

ECMOR XII – 12 th European Conference on the Mathematics of Oil Recovery
6-9 September 2010, Oxford, UK

A044
High Performance Manycore Solvers for Reservoir
Simulation
H. Sudan* (ConocoPhillips), H. Klie (ConocoPhillips), R. Li (University of
Minnesota) & Y. Saad (University of Minnesota)

SUMMARY
The forthcoming generation of many-core architectures compels a paradigm shift in algorithmic design to
effectively unlock its full potential for maximum performance. In this paper, we discuss a novel approach
for solving large sparse linear systems arising in realistic black oil and compositional flow simulations. A
flexible variant of GMRES (FGMRES) is implemented using the CUDA programming model on the GPU
platform using the Single Instruction Multiple Threads (SIMT) paradigm by taking advantage of thousands
of threads simultaneously executing instructions. The implementation on the GPU is optimized to reduce
memory overhead per floating point operations, given the sparsity of the linear system. FGMRES relies on
a suite of different preconditioners such as BILU, BILUT and multicoloring SSOR. Additionally, the
solver strategy relies on reordering/partitioning strategies algorithms to exploit further performance.
Computational experiments on a wide range of realistic reservoir cases show a competitive edge when
compared to conventional CPU implementations. The encouraging results demonstrate the potential that
many-core solvers have to offer in improving the performance of near future reservoir simulations.

ECMOR XII – 12 th European Conference on the Mathematics of Oil Recovery
6-9 September 2010, Oxford, UK

Abstract

With the advent of the processor technology revolution, many-core computing with Graphics
Processing Units (GPUs) provides enormous processing capability suitable for large scale engineering
and scientific applications. The forthcoming generation of many-core architectures compels a
paradigm shift in algorithmic design to effectively unlock its full potential for maximum performance.
In this paper, we discuss a novel approach for solving large sparse linear systems arising in realistic
black oil and compositional flow simulations. A flexible variant of GMRES (FGMRES) is
implemented using the CUDA programming model on the GPU platform using the Single Instruction
Multiple Threads (SIMT) paradigm by taking advantage of thousands of threads simultaneously
executing instructions. The implementation on the GPU is optimized to reduce memory overhead per
floating point operations, given the sparsity of the linear system. FGMRES relies on a suite of
different preconditioners such as BILU, BILUT and multicoloring SSOR. Additionally, the solver
strategy relies on reordering/partitioning strategies algorithms to exploit further performance.
Computational experiments on a wide range of realistic reservoir cases show a competitive edge when
compared to conventional CPU implementations. The encouraging results demonstrate the potential
that many-core solvers have to offer in improving the performance of near future reservoir
simulations.

1. Introduction

Due to transistor physical limitations, the performance of single core is levelling off and progressively
being replaced by many-core solutions. This implies a radical paradigm shift in the design of software
for engineering and scientific applications. There is no doubt that this paradigm shift will have
important computational implications in the oil industry and in particular, reservoir simulation.

GPU technology has already provided many success stories in the Oil and Gas Industry, more
specifically in geophysical applications (B. Deschizeaux et al., 2008; Micikevicius, 2009). This is
primarily due to the high level of parallelism implied by the processing of large sets of independent
seismic data using the SIMD (Single Instruction Multiple Data) paradigm.

In the case of reservoir simulation, the success of efficient GPU implementations is limited to spatial
and temporal dependencies established by the discretized equations governing flow phenomena.
Traditionally, each simulation component may require a different approach to parallelization based on
the physics of the problem (e.g., black-oil, compositional, thermal), the numerical formulation (e.g.
degree of implicitness, type of spatial discretization and meshing), the input data (e.g., reservoir
geometry, heterogeneity) and user supplied options (e.g., timestep control, flash calculations).
Challenges associated with the parallelization of reservoir simulation applications have been
extensively discussed in several papers, among recent ones (DeBaun et al., 2005, Al-Shaalan et al.,
2009; Dogru et al., 2009). Authors of the present paper (Wang et al., 2009) have already performed
some preliminary investigations to analyze GPU scalability of isolated linear systems arising in black-
oil and compositional simulations. The present work represents updated numerical results and
algorithm extensions to a currently submitted paper (Li et al., 2010).

