive(nloc, X,y, nproc, proc, i X,ipr,ptrn,ie
C do |l ocal matrix-vector product for external points

: nrow = nloc - nbnd + 1

] cal | amux1(nrow, x, y(nbnd), al oc, jal oc, 1 al oc(nloc+1))

return
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The local exchange information I

w List of adjacent processors (or subdomains)

w For each of these processors, lists of boundary nodes to be sent

/ received to /from adj. PE’s.

w The receiving processor must have a matrix ordered consistently

with the order in which data is received.

Requirements

w The ‘set-up’ routines should handle overlapping

w Should use minimal storage (only arrays of size nloc allowed).
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Main Operationsin (F) GMRES:

1. Saxpy’s — local operation — no communication
2. Dot products — global operation
3. Matrix-vector products — local operation — local communication

4. Preconditioning operations — locality varies.
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Distributed Dot Product

R LR call blasl function

—t
o
@)

I
%

—~~

>
X

Il ncx, y, incy);
A L call gl obal reduction
MPI _Allreduce(&l oc, & o, 1, MPI _DOUBLE, MPI _SUM conm ;

m February 7, 2005 m



PARALLEL PRECONDITIONERS




Three approaches.

e Schwarz Preconditioners
e Schur-complement based Preconditioners

e Multi-level ILU-type Preconditioners

w Observation: Often, in practical applications, only Schwarz Pre-

conditioners are used
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Domain-Decomposition-Type Preconditioners

Local view of distributed matrix:

- External data—- loca 3 External data ;

: ! Data |

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ Al Y
Xi Xi

Block Jacobi Iteration (Additive Schwarz):

1. Obtain external data y;

2. Compute (update) local residual r; = (b— Ax); = b;— A;x;— B;y;
3. Solve A;6; = r;

4. Update solution x; = x; + 9;
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w Multiplicative Schwarz. Need a coloring of the subdomains.
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Breaking the sequential color loop

w “Color” loop is sequential. Can be broken in several different

ways.

(1) Have a few subdomains per processors




(2) Separate interior nodes from interface nodes (2-level blocking)

Color 3

|

Color2 — K

Color #1
Interior nodes

A

Color 2

Color 3

(3) Use a block-GMRES algorithm - with Block-size = number of

colors. SOR step targets a different color on each column of the

block w» no iddle time.
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Local Solves

w Each local system A;d; = r; can be solved in three ways:

1. By a (sparse) direct solver
2. Using a standard preconditioned Krylov solver

3. Doing a backward-forward solution associated with an accurate

ILU (e.g. ILUT) precondioner

w We only use (2) with a small number of inner steps (up to 10) or

(3).
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Performance comparison for different machines

Overlapped Schwarz with ILU solver. Matrix VENKATO1
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SCHUR COMPLEMENT-BASED PRECONDITIONERS




Schur complement system

Local system can be written as

Az + XY eart = ;. (1)
3  locd !
-~ Externa data—— ; External data ;
%%%%%%%%%%%%%%%%%%%%%%%%% Al &Y
Xj Xi

x;= vector of local unknowns, y; ..+ = external interface variables,

and b; = local part of RHS.



w Local equations

B;, F;\ | u; 0 fi

+ =" 2

E; C;)\vy; Sien; Eijy; gi
w eliminate u; from the above system:

Siyi+ ¥ Ejy; =g — EB;'f; =g,

JEN;

where S; is the “local” Schur complement

S; = C; — E;B;'F,. (3)
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Structure of Schur complement system

» Schur complement system

Sy =g
with ,
S1 Ei2 ... Eip) (w1 g;
Eoy So voo FEop || Yo 9;
S — p
Ep Epo1p Sp ) \Yp g,
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Simplest idea: Schur Complement | terations

u; | Internal variables

y; | Interface variables
w Do a global primary iteration (e.g., block-Jacobi)
w Then accelerate only the y variables (with a Krylov method)

Still need to precondition..
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Approximate Schur-LU

w Two-level method based on induced preconditioner. Global sys-

tem can also be viewed as

B, Fy
B F.
B F\[(u f ? ?
2 2] () wn o
E C)\y g
B, F,
E, E;, --- E, C

Block LU factorization of A:

R EH!



Preconditioning: I

B 0 I B'F
L = ( ) and U = ( )
FE Mg 0 I

with Mg = some approximation to S.

w Preconditioning to global system can be induced from any pre-

conditioning on Schur complement.

Rewrite local Schur system as

1

yi +S; ' ¥ Eyy;=S;" g — E:B; fi.
JEN;
w equivalent to Block-Jacobi preconditioner for Schur complement.

w Solve with, e.g., a few steps (e.g., 5) of GMRES

w Question: How to solve with S;?



