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Outline

Part 1

• Introd., discretization of PDEs

• Sparse matrices and sparsity

• Basic iterative methods (Relax-

ation..)

Part 2

• Projection methods

• Krylov subspace methods

Part 3

• Preconditioned iterations

• Preconditioning techniques

• Parallel implementations

Part 4

• Eigenvalue problems

• Applications –
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Preconditioning – Basic principles

Basic idea is to use the Krylov subspace method on a modified

system such as

M−1Ax = M−1b.

• The matrix M−1A need not be formed explicitly; only need to

solve Mw = v whenever needed.

• Consequence: fundamental requirement is that it should be easy

to compute M−1v for an arbitrary vector v.
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Left, Right, and Split preconditioning

Left preconditioning

M−1Ax = M−1b

Right preconditioning

AM−1u = b, with x = M−1u

Split preconditioning . Assume M is factored: M = MLMR.

M−1
L AM−1

R u = M−1
L b, with x = M−1

R u
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Preconditioned CG (PCG)

II Assume: A and M are both SPD.

II Applying CG directly to M−1Ax = M−1b or AM−1u = b

won’t work because coefficient matrices are not symmetric.

II Alternative: when M = LLT use split preconditioner option

II Second alternative: Observe that M−1A is self-adjoint wrt M

inner product:

(M−1Ax, y)M = (Ax, y) = (x,Ay) = (x,M−1Ay)M
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Preconditioned CG (PCG)

ALGORITHM : 1 Preconditioned Conjugate Gradient

1. Compute r0 := b−Ax0, z0 = M−1r0, and p0 := z0

2. For j = 0, 1, . . ., until convergence Do:

3. αj := (rj, zj)/(Apj, pj)

4. xj+1 := xj + αjpj

5. rj+1 := rj − αjApj

6. zj+1 := M−1rj+1

7. βj := (rj+1, zj+1)/(rj, zj)

8. pj+1 := zj+1 + βjpj

9. EndDo
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Note M−1A is also self-adjoint with respect to (., .)A:

(M−1Ax, y)A = (AM−1Ax, y) = (x,AM−1Ay) = (x,M−1Ay)A

II Can obtain a similar algorithm

II Assume that M = Cholesky product M = LLT .

Then, another possibility: Split preconditioning option, which ap-

plies CG to the system

L−1AL−Tu = L−1b, with x = LTu

II Notation: Â = L−1AL−T . All quantities related to the precondi-

tioned system are indicated by .̂
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ALGORITHM : 2 Conjugate Gradient with Split Preconditioner

1. Compute r0 := b−Ax0; r̂0 = L−1r0; and p0 := L−T r̂0.

2. For j = 0, 1, . . ., until convergence Do:

3. αj := (r̂j, r̂j)/(Apj, pj)

4. xj+1 := xj + αjpj

5. r̂j+1 := r̂j − αjL
−1Apj

6. βj := (r̂j+1, r̂j+1)/(r̂j, r̂j)

7. pj+1 := L−T r̂j+1 + βjpj

8. EndDo

II The xj’s produced by the above algorithm and PCG are identical

(if same initial guess is used).
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Flexible accelerators

Question: What can we do in case M is de£ned only approxi-

mately? i.e., if it can vary from one step to the other.?

Applications:

II Iterative techniques as preconditioners: Block-SOR, SSOR, Multi-

grid, etc..

II Chaotic relaxation type preconditioners (e.g., in a parallel com-

puting environment)

II Mixing Preconditioners – mixing coarse mesh / fine mesh precon-

ditioners.
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ALGORITHM : 3 GMRES – No preconditioning

1. Start: Choose x0 and a dimension m of the Krylov subspaces.

2. Arnoldi process:

• Compute r0 = b−Ax0, β = ‖r0‖2 and v1 = r0/β.

• For j = 1, ...,m do

– Compute w := Avj

– for i = 1, . . . , j, do







hi,j := (w, vi)

w := w − hi,jvi







;

– hj+1,1 = ‖w‖2; vj+1 =
w

hj+1,1

• De£ne Vm := [v1, ...., vm] and H̄m = {hi,j}.

3. Form the approximate solution: Compute xm = x0 + Vmym where

ym = argminy‖βe1 − H̄my‖2 and e1 = [1, 0, . . . , 0]T .

4. Restart: If satis£ed stop, else set x0← xm and goto 2.
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ALGORITHM : 4 GMRES – with (right) Preconditioning

1. Start: Choose x0 and a dimension m of the Krylov subspaces.

2. Arnoldi process:

• Compute r0 = b−Ax0, β = ‖r0‖2 and v1 = r0/β.

• For j = 1, ...,m do

– Compute zj := M−1vj

– Compute w := Azj

– for i = 1, . . . , j, do :







hi,j := (w, vi)

w := w − hi,jvi







– hj+1,1 = ‖w‖2; vj+1 = w/hj+1,1

• De£ne Vm := [v1, ...., vm] and H̄m = {hi,j}.

3. Form the approximate solution: Compute xm = x0 +M−1Vmym

where ym = argminy‖βe1 − H̄my‖2 and e1 = [1, 0, . . . , 0]T .

4. Restart: If satis£ed stop, else set x0← xm and goto 2.
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ALGORITHM : 5 GMRES – with variable Preconditioning

1. Start: Choose x0 and a dimension m of the Krylov subspaces.

2. Arnoldi process:

• Compute r0 = b−Ax0, β = ‖r0‖2 and v1 = r0/β.

• For j = 1, ...,m do

– Compute zj := M−1
j vj ; Compute w := Azj;

– for i = 1, . . . , j, do:







hi,j := (w, vi)

w := w − hi,jvi







;

– hj+1,1 = ‖w‖2; vj+1 = w/hj+1,1

• De£ne Zm := [z1, ...., zm] and H̄m = {hi,j}.

