
A short course on:
Preconditioned Krylov subspace methods

Yousef Saad
University of Minnesota

Dept. of Computer Science and
Engineering

Universite du Littoral, Jan 19-30, 2005

1

Outline

Part 1

• Introd., discretization of PDEs

• Sparse matrices and sparsity

• Basic iterative methods (Relax-

ation..)

Part 2

• Projection methods

• Krylov subspace methods

Part 3

• Preconditioned iterations

• Preconditioning techniques

• Parallel implementations

Part 4

• Eigenvalue problems

• Applications –

Calais - February 7, 2005 2

2

INTRODUCTION TO SPARSE MATRICES

3

Typical Problem:

Physical Model

↓

Nonlinear PDEs

↓

Discretization

↓

Linearization (Newton)

↓

Sequence of Sparse Linear Systems Ax = b

Calais - February 7, 2005 4

4

What are sparse matrices?

Usual definition: “..matrices that allow special techniques to take

advantage of the large number of zero elements and the struc-

ture.” (J. Wilkinson)

A few applications of sparse matrices: Structural Engineering, Reser-

voir simulation, Electrical Networks, optimization problems, ...

Goals: Much less storage and work than dense computations.

Observation: A−1 is usually dense, but L and U in the LU factor-

ization may be reasonably sparse (if a good technique is used).

Calais - February 7, 2005 5

5

Nonzero patterns of a few sparse matrices

ARC130: Unsymmetric matrix from laser problem. a.r.curtis, oct 1974 SHERMAN5: fully implicit black oil simulator 16 by 23 by 3 grid, 3 unk

6

PORES3: Unsymmetric MATRIX FROM PORES BP_1000: UNSYMMETRIC BASIS FROM LP PROBLEM BP

Calais - February 7, 2005 6

7

II Two types of matrices: structured (e.g. Sherman5) and unstruc-

tured (e.g. BP 1000)

II Main goal of Sparse Matrix Techniques: To perform standard ma-

trix computations economically i.e., without storing the zeros of the

matrix.

II Example: To add two square dense matrices of size n requires

O(n2) operations. To add two sparse matrices A and B requires

O(nnz(A) + nnz(B)) where nnz(X) = number of nonzero ele-

ments of a matrix X.

II For typical Finite Element /Finite difference matrices, number of

nonzero elements is O(n).

Calais - February 7, 2005 8

8

Sparse Matrices in Typical Applications

• The matrices PORES3 and SHERMAN5 are from Oil Reservoir

Simulation. Typically: 3 unknowns per mesh point

• Initially Oil reservoir simulators often used rectangular grids. Oil

companies = first commercial buyers of (vector) supercomputers

• New simulators getting more sophisticated II larger and more dif-

£cult problems to solve.

• Number of unknowns per node higher (e.g. combustion models).

• Finer, more accurate, 3-D models.

• A naive but representative problem: 100× 100× 100 grid + ≈ 10

unknowns per node II N ≈ 107, and nnz ≈ 7× 108.
Calais - February 7, 2005 9

9

DISCRETIZATION OF PDES - INTRODUCTION

10

Discretization of PDEs

II Common Partial Differential Equation (PDE) :

∂2u

∂x2
1

+
∂2u

∂x2
2

= f, for x =








x1

x2








in Ω

where Ω = bounded, open domain in R2.

~n

x2

x1

Ω Γ

II Requires boundary conditions:

Dirichlet: u(x) = φ(x)

Neumann: ∂u
∂~n
(x) = 0

Cauchy: ∂u
∂~n
(x) + α(x)u(x) = γ(x)

Calais - February 7, 2005 11

11

Discretization of PDEs - Basic approximations

Formulas derives from Taylor series expansion:

u(x+ h) = u(x) + h
du

dx
+
h2

2

d2u

dx2
+
h3

6

d3u

dx3
+
h4

24

d4u

dx4
(ξ+),

II Simplest scheme: forward difference

du

dx
=
u(x+ h)− u(x)

h
−
h

2

d2u(x)

dx2
+ O(h2) ≈

u(x+ h)− u(x)

h

II Centered differences for second derivative:

d2u(x)

dx2
=

u(x+ h)− 2u(x) + u(x− h)

h2
−
h2

12

d4u(ξ)

dx4
,

where ξ− ≤ ξ ≤ ξ+.