In this paper, we propose a many-core GPU implementation for solving large sparse linear systems
arising in realistic black-oil and compositional flow simulations. The present paper is structured as
follows. In the following section, we provide a brief description of the GPU architecture to facilitate
the understanding of the solver implementation. We then provide a discussion of the solver
implementation that relies on an efficient implementation of matrix-vector products and construction
and application of the preconditioner. The discussion is followed by benchmarks illustrating the
performance of the parallel solver and its impact on accelerating simulations on the well known
SPE10 and three field cases. These benchmarks are established using state-of-the-art CPU and GPU
technology. We conclude the present work with some highlighting remarks and future lines of effort.
Henceforth, we will be referring to multicore architecture of CPU as just “CPU” and the many-core
GPU as “GPU” unless stated otherwise.

ECMOR XII – 12 th European Conference on the Mathematics of Oil Recovery
6-9 September 2010, Oxford, UK

2. The GPU/CUDA Many-core Paradigm

The GPU architecture is based on a highly multithreaded SIMD paradigm. More specifically, the
same program called kernel, is running on GPU cores that is executed by each GPU thread with
different data. The CPU launches the sequence of kernels to allow the computationally intensive
operations to be executed in the GPU.

SM
EM

SM
EM

SM
EM

SM
EM

Global MemoryGlobal Memory

CPUCPU

GPU

PCIe

SM
EM

SM
EM

SM
EM

SM
EM

SM
EM

SM
EM

SM
EM

Global MemoryGlobal Memory

CPUCPU

GPU

PCIe

Figure 1. GPU hardware overview.

Figure 1 illustrates the basic GPU architecture and its connection with the CPU. The CUDA
programming model provides the level of abstraction required to be able to handle hierarchy of
threads, memory and synchronization instructions.

The Tesla 20-series GPU, also commercially codenamed Fermi (Tesla C2050) that was used in our
numerical experiments, contains 14 streaming multiprocessors, each with 32 scalar processors (for a
total of 448 computing cores), 32K 32-bit registers, and 48 KB of shared memory and global memory
up to 6GB. Global memory accesses for the 20-seriers family of Tesla GPUs are cached. There is an
L1 cache for each multiprocessor and an L2 cache shared by all multiprocessors. This allows
accelerating algorithms such as the sparse matrix-vector-products that are characterized by indirect
and irregular data accesses. Each multiprocessor is capable of handling 1536 threads, so the total
number of threads that can handle the GPU is 14x1536=21,504 threads. To manage this large
population of threads efficiently, the threads are organized in thread blocks in groups of 32 called
warps. Consequently, threads within a thread block can communicate via shared memory, or use
shared memory as a user-managed cache since shared memory latency is two orders of magnitude
lower than that of the global memory. A barrier primitive is provided so that all threads in a thread
block can synchronize their execution.

The stream processors are fully capable of executing integer and double precision floating point
arithmetic. These processors have access to global device memory. Memory latency is hidden by
executing thousands of threads concurrently. Register and shared memory resources are partitioned
among the currently executing threads. There are two major differences between CPU and GPU
threads. First, the GPU threads are lightweight and non-persistent compared to CPU threads. Second,
while CPUs execute efficiently when the number of threads per core is small (often one or two),
GPUs achieve high performance when thousands of threads execute concurrently.

The connection between CPU memory and GPU memory is established through a fast PCI express-
16X point-to-point link. In general this memory transfer is marginal when the GPU computing time
governs most of the overall computing time (Wang et al. 2009). Further technical information on both
GPU architecture and CUDA are available in (Lindholm et al., 2008; Nickolls et al., 2008).

