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Introduction

II In recent years: Big thrust of parallel computing techniques in

applications areas. Problems becoming larger and harder

II In general: very large machines (e.g. Cray T3E) are gone. Excep-

tion: big US government labs.

II Replaced by ‘medium’ size machine (e.g. IBM SP2, SGI Origin)

II Programming model: Message-passing seems to be King (MPI)

II Open MP and threads for small number of processors

II Important new reality: parallel programming has penetrated the

‘applications’ areas [Sciences and Engineering + industry]
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Parallel preconditioners: A few approaches

“Parallel matrix computation” viewpoint:

• Local preconditioners: Polynomial (in the 80s), Sparse Approxi-

mate Inverses, [M. Benzi-Tuma & al ’99., E. Chow ’00]

• Distributed versions of ILU [Ma & YS ’94, Hysom & Pothen ’00]

• Use of multicoloring to unaravel parallelism
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Domain Decomposition ideas:

• Schwarz-type Preconditioners [e.g. Widlund, Bramble-Pasciak-

Xu, X. Cai, D. Keyes, Smith, ...]

• Schur-complement techniques [Gropp & Smith, Ferhat et al. (FETI),

T.F. Chan et al., YS and Sosonkina ’97, J. Zhang ’00, ...]

Multigrid / AMG viewpoint:

• Multi-level Multigrid-like preconditioners [e.g., Shadid-Tuminaro et

al (Aztec project), ...]

II In practice: Variants of additive Schwarz very common (simplic-

ity)
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Intrinsically parallel preconditioners

Some alternatives

(1) Polynomial preconditioners;

(2) Approximate inverse preconditioners;

(3) Multi-coloring + independent set ordering;

(4) Domain decomposition approach.

February 7, 2005
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POLYNOMIAL PRECONDITIONING

Principle: M−1 = s(A) where s is a (low) degree polynomial:

s(A)Ax = s(A)b

Problem: how to obtain s? Note: s(A) ≈ A−1

II Several approaches.

* Chebyshev polynomials

* Least squares polynomials

* Others
II Polynomial preconditioners are seldom used in practice.
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Multicoloring

II General technique that can be exploited in many different ways

to introduce parallelism – generally of order N .

II Constitutes one of the most successful techniques (when appli-

cable) on (vector) supercomputers.

Simple example: Red-Black ordering.
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Corresponding matrix

II Observe: L-U solves (or SOR sweeps) will require only diagonal

scalings + matrix-vector products with matrices of size N/2.
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Solution of Red-black systems

Red-Black ordering leads to equations of the form:










D1 E

F D2





















x1

x2











=











b1

b2











D1 and D2 are diagonal.

Question: How to solve such a system?

Method 1: use ILU(0) on this block system. O(N) Parallelism.

II Often, the number of iterations is higher than with the natural

ordering. But still competitive for easy problems.

II Could use a more accurate preconditioner [e.g., ILUT]. However:

O(N) parallelism lost.
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Method 2: SOR/SSOR(k) preconditioner.

II No such difficulty with SOR/SSOR...

II A ’more accurate preconditioner’ means more SOR/ SSOR steps.

[SOR(k)→ k steps of SOR]. Can perform quite well.

Iteration times versus

k for SOR(k) precon-

ditioned GMRES
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Method 3: Eliminate the red unknowns from the system

II Reduced system: (D2 − FD−1
1 E)x2 = b2 − FD−1

1 b1.

• Again a sparse linear system with half as many unknowns.

• Can often be efficiently solved with only diagonal preconditioning.

Question: Can we recursively color the reduced system and get

a “second-level” reduced system?

Answer: Yes but need to generalize red-black ordering.

February 7, 2005
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How to generalize Red-Black ordering?

Answer: Multicoloring & independent sets

A greedy multicoloring technique:

• Initially assign color number zero (uncolored) to every node.

• Choose an order in which to traverse the nodes.

• Scan all nodes in the chosen order and at every node i do

Color(i) = min{k 6= 0|k 6= Color(j), ∀ j ∈ Adj (i)}

Adj(i) = set of nearest neighbors of i = {k | aik 6= 0}.

February 7, 2005
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Independent Sets

An independent set (IS) is a set of nodes that are not coupled by

an equation. The set is maximal if all other nodes in the graph are

coupled to a node of IS. If the unknowns of the IS are labeled first,

then the matrix will have the form:










B F

E C











in which B is a diagonal matrix, and E, F , and C are sparse.