3. Form the approximate solution: Compute xm = x0 + Zmym where

ym = argminy‖βe1 − H̄my‖2 and e1 = [1, 0, . . . , 0]T .

4. Restart: If satis£ed stop, else set x0← xm and goto 2.
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Properties

• xm minimizes b−Axm over Span{Zm}.

• If Azj = vj (i.e., if preconditioning is ‘exact’ at step j) then ap-

proximation xj is exact.

• If Mj is constant then method is ≡ to Right-Preconditioned GM-

RES.

Additional Costs:

• Arithmetic: none.

• Memory: Must save the additional set of vectors {zj}j=1,...m

Advantage: Flexibility
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Standard preconditioners

• Simplest preconditioner: M = Diag(A) II poor convergence.

• Next to simplest: SSOR.

M = (D − ωE)D−1(D − ωF )

• Still simple but often more ef£cient: ILU(0).

• ILU(p) – ILU with level of £ll p – more complex.

• Class of ILU preconditioners with threshold

• Class of approximate inverse preconditioners

• Class of Multilevel ILU preconditioners

• Algebraic Multigrid Preconditioners
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An observation. Introduction to Preconditioning

II Take a look back at basic relaxation methods: Jacobi, Gauss-

Seidel, SOR, SSOR, ...

II These are iterations of the form x(k+1) = Mx(k) + f where M is

of the form M = I − P−1A . For example for SSOR,

PSSOR = (D − ωE)D−1(D − ωF )
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II SSOR attempts to solve the equivalent system

P−1Ax = P−1b

where P ≡ PSSOR by the £xed point iteration

x(k+1) = (I − P−1A)
︸ ︷︷ ︸

M

x(k)+P−1b instead of x(k+1) = (I−A)x(k)+b

In other words:

Relaxation Scheme ⇐⇒ Preconditioned Fixed Point Iteration
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The SOR/SSOR preconditioner

D

−F

−E

II SOR preconditioning

MSOR = (D − ωE)

II SSOR preconditioning

MSSOR = (D − ωE)D−1(D − ωF )

II MSSOR = LU , L = lower unit matrix, U = upper triangular. One

solve with MSSOR ≈ same cost as a MAT-VEC.
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II k-step SOR (resp. SSOR) preconditioning:

k steps of SOR (resp. SSOR)

II Questions: Best ω? For preconditioning can take ω = 1

M = (D − E)D−1(D − F )

Observe: M = LU +R with R = ED−1F .

II Best k? k = 1 is rarely the best. Substantial difference in

performance.

18

Iteration times versus

k for SOR(k) precon-

ditioned GMRES

Number of SOR steps
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ILU(0) and IC(0) preconditioners

II Notation: NZ(X) = {(i, j) |Xi,j 6= 0}

II Formal de£nition of ILU(0):
A = LU +R
NZ(L) ⋃NZ(U) = NZ(A)
rij = 0 for (i, j) ∈ NZ(A)

II This does not de£ne ILU(0) in a unique way.

Constructive de£nition: Compute the LU factorization of A but

drop any £ll-in in L and U outside of Struct(A).

II ILU factorizations are often based on i, k, j version of GE.
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What is the IKJ version of GE?

ALGORITHM : 6 Gaussian Elimination – IKJ Variant

1. For i = 2, . . . , n Do:

2. For k = 1, . . . , i− 1 Do:

3. aik := aik/akk

4. For j = k + 1, . . . , n Do:

5. aij := aij − aik ∗ akj

6. EndDo

7. EndDo

8. EndDo
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Not accessed 

Accessed but not

Accessed and 
modified 

modified 
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ILU(0) – zero-£ll ILU

ALGORITHM : 7 ILU(0)

For i = 1, . . . , N Do:

For k = 1, . . . , i− 1 and if (i, k) ∈ NZ(A) Do:

Compute aik := aik/akj

For j = k + 1, . . . and if (i, j) ∈ NZ(A), Do:

compute aij := aij − aikak,j.

EndFor

EndFor

II When A is SPD then the ILU factorization = Incomplete Choleski

factorization – IC(0). Meijerink and Van der Vorst [1977].
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Typical eigenvalue distribution
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Pattern of ILU(0) for 5-point matrix

A

L U

LU
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Stencils and ILU factorization

Stencils of A and the L and U parts of A:

Stencil of A Stencil of L Stencil of U

26

Stencil of the product LU :

ª

Fill-ins
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Higher order ILU factorization

II Higher accuracy incomplete Choleski: for regularly structured

problems, IC(p) allows p additional diagonals in L.

II Can be generalized to irregular sparse matrices using the notion

of level of £ll-in [Watts III, 1979]

• Initially Lev(aij) =







0 for aij 6= 0

∞ for aij == 0

• At a given step i of Gaussian elimination:

Lev(akj) = min{Lev(akj);Lev(aki) + Lev(aij) + 1}
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II ILU(p) Strategy = drop anything with level of £ll-in exceeding p.

* Increasing level of £ll-in usually results in more accurate ILU and...

* ...typically in fewer steps and fewer arithmetic operations.
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ILU(1)

Augmented A

L1 U1

L1U1
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ALGORITHM : 8 ILU(p)

For i = 2, N Do

For each k = 1, . . . , i− 1 and if aij 6= 0 do

Compute aik := aik/ajj

Compute ai,∗ := ai,∗ − aikak,∗.

Update the levels of ai,∗

Replace any element in row i with lev(aij) > p by zero.

EndFor

EndFor

II The algorithm can be split into a symbolic and a numerical phase.