Calais - February 7, 2005 12

12

Difference Schemes for the Laplacean

Using centered differences for both the ∂2

∂x2
1

and ∂2

∂x2
2

terms - with mesh

sizes h1 and h2 :

∆u(x) ≈
u(x1 + h1, x2)− 2u(x1, x2) + u(x− h1, x2)

h2
1

+

u(x1, x2 + h2)− 2u(x1, x2) + u(x1, x2 − h2)

h2
2

.

If h1 = h2 = h then

∆u(x) ≈
1

h2
[u(x1 + h, x2) + u(x1 − h, x2) + u(x1, x2 + h)

+ u(x1, x2 − h)− 4u(x1, x2)] , (1)

Calais - February 7, 2005 13

13

II Another approximation: exploit the four points u(x1 ± h, x2 ± h)

[part (b) of Figure]

(a)

1

1 -4 1

1

(b)

1 1

-4

1 1

Five-point stencils (a) the standard stencil, (b) skewed stencil.

(c)

1 1 1

1 -8 1

1 1 1

(d)

1 4 1

4 -20 4

1 4 1

Two nine-point centered difference stencils
Calais - February 7, 2005 14

14

Error for the 5-point approximation (1) is

h2

12











∂4u

∂4x1

+
∂4u

∂4x2











+ O(h3).

The two other schemes (c) and (d) obtained by combining the stan-

dard and skewed stencils are second order accurate. But (d) is

sixth order for harmonic functions, i.e., functions whose Laplacean

is zero.

Calais - February 7, 2005 15

15

Finite Differences for 1-D Problems

II Consider the one-dimensional equation,

−u′′(x) = f(x) for x ∈ (0, 1) (2)

u(0) = u(1) = 0. (3)

II discretize [0,1] uniformly:

xi = i× h, i = 0, . . . , n+ 1 where h = 1/(n+ 1)

Dirichlet boundary conditions II u(x0) = u(xn+1) = 0

With centered differences the equation at the point ξi,

−ui−1 + 2ui − ui+1 = h2 fi,

the unknowns uj approximates u(ξj) and fi = f(ξi). II

Calais - February 7, 2005 16

16

Ax = f

where

A =
1

h2





























































2 −1

−1 2 −1

−1 2 −1

−1 2 −1

−1 2 −1

−1 2





























































.

Calais - February 7, 2005 17

17

Finite Differences for 2-D Problems

Consider this simple problem,

−











∂2u

∂x2
1

+
∂2u

∂x2
2











= f in Ω (4)

u = 0 on Γ (5)

where Ω is now the rectangle (0, l1)× (0, l2) and Γ its boundary.

Discretize uniformly :

x1,i = i× h1, i = 0, . . . , n1 + 1 x2,j = j × h2, j = 0, . . . , n2 + 1

where

h1 =
l1

n1 + 1
h2 =

l2

n2 + 1
.

Calais - February 7, 2005 18

18

The resulting matrix has the following block structure:

A =
1

h2

























B −I

−I B −I

−I B

























with B =





































4 −1

−1 4 −1

−1 4 −1

−1 4





































.

Matrix for 7× 5 finite difference mesh

Calais - February 7, 2005 19

19

DATA STRUCTURES

20

Data Structures. General Observations

II The use of a proper data structures is critical to achieving good

performance.

II Many data structures; sometimes unnecessary variants.

II These seem more useful for iterative methods than for direct

methods.

II Basic linear algebra kernels (e.g., matrix-vector products) depend

on data structures.

Calais - February 7, 2005 21

21

Some Common Data Structures

DNS Dense

BND Linpack Banded

COO Coordinate

CSR Compressed Sparse Row

CSC Compressed Sparse Col-

umn

MSR Modified CSR

ELL Ellpack-Itpack

DIA Diagonal

BSR Block Sparse Row

SSK Symmetric Skyline

NSK Nonsymmetric Skyline

JAD Jagged Diagonal

Calais - February 7, 2005 22

22

The coordinate format (COO)

A =























































1. 0. 0. 2. 0.