Two approaches:

(1) can compute approximation S; = S; using approximate inverse

techniques (M. Sosonkina)

(2) we can simply use LU factorization of A;. Exploit the property:

LB,L- 0 UBz‘ Lgle
If A; = ‘
Engl Lsi 0 USz’

(]

) Then LSiUSi = S,



Name Precon |[Ifil 4 |8 |16 24 |36 40
raefskyl | SAPINV 10 |14 |13 |10 |11 8 |8
20 |12 /11 |9 |9 '8 |8
SAPINVS |10 16 |13 |10 11 |8 |8
20 |13 /11 |9 |9 '8 |8

SLU 10 2151197198 194|166 |171
20 48 |50 40 42 41 |41
BJ 10 85 171173273 252|263

20 82 |170|173 271 259259
Number of FGMRES(20) iterations for the RAEFSKY1 problem.




Name | Precon |Ifil |16/24 32|40 56|64 80 96
af23560 | SAPINV |20 [32/36 (2729 73|35|71 /61
30 3235 [23/29 46|60 33|52
SAPINVS |20 32|35 |24/29 5535|3759
30 3234 |23/2843/4523|35

SLU 20 81/105|94 /88 90 7685|771
30 3834 3739|3839 38 35
BJ 20 37153 5360|7780 95 *

30 3641 53|/57|81/87/97 115
Number of FGMRES(20) iterations for the AF23560 problem.
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w Solution times for a Laplacean problem with various local sub-
problem sizes using FGMRES(10) with 3 different preconditioners
(BJ, SAPINV, SLU) and the Schur complement iteration (SI).
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Three approaches to graph partitioning:

1. Spectral methods (Recursive Spectral Bisection)

2. Geometric techniques [Houstis & Rice et al., Miller, Vavasis, Teng

et al.] Coordinates are required.
3. Graph Theory techniques [use graph, but no coordinates]

e Currently best known technique is Metis (multi-level algorithm)

e Simplest idea: Recursive Graph Bisection; Nested dissection
(George & Liu, 1980; Liu 1992]

e Advantages: simplicity — no coordinates required
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The Level Set Expansion Algorithm

w Given: p nodes ‘uniformly’ spread in the graph (roughly same

distance from one another).
Do a level-set traversal from each node simultaneously.

Best described for an example on a 15 x 15 £ve — point Finite Differ-

ence grid.

w See [Goehring-Saad '94, See Cai-Saad '95]
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Alternative criteria

Criterion commonly used: Partition so that

1. each subdomain has about the same number of vertices and

2. The total number of edge cuts is ‘minimized’

Question: Is this the best that can be done?

w Hard to predict the effect of partitioning on the number of itera-

tions.



Example: A test problem with discontinuous coeffcient.

a(:l?,y) — b(may) =1

| Qo

a(w,y)=102
b(:z:,y)zl

W[ =

TN
N[



p/4 PEs

p/4 PEs

| S

n/8 PES

D

p/4 PEs

/8 PES

| S

p/4 PEs

A macro-partitioning of the problem with discontinuities
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Partitioning technigues compar ed.

1. Double-Stripe algorithm ((a) do a BFSf traversal - (b) get subdo-

mains along the way (c) repeat for each subdomain)

2. Same as (1) but do in two phases: £rst assign low (shaded) region

to 3p/4 processors. Then the rest to p/4 processors.
3. Straightforward regular partitioning (“partition by hand”)

4. Same as in (3) but separate again low and high regions.



Time Iterations
PEs 16 24 483 |16 24| 48
Doubl eStripe [9.66(14.3451.29 |81 132 341
Doubl eStri pe.m 558 6.33| 6.17|50| 61| 58
By Hand 6.3912.73| 9.98 52 120| 87
ByHand_m 6.3 7.34| 7.25|53| 62| 59

Behavior of the Schur-LU preconditioner with four different parti-

tioning strategies.
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Example 2. Using a shortest path strategy

Key idea: Take into account matrix values when partitioning.

w Heuristics must be used because there is no way of predicting

behavior of preconditioners for different partitionings

A £rst observation: for load-balancing (Matvecs) — a better criterion

IS to try to equalize “volume” (i.e., number of edges in a subdomain)

instead of “number of nodes”.

w \We can go one step further by adding weights to the edges.



Weights used:

1
la;j|+]ajil

Wi;; =

Criterion used: “group together matrix entries whose added weights

are small .”

w Employ a shortest path algorithm to £nd paths with smallest

length
w Do level-set expansion accordingly

w The cost is high: O((|V| + |E|) log |[V]|) with a standard imple-

mentation.



Result: impact on Schur-LU preconditioner

Test with RAEFSKY3 - a Harwell-Boeing matrix (extended set).

Time |lterations
Standard 175.27 161
Shortest-Path | 122.95 106

w Results are fairly consistent on other tests.

w Only drawback: cost of shortest path alg.
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