Level-of-£ll II in Symbolic phase
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ILU with threshold – generic algorithms

ILU(p) factorizations are based on structure only and not numeri-

cal values II potential problems for non M-matrices.

II One remedy: ILU with threshold – (generic name ILUT.)

Two broad approaches:

First approach [derived from direct solvers]: use any (direct) sparse

solver and incorporate a dropping strategy. [Munksgaard (?), Os-

terby & Zlatev, Sameh & Zlatev[90], D. Young, & al. (Boeing) etc...]
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Second approach : [derived from ‘iterative solvers’ viewpoint]

1. use a (row or colum) version of the (i, k, j) version of GE;

2. apply a drop strategy for the elment lik as it is computed;

3. perform the linear combinations to get ai∗. Use full row expansion

of ai∗;

4. apply a drop strategy to £ll-ins.
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ILU with threshold: ILUT(k, ε)

• Do the i, k, j version of Gaussian Elimination (GE).

• During each i-th step in GE, discard any pivot or £ll-in whose

value is below ε‖rowi(A)‖.

• Once the i-th row of L + U , (L-part + U-part) is computed retain

only the k largest elements in both parts.

II Advantages: controlled £ll-in. Smaller memory overhead.

II Easy to implement – much more so than preconditioners derived

from direct solvers.

II can be made quite inexpensive.
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Restarting methods for linear systems

Motivation: Goal: to use the information generated from

current GMRES loop to improve convergence at next GM-

RES restart.

References:

II R. A. Nicolaides (87): De¤ated CG.

II R. Morgan (92) De¤ated GMRES

II S. Kharchenko & A. Yeremin (92) pole placement ideas.

II K. Burrage, J. Ehrel, and B. Pohl (93): De¤ated GMRES

II E de Sturler: use SVD information in GMRES.
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II Can help improve convergence and prevent stagnation of GMRES

in some cases.

Generally speaking: One should not expect to solve very hard prob-

lems with Eigenvalue De¤ation Preconditioning alone.

II Question: Can the same effects be achieved with block-Krylov

methods?
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Using the Flexible GMRES framework

Method: De¤ation can be achieved by ‘enriching’ the Krylov sub-

space with approximate eigenvectors obtained from previous runs.

We can use Flexible GMRES and append these vectors at end. [See

R. Morgan (92), Chapman & YS (95).]

II Vectors v1, . . . , vm−p = standard Arnoldi vectors

II Vectors vm−p+1, . . . , vm = Computed as in FGMRES where new

vectors zj are previously computed eigenvectors.

II Storage: we need to store v1, . . . , vm and zm−p+1, . . . , zm. II p

additional vectors, with typically p << m.

37

GMRES with de¤ation

1. De¤ated Arnoldi process: r0 := b−Ax0, v1 := r0/(β := ‖r0‖2).

For j = 1, ...,m do

If j < m− p then zj := vj Else zj = uj−m (eigenvector)

w = Azj

For i = 1, . . . , j, do







hi,j := (w, vi)

w := w − hi,jvi

hj+1,j = ‖w‖2, vj+1 = w/‖w‖2.

EndDo

De£ne Zm := [z1, ...., zm] and H̄m = {hi,j}.

2. Form the approximate solution:

Compute xm = x0 + Zmym where ym = argminy‖βe1 − H̄my‖2.

3. Get next eigenvector estimates u1, . . . , up from H̄m, Vm, Zm, ...

4. Restart: If satis£ed stop, else set x0← xm and goto 1.

38

Question 1: which eigenvectors to add?

II Answer: those associated with smallest eigenvalues.

Question 2: How to compute eigenvectors from the Flexible GMRES

step? II Answer: use the relation

AZm = Vm+1H̄m

Approximation: λ, ũ = Zmy

Galerkin Condition: r ⊥ AZm gives the generalized problem

H̄H
mH̄m y = λ H̄H

mV H
m+1Zm y

In Addition in GMRES: H̄m = QmR̄m so HH
mHm = RH

mRm.

See: Morgan (1993).
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An example: Shell problems

II Can be very hard to solve!

II A matrix of size N=38,002, with Nz = 949,452 nonzero elements.

II Actually symmetric. Not exploited in test.

II Most simplistic methods fail.

II ILUT(50,0) does not work even with GMRES(80).

II This is an example when a large subspace is required.
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An example

A matrix arising from Euler’s equations on unstructured mesh

[II Contributed by Larry Wigton from Boeing]

Size = 3,864. (966 mesh points).

Nonzero elements: 238,252 (about 62 per row).

II Dif£cult to solve in spite of its small size.

42

II Results with ILUT(lfil, ε)

l£l Iterations estimate of

(tol = 10−8) ‖(LU)−1‖

100 ∗ 0.19E + 56

110 ∗ 0.34E + 9

120 30 0.70E + 5

130 25 0.33E + 7

140 20 0.17E + 4

150 19 0.69E + 4
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Results with Block Jacobi Preconditioning

with Eigenvalue De¤ation

reduction in residual norm in

1200 GMRES steps with m = 49

4x4 block 16x16 block

p = 0 0.8 E 0 0.8 E 0

p = 4 0.8 E 0 4.0 E-5

p = 8 1.2 E-2 2.9 E-7

p = 12 1.9 E-2 3.8 E-6
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Theory – (Hermitian case only)

Assume that A is SPD and let K = Km +W , where W is s.t.

dist(AW,U) = ε

with U = exact invariant subspace associated with λ1, .., λs. Then

the residual r̃ obtained from the minimal residual projection

process onto the augmented Krylov subspace K satis£es the

inequality,

‖r̃‖2 ≤ ‖r0‖2

√
√
√
√
√
√
√
√

1

T 2
m(γ)

+ ε2

where γ ≡ λn+λs+1

λn−λs+1
, Tm ≡ Chebyshev polyn. of deg. m of 1st kind.