3. 4. 0. 5. 0.

6. 0. 7. 8. 9.

0. 0. 10. 11. 0.

0. 0. 0. 0. 12.























































AA =

JR =

JC =

12. 9. 7. 5. 1. 2. 11. 3. 6. 4. 8. 10.

5 3 3 2 1 1 4 2 3 2 3 4

5 5 3 4 1 4 4 1 1 2 4 3

Calais - February 7, 2005 23

23

Compressed Sparse Row (CSR) format

A =























































1. 0. 0. 2. 0.

3. 4. 0. 5. 0.

6. 0. 7. 8. 9.

0. 0. 10. 11. 0.

0. 0. 0. 0. 12.























































AA = 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

JA = 1 4 1 2 4 1 3 4 5 3 4 5

IA = 1 3 6 10 12 13

Variants/ related formats: Compressed Sparse Column format, Mod-

i£ed Sparse Row format (MSR).

Calais - February 7, 2005 24

24

The Diagonal (DIA) format

A =























































1. 0. 2. 0. 0.

3. 4. 0. 5. 0.

0. 6. 7. 0. 8.

0. 0. 9. 10. 0.

0. 0. 0. 11. 12.























































DA =

* 1. 2.

3. 4. 5.

6. 7. 8.

9. 10. *

11 12. *

IOFF = -1 0 2

Calais - February 7, 2005 25

25

The Ellpack-Itpack format

A =























































1. 0. 2. 0. 0.

3. 4. 0. 5. 0.

0. 6. 7. 0. 8.

0. 0. 9. 10. 0.

0. 0. 0. 11. 12.























































AC =

1. 2. 0.

3. 4. 5.

6. 7. 8.

9. 10. 0.

11 12. 0.

JC =

1 3 1

1 2 4

2 3 5

3 4 4

4 5 5

Calais - February 7, 2005 26

26

BLOCK MATRICES

A =



































































1. 2. 0. 0. 3. 4.

5. 6. 0. 0. 7. 8.

0. 0. 9. 10. 11. 12.

0. 0. 13. 14. 15. 16.

17. 18. 0. 0. 20. 21.

22. 23. 0. 0. 24. 25.



































































AA =

1. 3. 9. 11. 17. 20.

5. 7. 15. 13. 22. 24.

2. 4. 10. 12. 18. 21.

6. 8. 14. 16. 23. 25.

JA = 1 5 3 5 1 5

IA = 1 3 5 7

Calais - February 7, 2005 27

27

II Each column in AA holds a 2 x 2 block. JA(k) = col. index of (1,1)

entries of k-th block. AA may be declared as AA(2,2,6)

II Block formats are important in many applications..

II Also valuable: block structure with variable block size.

Calais - February 7, 2005 28

28

II Can also store the blocks row-wise in AA.

AA =

1. 5. 2. 6.

3. 7. 4. 8.

9. 15. 10. 14.

11. 13. 12. 16.

17. 22. 18. 23.

20. 24. 21. 25.

JA = 1 5 3 5 1 5

IA = 1 3 5 7

II Each row of AA holds a 2 x 2 block (Drawback).

II JA, IA same as before. AA can be declared as AA(6,2,2)

II If elements of blocks are accessed at same time: scheme 1 better.

II If elements of similar positions in different blocks are accessed

at same time then scheme 2 better.
Calais - February 7, 2005 29

29

Relation Performance-Data Structures
II Performance can vary significantly for the same operation.

Storage Scheme/ Kernel CRAY-2 Alliant

Compressed Sparse Row 8.5 7.96

Compressed Sparse Column 14.5 0.6

Ellpack-Itpack 31 6.72

Diagonal 66.5 9.53

Diagonal Unrolled 99 13.92

MFLPS for matrix-vector ope’s on CRAY-2 & Alliant FX-8 [From sparse

matrix benchmark, (Wijshoff & Saad, 1989)]

II Best algorithm for one machine may be worst for another.