Greedy algorithm: Scan all nodes in a certain order and at every

node i do: if i is not colored color it Red and color all its neighbors

Black. Independent set: set of red nodes. Complexity: O(|E|+ |V |).
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Domain Decomposition

Problem:






























∆u = f in Ω

u = uΓ on Γ = ∂Ω.

Domain:

Ω =
s
⋃

i=1
Ωi,

Ω1 Ω2

Ω3

Γ12

Γ13

II Domain decomposition or substructuring methods attempt to solve

a PDE problem (e.g.) on the entire domain from problem solutions

on the subdomains Ωi.
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Coef£cient Matrix
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Types of mappings

1 2 3 4

5 6 7 8

9 10 11 12

(a)

1 2 3 4

5 6 7 8

9 10 11 12

Ω1

Ω2

(b)

1 2 3 4

5 6 7 8

9 10 11 12

Ω1

Ω2

(c)

(a) Vertex-based, (b) edge-based, and (c) element-based partitioning
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DISTRIBUTED SPARSE MATRICES
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Generalization: Distributed Sparse Systems

II Simple illustration:

Block assignment

Assign equation i and

unknown i to a given

processor.
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Partitioning a sparse matrix

II Use a graph partitioner to partition the adjacency graph:

1 2 3 4

5 6 7 8

9 10 11 12

P1

P2

P3

P4

II Can allow overlap.

II Partition can be very general.

February 7, 2005
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Given: a general mapping of pairs equation/unknown to proces-

sors. = { set of p subsets of variables } .

II Subsets can be arbitrary + allow ‘overlap’. Mapping can be

obtained by graph partitioners.

Problem: build local data structures needed for iteration phase.

II Several graph partitioners available: Metis, Chaco, Scotch, ...
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Distributed Sparse matrices (continued)

II Once a good partitioning is found, questions are:

1. How to represent this partitioning?

2. What is a good data structure for representing dis-

tributed sparse matrices?

3. How to set up the various “local objects” (matrices,

vectors, ..)

4. What can be done to prepare for communication that will

be required during execution?

February 7, 2005
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Two views of a distributed sparse matrix

External interface
nodes

Internal
nodes   

Local interface
nodes

XiXi
Ai

II Local interface variables always ordered last.

February 7, 2005
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Local view of distributed matrix:

local 
Data 

External data External data 

OO Ai
iX Xi

The local matrix:

Local

points

Internal
Points

Interface

Aloc

Bext

February 7, 2005
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Distributed Sparse Matrix-Vector Product Kernel

Algorithm:

1. Communicate: exchange boundary data.

Scatter xbound to neighbors - Gather xext from neighbors

2. Local matrix – vector product

y = Alocxloc

3. External matrix – vector product

y = y +Bextxext

NOTE: 1 and 2 are independent and can be overlapped.

February 7, 2005
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Distributed Sparse Matrix-Vector Product

Main part of the code:

call MSG_bdx_send(nloc,x,y,nproc,proc,ix,ipr,ptrn,ierr)
c
c do local matrix-vector product for local points
c

call amux(nloc,x,y,aloc,jaloc,ialoc)
c
c receive the boundary information
c

call MSG_bdx_receive(nloc,x,y,nproc,proc,ix,ipr,ptrn,ierr)
c

c do local matrix-vector product for external points
c

nrow = nloc - nbnd + 1
call amux1(nrow,x,y(nbnd),aloc,jaloc,ialoc(nloc+1))

c
return

February 7, 2005
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The local exchange information

II List of adjacent processors (or subdomains)

II For each of these processors, lists of boundary nodes to be sent

/ received to /from adj. PE’s.

II The receiving processor must have a matrix ordered consistently

with the order in which data is received.

Requirements

II The ‘set-up’ routines should handle overlapping

II Should use minimal storage (only arrays of size nloc allowed).

February 7, 2005
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Main Operations in (F) GMRES :

1. Saxpy’s – local operation – no communication

2. Dot products – global operation

3. Matrix-vector products – local operation – local communication

4. Preconditioning operations – locality varies.

February 7, 2005
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Distributed Dot Product

/*-------------------- call blas1 function

tloc = DDOT(n, x, incx, y, incy);

/*-------------------- call global reduction

MPI_Allreduce(&tloc,&ro,1,MPI_DOUBLE,MPI_SUM,comm);

February 7, 2005
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PARALLEL PRECONDITIONERS
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Three approaches:

• Schwarz Preconditioners

• Schur-complement based Preconditioners

• Multi-level ILU-type Preconditioners

II Observation: Often, in practical applications, only Schwarz Pre-

conditioners are used

February 7, 2005
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Domain-Decomposition-Type Preconditioners

Local view of distributed matrix:

local 
Data 

External data External data 

OO Ai
iX Xi

Block Jacobi Iteration (Additive Schwarz):

1. Obtain external data yi

2. Compute (update) local residual ri = (b−Ax)i = bi−Aixi−Biyi

3. Solve Aiδi = ri

4. Update solution xi = xi + δi

February 7, 2005
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II Multiplicative Schwarz. Need a coloring of the subdomains.