II See [YS, SIMAX vol. 4, pp 43-66 (1997)] for other results.
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SPECIAL FORMS OF ILUS

46

Crout-based ILUT (ILUTC)

Terminology: Crout versions of LU compute the k-th row of U and

the k-th column of L at the k-th step.

Computational pattern

Black = part computed at step k

Blue = part accessed

Main advantages:
1. Less expensive than ILUT (avoids sorting)

2. Allows better techniques for dropping

47

References:

[1] M. Jones and P. Plassman. An improved incomplete Choleski

factorization. ACM Transactions on Mathematical Software, 21:5–

17, 1995.

[2] S. C. Eisenstat, M. H. Schultz, and A. H. Sherman. Algorithms

and data structures for sparse symmetric Gaussian elimination.

SIAM Journal on Scienti£c Computing, 2:225–237, 1981.

[3] M. Bollhöfer. A robust ILU with pivoting based on monitoring the

growth of the inverse factors. Linear Algebra and its Applica-

tions, 338(1–3):201–218, 2001.

[4] N. Li, Y. Saad, and E. Chow. Crout versions of ILU. MSI technical

report, 2002.
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Crout LU (dense case)

II Go back to delayed update algorithm (IKJ alg.) and observe: we

could do both a column and a row version

II Left: U computed by rows. Right: L computed by columns

Note: The entries 1 : k − 1 in the k-th row in left £gure need not be

computed. Available from already computed columns of L. Similar

observation for L (right).
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ALGORITHM : 9 Crout LU Factorization (dense case)

1. For k = 1 : n Do :

2. For i = 1 : k − 1 and if aki 6= 0 Do :

3. ak,k:n = ak,k:n − aki ∗ ai,k:n

4. EndDo

5. For i = 1 : k − 1 and if aik 6= 0 Do :

6. ak+1:n.k = ak+1:n,k − aik ∗ ak+1:n,i

7. EndDo

8. aik = aik/akk for i = k + 1, ..., n

9. EndDo
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ALGORITHM : 10 ILUC - Crout version of ILU

1. For k = 1 : n Do :

2. Initialize row z: z1:k−1 = 0, zk:n = ak,k:n

3. For {i | 1 ≤ i ≤ k − 1 and lki 6= 0} Do :

4. zk:n = zk:n − lki ∗ ui,k:n

5. EndDo

6. Initialize column w: w1:k = 0, wk+1:n = ak+1:n,k

7. For {i | 1 ≤ i ≤ k − 1 and uik 6= 0} Do :

8. wk+1:n = wk+1:n − uik ∗ lk+1:n,i

9. EndDo

10. Apply a dropping rule to row z

11. Apply a dropping rule to column w

12. uk,: = z; l:,k = w/ukk, lkk = 1

13. Enddo

II Notice that the updates to the k-th row of U (resp. the k-th column
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of L) can be made in any order.

II Operations in Lines 4 and 8 are sparse vector updates (must be

done in sparse mode)..
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Comparison with standard techniques
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ILUS – ILU for Sparse Skyline format

II Often in CFD codes the matrices are generated in a format con-

sisting of a sparse row representation of the decomposition

A = D + L1 + LT
2

where D is the strict lower part of A and L1, L2 are strict lower

triangular.

sparse row→

← sparse column

54

II Can develop ILU versions based on this data structure.

II Advantages: (1) Savings when A has a symmetric structure. (2)

Graceful degradation to an incomplete Choleski when A is symmet-

ric (or nearly symmetric). (3) A little more convenient than ILUT for

handling ‘instability’ of factorization.

Let Ak+1 =








Ak vk

wk αk







. If Ak = LkDkUk then

Ak+1 =








Lk 0

yk 1















Dk 0

0 dk+1















Uk zk

0 1








zk = D−1
k L−1

k vk; yk = wkU
−1
k D−1

k ; dk+1 = αk+1 − ykDkzk

II To get next column zk we need to solve a system with sparse L

and sparse RHS vk. Similarly with yk.

II How can we approximately such systems inexpensively?

Note: Sparse RHS and sparse L
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II Simplest possibility: truncated Neumann series,

zk = D−1
k L−1

k vk = D−1
k (I + Ek + E2

k + . . .+ Ep
k)vk

vector zk gets denser as ‘level-of-£ll’ p increases.

II We also use sparse-sparse mode GMRES.

II Idea of sparse-sparse mode computations is quite useful in de-

veloping preconditioners.
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Approximate Inverse preconditioners

Motivation:
• L - U solves in ILU may be ‘unstable’

• Parallelism in L-U solves limited

Idea: Approximate the inverse of A directly M ≈ A−1

II Right preconditioning: Find M such that

AM ≈ I

II Left preconditioning: Find M such that

MA ≈ I

II Factored approximate inverse: Find L and U s.t.

LAU ≈ D
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Some references

• Benson and Frederickson (’82): approximate inverse using stencils

• Grote and Simon (’93): Choose M to be banded

• Cosgrove, Dı́az and Griewank (’91) : Procedure to add £ll-ins to M

• Kolotilina and Yeremin (’93) : Factorized symmetric precondition-

ings M = GT
LGL

• Huckle and Grote (’95) : Procedure to £nd good pattern for M

• Chow and YS (’95): Find pattern dynamically by using dropping.

• M. Benzi & Tuma (’96, ’97,..): Factored app. inv.
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One (of many) options:

try to £nd M to approximately minimize ‖I −AM‖F

Note:

min ‖I −AM‖2F = min ∑n
j=1 ‖ej −AMej‖

2
2 =

∑n
j=1min ‖ej −Amj‖

2
2

II Problem decouples into n independent least-squares systems

II In each of these systems the matrix and RHS are sparse

Two paths:

1. Can £nd a good sparsity pattern for M £rst then compute M

using this patters.