Calais - February 7, 2005 30

30

BASIC LINEAR ALGEBRA KERNELS

Philosophy: select a numnber of common linear algebar ‘kernels’

(e.g. dot-products) and develop highly tuned libraries for them on

each machine.

(A) BLAS1: vector operations.

(B) BLAS2: Matrix - Vector type operations

(C) BLAS3: Matrix - Matrix type operations (Blocking)

Calais - February 7, 2005 31

31

Graph Representations of Sparse Matrices

II Graph theory is a fundamental tool in sparse matrix techniques.

Graph G = (V,E) of an n× n matrix A defined by

Vertices V = {1, 2,, N}.

Edges E = {(i, j)|aij 6= 0}.

II Graph is undirected if matrix has symmetric structure: aij 6= 0 iff

aji 6= 0.

Calais - February 7, 2005 32

32

4 3

21

x

x
x

4 3

21

xx
xxx

xx
xx

x x
x x
x x x

x x

Calais - February 7, 2005 33

33

Example: Adjacency graph of:

A =





























































? ? ?

? ? ? ?

? ?

? ?

? ? ? ?

? ? ?





























































.

Example: For any matrix A, what is the graph of A2? [interpret in

terms of paths in the graph of A]

Calais - February 7, 2005 34

34

DIRECT VERSUS ITERATIVE METHODS

Current consensus:

• For two-dimensional problems direct solvers are often preferred.

• For three-dimensional problems, iterative methods are advanta-

geous.

• For problems with a large degree of freedom per grid point, say

≥ 10, situation similar to 3-D problems.

Difficulty:

• No robust ‘black-box’ iterative solvers.

Calais - February 7, 2005 35

35

Reorderings and graphs

II Let π = {i1, · · · , in} a permutation

IIAπ,∗ =
{

aπ(i),j

}

i,j=1,...,n
= matrixA with its i-th row replaced by row

number π(i).

II A∗,π = matrix A with its j-th column replaced by column π(j).

II Define Pπ = Iπ,∗ = “Permutation matrix” – Then:

(1) Each row (column) of Pπ consists of zeros and exactly one “1”

(2) Aπ,∗ = PπA

(3) PπP T
π = I

(4) A∗,π = AP T
π

Calais - February 7, 2005 36

36

Consider now:

A′ = Aπ,π = PπAP
T
π

II Element in position (i, j) in matrix A′ is exactly element in posi-

tion (π(i), π(j)) in A. (a′ij = aπ(i),π(j))

(i, j) ∈ EA′ ⇐⇒ (π(i), π(j)) ∈ EA

II General picture :

π(i) π(j)

i j ← new labels

← old labels

Calais - February 7, 2005 37

37

Example A 9 × 9 ’arrow’ matrix and its adjacency graph.

1

2

3

4

5

6

7

8

9

Calais - February 7, 2005 38

38

Graph and matrix after permuting the nodes in reverse order.

1

2

3

4

5

6

7

8

9

Calais - February 7, 2005 39

39

Cuthill-McKee, reverse Cuthill-McKee orderings

II A class of reordering techniques proceeds by levels in the graph.

II Related to Breadth First Search (BFS) traversal in graph theory.

II Idea of BFS is to visit the nodes by ‘levels’. Level 0 = level of

starting node.

II Start with a node, visit its neighbors, then the (unmarked) neigh-

bors of its neighbors, etc...

Calais - February 7, 2005 40

40

Example:

A B H I
-------------*-------*
| | | /
| | | /
| | | /
| | | / BFS from node A:
| | | / Level 0: A
C*--------* D | / Level 1: B, C;
| \ |/ Level 2: E, D, H;
| \ * K Level 3: I, K, E, F, G, H.
| F \

E *-------*----* G
\ /
\ /
\ /
* H

Calais - February 7, 2005 41

41

Implementation using levels

Algorithm BFS(G, v) – by level sets –

• Initialize S = {v}, seen = 1; Mark v;

• While seen < n Do

– Snew = ∅;

– For each node v in S do

∗ For each unmarked w in adj(v) do

· Add w to Snew;

· Mark w;

· seen++;

– S := Snew

Calais - February 7, 2005 42

42

Cuthill McKee ordering

II Algorithm proceeds by levels – and is identical with BFS, except

that within each level nodes are odered by increasing degree.