1 1

1 1

2 2

3 3

3
3

4
4
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Multicolor Block SOR Iteration (Multiplicative Schwarz):

1. Do col = 1, . . . , numcols

2. If (col.eq.mycol) Then

3. Obtain external data yi

4. Update local residual ri = (b−Ax)i

5. Solve Aiδi = ri

6. Update solution xi = xi + δi

7. EndIf

8. EndDo

February 7, 2005
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Breaking the sequential color loop

II “Color” loop is sequential. Can be broken in several different

ways.

(1) Have a few subdomains per processors
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(2) Separate interior nodes from interface nodes (2-level blocking)

Color  # 1 
Interior nodes

Color 2

Color 3

Color 3

Color 2

(3) Use a block-GMRES algorithm - with Block-size = number of

colors. SOR step targets a different color on each column of the

block II no iddle time.

February 7, 2005
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Local Solves

II Each local system Aiδi = ri can be solved in three ways:

1. By a (sparse) direct solver

2. Using a standard preconditioned Krylov solver

3. Doing a backward-forward solution associated with an accurate

ILU (e.g. ILUT) precondioner

II We only use (2) with a small number of inner steps (up to 10) or

(3).

February 7, 2005
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Performance comparison for different machines
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SCHUR COMPLEMENT-BASED PRECONDITIONERS
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Schur complement system

Local system can be written as

Aixi +Xiyi,ext = bi. (1)

local 
Data 

External data External data 

OO Ai
iX Xi

xi= vector of local unknowns, yi,ext = external interface variables,

and bi = local part of RHS.
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II Local equations










Bi Fi

Ei Ci





















ui

yi











+











0

∑

j∈Ni
Eijyj











=











fi

gi











. (2)

II eliminate ui from the above system:

Siyi +
∑

j∈Ni

Eijyj = gi − EiB
−1
i fi ≡ g′i,

where Si is the “local” Schur complement

Si = Ci − EiB
−1
i Fi. (3)

February 7, 2005
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Structure of Schur complement system

II Schur complement system

Sy = g′

with

S =





































S1 E12 . . . E1p

E21 S2 . . . E2p

... . . . ...

Ep1 Ep−1,2 . . . Sp









































































y1

y2

...

yp





































=





































g′1

g′2
...

g′p





































.
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Simplest idea: Schur Complement Iterations

















ui

yi

















Internal variables

Interface variables

II Do a global primary iteration (e.g., block-Jacobi)

II Then accelerate only the y variables (with a Krylov method)

Still need to precondition..

February 7, 2005
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Approximate Schur-LU

II Two-level method based on induced preconditioner. Global sys-

tem can also be viewed as











B F

E C





















u

y











=











f

g











. with B =























































B1 F1

B2 F2

. . . ...

Bp Fp

E1 E2 · · · Ep C























































Block LU factorization of A:










B F

E C











=











B 0

E S





















I B−1F

0 I











,
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Preconditioning:

L =











B 0

E MS











and U =











I B−1F

0 I











with MS = some approximation to S.

II Preconditioning to global system can be induced from any pre-

conditioning on Schur complement.

Rewrite local Schur system as

yi + S−1i

∑

j∈Ni

Eijyj = S−1i

[

gi − EiB
−1
i fi

]

.

II equivalent to Block-Jacobi preconditioner for Schur complement.