2. Can £nd the pattern dynamically [similar to ILUT]

Calais February 7, 2005 59

59

Approximate inverse with drop-tolerance [Chow & YS, 1994]

Find min ‖ej −Amj‖
2
2, 1 ≤ j ≤ n

by solving approximately

Amj = ej, 1 ≤ j ≤ n

with a few steps of GMRES, starting with a sparse mj.

• Iterative method works in sparse mode: Krylov vectors are sparse.

• Use sparse-vector by sparse-vector and sparse-matrix by sparse-

vector operations.

• Dropping strategy is applied on mj.

• Exploit ‘self-preconditioning’.
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Sparse-Krylov MINRES and GMRES

• Dual threshold dropping strategy: drop tolerance and maximum

number of nonzeros per column

• In MINRES, dropping performed on solution after each inner iter-

ation

• In GMRES, dropping performed on Krylov basis at each iteration

• Use sparse-vector by sparse-vector operations
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Self-preconditioning The system

Amj = ej

may be preconditioned with the current M . This is even more effec-

tive if the columns are computed in sequence.

• Actually use FGMRES

• Leads to inner and outer iteration approach

• Quadratic convergence if no dropping is done

• Effect of reordering?
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A few remarks

II There is no guarantee that M is nonsingular, unless the accuracy

is high enough.

II There are many cases in which APINV preconditioners work

while ILU or ILUTP [with reasonable £ll] won’t

II The best use of APINV preconditioners may be in combining them

with other techniques. For example,

Minimize ‖B −AM‖F

where B is some other preconditioner (e.g. block-diagonal).

II Preconditioner for A→MB−1.
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Approximate inverses for block-partitioned matrices

Motivation. Domain Decomposition






























B1 F1

B2 F2

. . . ...

Bn Fn

E1 E2 · · · En C






























≡








B F

E D








Note the factorization:








B F

E C







=








B 0

E S















I B−1F

0 I








in which S is the Schur complement,

S = C − EB−1F.
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One idea: Compute M = LU in which

L =








B 0

E MS








and U =








I B−1F

0 I








II MS = some preconditioner to S.

One option: MS = S̃ = sparse approximation to S

S̃ = C − EY where Y ≈ B−1F

II Need to £nd a sparse matrix Y such that

BY ≈ F

where F and B are sparse.
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Preconditioning the Normal Equations

II Why not solve

ATAx = ATb or AATy = b ?

II Advantage: symmetric positive de£nite systems

II Disadvantages:
•Worse conditioning

• Not easy to precondition.

II Generally speaking, the disadvantages outweigh the advantages.
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Incomplete Cholesky and SSOR for Normal Equations

II First Observation: IC(0) does not necessarily exist for SPD matri-

ces.

II Can shift matrix: perform IC(0) on AAT + αI for example. Hard

to £nd good values of α for general matrices.

II Can modify dropping strategy: exploit relation between IC(0) and

Incomplete Modi£ed Gram Schmidt on A→ ICMGS, [Wang & Galli-

van, 1993]

67

II Can also get L from Incomplete LQ factorization [Saad, 1989].

Advantage: arbitrary accuracy. Disadvantage: need the Q factor.

II We never need to form the matrix B = ATA or B = AAT in

implementation.

II Alternative: use SSOR [equivalent to Kacmarz algorithm]. No dif-

£culties with shifts [Take ω = 1], trivial to implement, no additional

storage required.
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ILUM AND ARMS

69

Independent set orderings & ILUM (Background)

Independent set orderings permute a matrix into the form







B F

E C








where B is a diagonal matrix.

II Unknowns associated with the B block form an independent set

(IS).

II IS is maximal if it cannot be augmented by other nodes to form

another IS.

II IS ordering can be viewed as a “simpli£cation” of multicoloring

70

Main observation: Reduced system obtained by eliminating the

unknowns associated with the IS, is still sparse since its coef£cient

matrix is the Schur complement

S = C − EB−1F

II Idea: apply IS set reduction recursively.

II When reduced system small enough solve by any method

II Can devise an ILU factorization based on this strategy.

II See work by [Botta-Wubbs ’96, ’97, YS’94, ’96, (ILUM), Leuze ’89,

..]
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ALGORITHM : 11 ILUM

For lev = 1, nlev Do

a. Get an independent set for A.

b. Form the reduced system associated with this set;

c. Apply a dropping strategy to this system;

d. Set A := current reduced matrix and go back to (a).

EndDo
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Group Independent Sets / Aggregates

II Generalizes (common) Independent Sets

Main goal: to improve robustness

Main idea: use independent sets of “cliques”, or “aggregates”. There

is no coupling between the aggregates.

No Coupling

II Reorder equations so nodes of independent sets come £rst
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Algebraic Recursive Multilevel Solver (ARMS)

Original matrix, A , and reordered matrix, A0 = P T
0 AP0 .

0 50 100 150 200 250 300

0

50

100

150

200

250

300

nz = 3155
0 50 100 150 200 250 300

0

50

100

150

200

250

300

nz = 3155

II Block ILU factorizations (Diagonal blocks treated as sparse):

P T
l AlPl =








Bl Fl

El Cl







≈








Ll 0

ElU
−1
l I







×








I 0

0 Al+1







×








Ul L−1
l Fl

0 I
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Problem: Fill-in

0 50 100 150 200 250 300

0

50

100

150

200

250

300

nz = 12205

II II

Remedy: dropping strategy

0 50 100 150 200 250 300

0

50

100

150

200

250

300

nz = 4255

II Next step: treat the Schur complement recursively
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Algebraic Recursive Multilevel Solver (ARMS)








B F

E C















y

z







=








f

g








→








L 0

EU−1 I







×








U L−1F

0 S















y

z







=








f

g








where S = C − EB−1F = Schur complement.