Example

A
B

C

D

E

F

G

Level Nodes Deg. Order

0 A 2 A

1 B, C 4, 3 C, B

2 D, E, F 3, 4, 2 F, D, E

3 G 2 G

Calais - February 7, 2005 43

43

Reverse Cuthill McKee ordering

II Observation: The Cuthill - Mc Kee ordering has a tendency to

create small arrow matrices ordered upward (the wrong way).

II Idea: Take the reverse ordering: Reverse Cuthill M Kee ordering.

Calais - February 7, 2005 44

44

Orderings used in direct solution methods

II Two broad types of orderings used:

• Minimal degree ordering + many variations

• Nested dissection ordering + many variations

II Minimal degree ordering is easiest to describe:

At each step of GE, select next node to eliminate, as the node v

of smallest degree. After eliminating node v, update degrees and

repeat.

Calais - February 7, 2005 45

45

Nested Dissection

II Easily described by using recursivity and by exploiting ‘separa-

tors’.

II Main step: ‘separate’ the graph in three parts, two of which have

no coupling between each other. The third set has couplings with

vertices from both of the first sets and is referred to as a sepator.

II Key idea: dissect the graph; take the subgraphs and dissect them

recursively.

Calais - February 7, 2005 46

46

Nested dissection ordering and corresponding reordered matrix

1
2

6

7

4
3

5

Calais - February 7, 2005 47

47

For regular simple q × q meshes, it can be shown that fill-in is of

order q2 log q and computational cost of factorization is O(q3).

A useful result [Rose-Tarjan fill-path theorem]

II A Fill-path is a path between two vertices i and j in the graph of

A such that all vertices in the path, except the end points i and j,

are numbered less than i and j.

THEOREM There is a fill-in in entry (i, j) at the completion of the

Gaussian elimination process if and only if, there exists a fill-path

between i and j.

II Separating a graph ≡ finding 3 sets of vertices: V1, V2, S such

that V = V1 ∪ V2 ∪ S and V1 and V2 have no couplings. Labeling

nodes of S last prevents fill-ins between nodes of V1 and V2.
Calais - February 7, 2005 48

48

Multicoloring

II General technique that can be exploited in many different ways

to introduce parallelism – generally of order N .

II Constitutes one of the most successful techniques (when appli-

cable) on (vector) supercomputers.

Simple example: Red-Black ordering.

49

1 2 3

4 5

6 7 8

9 10

11 12

13 14 15

16 17

18 19 20

Calais - February 7, 2005 50

50

Corresponding matrix

II Observe: L-U solves (or SOR sweeps) will require only diagonal

scalings + matrix-vector products with matrices of size N/2.

Calais - February 7, 2005 51

51

Solution of Red-black systems

Red-Black ordering leads to equations of the form:










D1 E

F D2





















x1

x2











=











b1

b2











D1 and D2 are diagonal.

Question: How to solve such a system?

Method 1: use ILU(0) on this block system. O(N) Parallelism.

II Often, the number of iterations is higher than with the natural

ordering. But still competitive for easy problems.

II Could use a more accurate preconditioner [e.g., ILUT]. However:

O(N) parallelism lost.
Calais - February 7, 2005 52

52

Method 2: SOR/SSOR(k) preconditioner.

II No such difficulty with SOR/SSOR...

II A ’more accurate preconditioner’ means more SOR/ SSOR steps.

[SOR(k)→ k steps of SOR]. Can perform quite well.

Iteration times versus

k for SOR(k) precon-

ditioned GMRES

Number of SOR steps

C
P
U

T
i

m
e

0. 5.0 10. 15. 20. 25. 30.
0.

0.50

1.0

1.5

2.0

GMRES(20)

GMRES(10)

Calais - February 7, 2005 53

53

Method 3: Eliminate the red unknowns from the system

II Reduced system: (D2 − FD
−1
1 E)x2 = b2 − FD

−1
1 b1.

• Again a sparse linear system with half as many unknowns.