II Solve with, e.g., a few steps (e.g., 5) of GMRES

II Question: How to solve with Si?
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Two approaches:

(1) can compute approximation S̃i ≈ Si using approximate inverse

techniques (M. Sosonkina)

(2) we can simply use LU factorization of Ai. Exploit the property:

If Ai =











LBi
0

EiU
−1
Bi

LSi





















UBi
L−1Bi

Fi

0 USi











Then LSi
USi

= Si
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Name Precon lfil 4 8 16 24 36 40

raefsky1 SAPINV 10 14 13 10 11 8 8

20 12 11 9 9 8 8

SAPINVS 10 16 13 10 11 8 8

20 13 11 9 9 8 8

SLU 10 215 197 198 194 166 171

20 48 50 40 42 41 41

BJ 10 85 171 173 273 252 263

20 82 170 173 271 259 259
Number of FGMRES(20) iterations for the RAEFSKY1 problem.
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Name Precon lfil 16 24 32 40 56 64 80 96

af23560 SAPINV 20 32 36 27 29 73 35 71 61

30 32 35 23 29 46 60 33 52

SAPINVS 20 32 35 24 29 55 35 37 59

30 32 34 23 28 43 45 23 35

SLU 20 81 105 94 88 90 76 85 71

30 38 34 37 39 38 39 38 35

BJ 20 37 153 53 60 77 80 95 *

30 36 41 53 57 81 87 97 115
Number of FGMRES(20) iterations for the AF23560 problem.
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II Solution times for a Laplacean problem with various local sub-

problem sizes using FGMRES(10) with 3 different preconditioners

(BJ, SAPINV, SLU) and the Schur complement iteration (SI).
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Three approaches to graph partitioning:

1. Spectral methods (Recursive Spectral Bisection)

2. Geometric techniques [Houstis & Rice et al., Miller, Vavasis, Teng

et al.] Coordinates are required.

3. Graph Theory techniques [use graph, but no coordinates]

• Currently best known technique is Metis (multi-level algorithm)

• Simplest idea: Recursive Graph Bisection; Nested dissection

(George & Liu, 1980; Liu 1992]

• Advantages: simplicity – no coordinates required

February 7, 2005
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The Level Set Expansion Algorithm

II Given: p nodes ‘uniformly’ spread in the graph (roughly same

distance from one another).

Do a level-set traversal from each node simultaneously.

Best described for an example on a 15× 15 £ve – point Finite Differ-

ence grid.

II See [Goehring-Saad ’94, See Cai-Saad ’95]
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Alternative criteria

Criterion commonly used: Partition so that

1. each subdomain has about the same number of vertices and

2. The total number of edge cuts is ‘minimized’

Question: Is this the best that can be done?

II Hard to predict the effect of partitioning on the number of itera-

tions.
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Example: A test problem with discontinuous coef£cient.

a(x,y)=102

b(x,y)=1

-

6

a(x, y) = b(x, y) = 1

1
4

3
4

1
4

3
4
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p/4 PEs p/4 PEs

p/4 PEs

p/4 PEs

p/8 PEs p/8 PEs

A macro-partitioning of the problem with discontinuities
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Partitioning techniques compared:

1. Double-Stripe algorithm ((a) do a BFSf traversal - (b) get subdo-

mains along the way (c) repeat for each subdomain)

2. Same as (1) but do in two phases: £rst assign low (shaded) region

to 3p/4 processors. Then the rest to p/4 processors.

3. Straightforward regular partitioning (“partition by hand”)

4. Same as in (3) but separate again low and high regions.
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Time Iterations

PEs 16 24 48 16 24 48

DoubleStripe 9.66 14.34 51.29 81 132 341

DoubleStripe m 5.58 6.33 6.17 50 61 58

ByHand 6.39 12.73 9.98 52 120 87

ByHand m 6.3 7.34 7.25 53 62 59

Behavior of the Schur-LU preconditioner with four different parti-

tioning strategies.

February 7, 2005
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Example 2: Using a shortest path strategy

Key idea: Take into account matrix values when partitioning.

II Heuristics must be used because there is no way of predicting

behavior of preconditioners for different partitionings

A £rst observation: for load-balancing (Matvecs) – a better criterion

is to try to equalize “volume” (i.e., number of edges in a subdomain)

instead of “number of nodes”.

II We can go one step further by adding weights to the edges.
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Weights used:

wij =
1

|aij|+|aji|

Criterion used: “group together matrix entries whose added weights

are small ..”

II Employ a shortest path algorithm to £nd paths with smallest

length

II Do level-set expansion accordingly

II The cost is high: O((|V | + |E|) log |V |) with a standard imple-

mentation.
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Result: impact on Schur-LU preconditioner

Test with RAEFSKY3 - a Harwell-Boeing matrix (extended set).

Time Iterations

Standard 175.27 161

Shortest-Path 122.95 106

II Results are fairly consistent on other tests.

II Only drawback: cost of shortest path alg.

February 7, 2005
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