II Idea: perform above block factorization recursively on S

II Blocks in B treated as sparse. Can be as large/small as desired.

II Algorithm is fully recursive

II Incorporates so-called W-cycles

II stability criterion added to block independent sets algorithm
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Factorization:

P T
l AlPl =








Bl Fl

El Cl







≈








Ll 0

ElU
−1
l I







×








I 0

0 Al+1







×








Ul L−1
l Fl

0 I








II L-solve ∼ restriction operation. U-solve ∼ prolongation.

II Solve Last level system with, e.g., ILUT+GMRES

ALGORITHM : 12 ARMS(Alev ) factorization

1. If lev = last lev then

2. Compute Alev ≈ LlevUlev

3. Else:

4 Find an independent set permutation Plev

5. Apply permutation Alev := P T
levAlevP

6. Compute factorization

7. Call ARMS(Alev+1 )

8. EndIf
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Inner-Outer inter-level iterations

Idea: Use an iteration at level l to reduce residual norm by tol. τ

Forward Backward 

Back to original system Original system

Reduced system: solve by any means

II Many possible variants.
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Three options for inner-outer inter-level iterations

(VARMS) Descend, using the level-structure. At last level use GMRES-

ILUT. Ascend back to the current level.

(WARMS) Use a few steps of GMRES+VARMS to solve the reduced

system. At last level: use GMRES-ILUT.

(WARMS*) Use a few steps of FGMRES to solve the reduced system

- Preconditioner: WARMS* (recursive). Last level: use ILUT-GMRES

II WARMS* can be expensive! use with a small number of levels.

II Iterating allows to use less costly factorizations [memory]
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Storage: II At each

level - except last,

store: Li, Ui, Fi, Ei

U1

L1

F1

E1

U0

L0

A2

F0

E0

II For WARMS: need to multiply by intermediate Ai ’s

II Al+1 × w computed as
(

Cl − ElU
−1
l L−1

l F
)

× w II Need to store

above 4 matrices + Ci.
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Group Independent Set reordering

Separator
First Block 

Simple strategy used: Do a Cuthill-MKee ordering until there are

enough points to make a block. Reverse ordering. Start a new block

from a non-visited node. Continue until all points are visited. Add

criterion for rejecting “not suf£ciently diagonally dominant rows.”
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Original matrix

  0.10E-06

  0.19E+07
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Block size of 6

  0.10E-06

  0.19E+07
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Block size of 20

  0.10E-06

  0.19E+07
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PARALLEL PRECONDITIONERS

85

Introduction

II In recent years: Big thrust of parallel computing techniques in

applications areas. Problems becoming larger and harder

II In general: very large machines (e.g. Cray T3E) are gone. Excep-

tion: big US government labs.

II Replaced by ‘medium’ size machine (e.g. IBM SP2, SGI Origin)

II Programming model: Message-passing seems to be King (MPI)

II Open MP and threads for small number of processors

II Important new reality: parallel programming has penetrated the

‘applications’ areas [Sciences and Engineering + industry]
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Parallel preconditioners: A few approaches

“Parallel matrix computation” viewpoint:

• Local preconditioners: Polynomial (in the 80s), Sparse Approxi-

mate Inverses, [M. Benzi-Tuma & al ’99., E. Chow ’00]

• Distributed versions of ILU [Ma & YS ’94, Hysom & Pothen ’00]

• Use of multicoloring to unaravel parallelism
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Domain Decomposition ideas:

• Schwarz-type Preconditioners [e.g. Widlund, Bramble-Pasciak-

Xu, X. Cai, D. Keyes, Smith, ...]

• Schur-complement techniques [Gropp & Smith, Ferhat et al. (FETI),

T.F. Chan et al., YS and Sosonkina ’97, J. Zhang ’00, ...]

Multigrid / AMG viewpoint:

• Multi-level Multigrid-like preconditioners [e.g., Shadid-Tuminaro et

al (Aztec project), ...]

II In practice: Variants of additive Schwarz very common (simplic-

ity)
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Intrinsically parallel preconditioners

Some alternatives

(1) Polynomial preconditioners;

(2) Approximate inverse preconditioners;

(3) Multi-coloring + independent set ordering;

(4) Domain decomposition approach.
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POLYNOMIAL PRECONDITIONING

Principle: M−1 = s(A) where s is a (low) degree polynomial:

s(A)Ax = s(A)b

Problem: how to obtain s? Note: s(A) ≈ A−1

II Several approaches.

* Chebyshev polynomials

* Least squares polynomials

* Others
II Polynomial preconditioners are seldom used in practice.
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Domain Decomposition

Problem:






∆u = f in Ω

u = uΓ on Γ = ∂Ω.

Domain:

Ω =
s⋃

i=1
Ωi,

Ω1 Ω2

Ω3

Γ12

Γ13

II Domain decomposition or substructuring methods attempt to solve

a PDE problem (e.g.) on the entire domain from problem solutions

on the subdomains Ωi.
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1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

22 23 24 25

26 27 28 29

30 31 32 33

34

35

36

37383940

Discretization of domain

92



Coef£cient Matrix
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Types of mappings

1 2 3 4

5 6 7 8

9 10 11 12

(a)

1 2 3 4

5 6 7 8

9 10 11 12

Ω1

Ω2

(b)

1 2 3 4

5 6 7 8

9 10 11 12

Ω1

Ω2

(c)

(a) Vertex-based, (b) edge-based, and (c) element-based partitioning
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DISTRIBUTED SPARSE MATRICES
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Generalization: Distributed Sparse Systems

II Simple illustration:

Block assignment

Assign equation i and

unknown i to a given

processor.
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Partitioning a sparse matrix

II Use a graph partitioner to partition the adjacency graph:

1 2 3 4

5 6 7 8

9 10 11 12

P1

P2

P3

P4

II Can allow overlap.