• Can often be efficiently solved with only diagonal preconditioning.

Question: Can we recursively color the reduced system and get

a “second-level” reduced system?

Answer: Yes but need to generalize red-black ordering.

Calais - February 7, 2005 54

54

How to generalize Red-Black ordering?

Answer: Multicoloring & independent sets

A greedy multicoloring technique:

• Initially assign color number zero (uncolored) to every node.

• Choose an order in which to traverse the nodes.

• Scan all nodes in the chosen order and at every node i do

Color(i) = min{k 6= 0|k 6= Color(j), ∀ j ∈ Adj (i)}

Adj(i) = set of nearest neighbors of i = {k | aik 6= 0}.

Calais - February 7, 2005 55

55

4

2
0

1

0

Calais - February 7, 2005 56

56

Independent Sets

An independent set (IS) is a set of nodes that are not coupled by

an equation. The set is maximal if all other nodes in the graph are

coupled to a node of IS. If the unknowns of the IS are labeled first,

then the matrix will have the form:










B F

E C











in which B is a diagonal matrix, and E, F , and C are sparse.

Greedy algorithm: Scan all nodes in a certain order and at every

node i do: if i is not colored color it Red and color all its neighbors

Black. Independent set: set of red nodes. Complexity: O(|E|+ |V |).

Calais - February 7, 2005 57

57

BASIC RELAXATION METHODS

58

BASIC RELAXATION SCHEMES

Relaxation schemes: based on the decomposition A = D − E − F

D

- F

- E

D = diag(A),−E = strict lower

part of A and −F its strict

upper part.

Gauss-Seidel iteration for solving Ax = b:

(D − E)x(k+1) = Fx(k) + b

→ idea: correct the j-th component of the current approximate so-

lution, j = 1, 2, ..n, to zero the j − th component of residual.

Calais - February 7, 2005 59

59

Can also define a backward Gauss-Seidel Iteration:

(D − F)x(k+1) = Ex(k) + b

and a Symmetric Gauss-Seidel Iteration: forward sweep followed by

backward sweep.

Over-relaxation is based on the decomposition:

ωA = (D − ωE)− (ωF + (1− ω)D)

→ successive overrelaxation, (SOR):

(D − ωE)x(k+1) = [ωF + (1− ω)D]x(k) + ωb

Calais - February 7, 2005 60

60

Iteration matrices

Jacobi, Gauss-Seidel, SOR, & SSOR iterations are of the form

x(k+1) =Mx(k) + f

•MJac = D−1(E + F) = I −D−1A

•MGS(A) = (D − E)
−1F == I − (D − E)−1A

•MSOR(A) = (D−ωE)
−1(ωF +(1−ω)D) = I− (ω−1D−E)−1A

•MSSOR(A) = I − (2ω−1 − 1)(ω−1D − F)−1D(ω−1D − E)−1A

= I − ω(2ω − 1)(D − ωF)−1D(D − ωE)−1A

Calais - February 7, 2005 61

61

General convergence result

Consider the iteration: x(k+1) = Gx(k) + f

(1) Assume that ρ(A) < 1. Then I −G is non-singular and G has a

fixed point. Iteration converges to a fixed point for any f and x(0).

(2) If iteration converges for any f and x(0) then ρ(G) < 1.

Example: Richardson’s iteration x(k+1) = x(k) + α(b−A(k))

♦Assume Λ(A) ⊂ R. When does the iteration converge?

II Jacobi and Gauss-Seidel converge for diagonal dominant A

II SOR converges for 0 < ω < 2 for SPD matrices

Calais - February 7, 2005 62

62

An observation. Introduction to Preconditioning

II The iteration x(k+1) = Mx(k) + f is attempting to solve (I −

M)x = f . Since M is of the form M = I − P−1A this system can

be rewritten as

P−1Ax = P−1b

where for SSOR, we have

PSSOR = (D − ωE)D
−1(D − ωF)

referred to as the SSOR ‘preconditioning’ matrix.

In other words:

Relaxation Scheme ⇐⇒ Preconditioned Fixed Point Iteration

Calais - February 7, 2005 63

63