II Partition can be very general.
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Given: a general mapping of pairs equation/unknown to proces-

sors. = { set of p subsets of variables } .

II Subsets can be arbitrary + allow ‘overlap’. Mapping can be

obtained by graph partitioners.

Problem: build local data structures needed for iteration phase.

II Several graph partitioners available: Metis, Chaco, Scotch, ...

99

Calais February 7, 2005 100

100



Distributed Sparse matrices (continued)

II Once a good partitioning is found, questions are:

1. How to represent this partitioning?

2. What is a good data structure for representing dis-

tributed sparse matrices?

3. How to set up the various “local objects” (matrices,

vectors, ..)

4. What can be done to prepare for communication that will

be required during execution?
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Two views of a distributed sparse matrix

External interface
nodes

Internal
nodes   

Local interface
nodes

XiXi
Ai

II Local interface variables always ordered last.
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Local view of distributed matrix:

local 
Data 

External data External data 

OO Ai
iX Xi

The local matrix:

Local

points

Internal
Points

Interface

Aloc

Bext
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Distributed Sparse Matrix-Vector Product Kernel

Algorithm:

1. Communicate: exchange boundary data.

Scatter xbound to neighbors - Gather xext from neighbors

2. Local matrix – vector product

y = Alocxloc

3. External matrix – vector product

y = y +Bextxext

NOTE: 1 and 2 are independent and can be overlapped.
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Distributed Sparse Matrix-Vector Product

Main part of the code:

call MSG_bdx_send(nloc,x,y,nproc,proc,ix,ipr,ptrn,ierr)
c
c do local matrix-vector product for local points
c

call amux(nloc,x,y,aloc,jaloc,ialoc)
c
c receive the boundary information
c

call MSG_bdx_receive(nloc,x,y,nproc,proc,ix,ipr,ptrn,ierr)
c

c do local matrix-vector product for external points
c

nrow = nloc - nbnd + 1
call amux1(nrow,x,y(nbnd),aloc,jaloc,ialoc(nloc+1))

c
return
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The local exchange information

II List of adjacent processors (or subdomains)

II For each of these processors, lists of boundary nodes to be sent

/ received to /from adj. PE’s.

II The receiving processor must have a matrix ordered consistently

with the order in which data is received.

Requirements

II The ‘set-up’ routines should handle overlapping

II Should use minimal storage (only arrays of size nloc allowed).
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Main Operations in (F) GMRES :

1. Saxpy’s – local operation – no communication

2. Dot products – global operation

3. Matrix-vector products – local operation – local communication

4. Preconditioning operations – locality varies.
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Distributed Dot Product

/*-------------------- call blas1 function

tloc = DDOT(n, x, incx, y, incy);

/*-------------------- call global reduction

MPI_Allreduce(&tloc,&ro,1,MPI_DOUBLE,MPI_SUM,comm);
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PARALLEL PRECONDITIONERS
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Three approaches:

• Schwarz Preconditioners

• Schur-complement based Preconditioners

• Multi-level ILU-type Preconditioners

II Observation: Often, in practical applications, only Schwarz Pre-

conditioners are used
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Domain-Decomposition-Type Preconditioners

Local view of distributed matrix:

local 
Data 

External data External data 

OO Ai
iX Xi

Block Jacobi Iteration (Additive Schwarz):

1. Obtain external data yi

2. Compute (update) local residual ri = (b−Ax)i = bi−Aixi−Biyi

3. Solve Aiδi = ri

4. Update solution xi = xi + δi
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II Multiplicative Schwarz. Need a coloring of the subdomains.

1 1

1 1

2 2

3 3

3
3

4
4
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Multicolor Block SOR Iteration (Multiplicative Schwarz):

1. Do col = 1, . . . , numcols

2. If (col.eq.mycol) Then

3. Obtain external data yi

4. Update local residual ri = (b−Ax)i

5. Solve Aiδi = ri

6. Update solution xi = xi + δi

7. EndIf

8. EndDo
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Breaking the sequential color loop

II “Color” loop is sequential. Can be broken in several different

ways.

(1) Have a few subdomains per processors

1 12 2 2

4 4
4

3
3

1
1

1

1 1 1
1

2
2

2

23 3 3
3

4 4 4
4

3 3
32

44
4

2

2
2 1

3

1

43
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(2) Separate interior nodes from interface nodes (2-level blocking)

Color  # 1 
Interior nodes

Color 2

Color 3

Color 3

Color 2

(3) Use a block-GMRES algorithm - with Block-size = number of

colors. SOR step targets a different color on each column of the

block II no iddle time.
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Local Solves

II Each local system Aiδi = ri can be solved in three ways:

1. By a (sparse) direct solver

2. Using a standard preconditioned Krylov solver

3. Doing a backward-forward solution associated with an accurate

ILU (e.g. ILUT) precondioner

II We only use (2) with a small number of inner steps (up to 10) or

(3).
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Performance comparison for different machines
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SCHUR COMPLEMENT-BASED PRECONDITIONERS
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Schur complement system

Local system can be written as

Aixi +Xiyi,ext = bi. (1)

local 
Data 

External data External data 

OO Ai
iX Xi

xi= vector of local unknowns, yi,ext = external interface variables,

and bi = local part of RHS.
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II Local equations







Bi Fi

Ei Ci















ui

yi







+








0

∑

j∈Ni
Eijyj







=








fi

gi







. (2)

II eliminate ui from the above system:

Siyi +
∑

j∈Ni

Eijyj = gi − EiB
−1
i fi ≡ g′i,

where Si is the “local” Schur complement

Si = Ci − EiB
−1
i Fi. (3)
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Structure of Schur complement system

II Schur complement system

Sy = g′

with

S =





















S1 E12 . . . E1p

E21 S2 . . . E2p

... . . . ...

Ep1 Ep−1,2 . . . Sp









































y1

y2

...

yp





















=





















g′1

g′2
...

g′p





















.
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Simplest idea: Schur Complement Iterations











ui

yi











Internal variables

Interface variables

II Do a global primary iteration (e.g., block-Jacobi)

II Then accelerate only the y variables (with a Krylov method)

Still need to precondition..
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Approximate Schur-LU

II Two-level method based on induced preconditioner. Global sys-

tem can also be viewed as








B F

E C















u

y







=








f

g







. with B =






























B1 F1

B2 F2

. . . ...

Bp Fp

E1 E2 · · · Ep C






























Block LU factorization of A:







B F

E C







=








B 0

E S















I B−1F

0 I







,
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Preconditioning:

L =








B 0

E MS








and U =








I B−1F

0 I








with MS = some approximation to S.

II Preconditioning to global system can be induced from any pre-

conditioning on Schur complement.

Rewrite local Schur system as

yi + S−1
i

∑

j∈Ni

Eijyj = S−1
i

[

gi − EiB
−1
i fi

]

.

II equivalent to Block-Jacobi preconditioner for Schur complement.

II Solve with, e.g., a few steps (e.g., 5) of GMRES

II Question: How to solve with Si?
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Two approaches:

(1) can compute approximation S̃i ≈ Si using approximate inverse

techniques (M. Sosonkina)

(2) we can simply use LU factorization of Ai. Exploit the property:

If Ai =








LBi
0

EiU
−1
Bi

LSi















UBi
L−1
Bi
Fi

0 USi








Then LSi
USi

= Si
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Name Precon lfil 4 8 16 24 36 40

raefsky1 SAPINV 10 14 13 10 11 8 8

20 12 11 9 9 8 8

SAPINVS 10 16 13 10 11 8 8

20 13 11 9 9 8 8

SLU 10 215 197 198 194 166 171

20 48 50 40 42 41 41

BJ 10 85 171 173 273 252 263

20 82 170 173 271 259 259
Number of FGMRES(20) iterations for the RAEFSKY1 problem.
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Name Precon lfil 16 24 32 40 56 64 80 96

af23560 SAPINV 20 32 36 27 29 73 35 71 61

30 32 35 23 29 46 60 33 52

SAPINVS 20 32 35 24 29 55 35 37 59

30 32 34 23 28 43 45 23 35

SLU 20 81 105 94 88 90 76 85 71

30 38 34 37 39 38 39 38 35

BJ 20 37 153 53 60 77 80 95 *

30 36 41 53 57 81 87 97 115
Number of FGMRES(20) iterations for the AF23560 problem.
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II Solution times for a Laplacean problem with various local sub-

problem sizes using FGMRES(10) with 3 different preconditioners

(BJ, SAPINV, SLU) and the Schur complement iteration (SI).
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PARALLEL ARMS
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Parallel implementation of ARMS

Three types of points: interior

(independent sets), local inter-

faces, and global interfaces

Interdomain

Interior points

Local 
Interfaces Interfaces 

Main ideas: (1) exploit recursivity (2) distinguish two phases: elim-

ination of interior points and then interface points.
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Result: 2-part Schur complement: one corresponding to local in-

terfaces and the other to inter-domain interfaces.
IS I1

I2

Bext
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Three approaches

Method 1: Simple additive Schwarz using ILUT or ARMS locally

Method 2: Schur complement approach. Solve Schur complement

system (both I1 and I2) with either a block Jacobi (M. Sosonkina and

YS, ’99) or multicolor ILU(0).

Method 3: Do independent set reduction across subdomains. Re-

quires construction of global group independent sets.

II Current status Methods 1 and 2.
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Construction of global group independent sets A two level strategy

1. Color subdomains

2. Find group independent sets

locally

3. Color groups consistently

Proc  4

Proc 1

Proc 3

Proc 2
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color 2

color 3

color 4

color 1

color 1

color 3

Internal interface points 

External interface points 

Algorithm: Multicolor Distributed ILU(0)
1. Eliminate local rows,

2. Receive external interf. rows from PEs s.t. color(PE) < MyColor

3. Process local interface rows

4. Send local interface rows to PEs s.t. color(PE) > MyColor
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Methods implemented in pARMS:

add x Additive Schwarz procedure, with method x for subdo-

mains. With/out overlap. x is one of ILUT, ILUK, ARMS.

sch x Schur complement technique, with method x = factoriza-

tion used for local submatrix = {ILUT, ILUK,ARMS}. Equiv.

to Additive Schwarz preconditioner on Schur complement.

sch sgs Multicolor Multiplicative Schwarz (block Gauss-Seidel)

preconditioning is used instead of additive Schwarz for Schur

complement.

sch gilu0 ILU(0) preconditioning is used for solving the global

Schur complement system obtained from the ARMS reduction.
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Test problem

1. Scalability experiment: sample £nite difference problem.

−∆u+ γ





exy

∂u

∂x
+ e−xy

∂u

∂y





 + αu = f ,

Dirichlet Boundary Conditions ; γ = 100, α = −10; centered differ-

ences discretization.

II Keep size constant on each processor [100×100] II Global linear

system with 10, 000 ∗ nproc unknowns.

2. Comparison with a parallel direct solver – symmetric problems

3. Large irregular matrix example arising from magneto hydrody-

namics.
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