ECMOR XII – 12 th European Conference on the Mathematics of Oil Recovery
6-9 September 2010, Oxford, UK

3. General Description of the Many-core GPU Solver

Our GPU solver implementation relies on a flexible variant of GMRES, namely FGMRES (Saad
2003). The FGMRES solver allows for using variable preconditioning in each of the iterations and
can handle nested type of solutions in a more stable fashion. The implementation relies on CUBLAS
library (Deschizeaux et al., 2008) kernel calls, a specific adaptation of a set of array operations to
carry out Krylov basis orthogonalization, sparse matrix-vector products (Spmv) operations and the
preconditioner construction and application. CUBLAS is a highly optimized BLAS library for GPUs
specially written in CUDA.

In terms of the implementation, the Spmv and preconditioner are the tasks responsible for dictating
the overall complexity in each of the solver iterations and its computational efficiency is critical for
achieving high overall solver performance on the GPU. Additionally, sparsity of the matrix generally
induces irregular memory access patterns. Hence mapping the number of threads to optimally reduce
memory overhead is essential in our CUDA implementation.

3.1 GPU Sparse Matrix-Vector Product Kernel

We use the compress storage row (CSR) to represent the matrix system (Saad, 2003). That is, a
floating point array is used to store all the non-zeros; one integer array contains the column index of
each non-zero and another integer array contains pointers of the starting position of each row.

A straightforward parallel implementation can be achieved by partitioning the matrix by rows and
distribute them among different thread blocks. However, this type of partitioning may induce poorly
coalesced transactions since each thread will be fetching data in shared memory. On the other hand, if
locations being accessed are sufficiently close to each other, more thread operations can be coalesced
by hardware to achieve greater memory efficiency.

A better implementation is to assign half-warp (16 consecutive threads) per row. That is, the first half
warp works on row one, second half warp works on row two and so forth. Since all threads within a
half warp access nonzero elements of a given row the chance of coalescing should be much higher.
Higher performance can be actually achieved if, in addition, these nonzero elements are accessed
consecutively in memory. Since each row is multiplied by a vector to get an entry in the output
vector, the operation reduces to perform a parallel dot product. Since the input vector is read-only, the
best strategy is to place this vector in the texture memory and access it by texture fetching. Upon
completion of the set of parallel dot products, partial results in shared memory can be summed via a
fan-in scheme (Bell and Garland, 2009; Baskaran and Bordawekar, 2009; Buatois et al., 2009).

Based on our experiments, the performance of the second implementation is much higher than the
first one for matrices in which the number of non-zeros per row is large. However, for matrices which
have a small number of non-zeros per row, the performance of the first implementation is close to the
second one. For some cases, it can even outperform the second implementation.

A more robust implementation of Spmv kernels is to use the JAD (JAgged Diagonal) format. The
Spmv kernel in this format is observed to provide high performance for matrices with high or low
number of nonzeros per row. The only overhead incurred in using this format is to permute matrix
rows according to the number of non-zeros of each row. The JAD format and the implementation of
matrix-vector product in this format are discussed in detail in (Saad, 2003).

3.2 GPU Preconditioner Implementation

We consider a suite of different block preconditioners on the GPU. Our primary intention is to
evaluate their suitability to exploit maximum performance on the GPU and eventually decide smart

ECMOR XII – 12 th European Conference on the Mathematics of Oil Recovery
6-9 September 2010, Oxford, UK

strategies to select them according to the simulation problem. This last aspect will be discussed in
near future works.

The use of block strategies such as block Jacobi allows for assigning each set of block coefficients to
a thread block. We consider the following preconditioning approaches: (a) BILU(k). i.e., BILU with a
level of fill-in according to k, (b) BILUT, i.e., BILU with threshold that basically stands for a BILU
with both a fill-in and drop tolerance strategy and, (c) multicoloring SSOR (MC-SSOR), that is based
on a greedy reordering strategy to compute the minimum number of colours possible from the matrix
connectivity graph. The latter approach is nothing else than a generalization of the red-black colouring
used to generate inexpensive Schur complement formulations associated to the problem. As in the
case of the Smpv algorithm, the number of threads per coefficient block is approximately given by the
size of the problem divided by the number of colours times the number of thread blocks. Additionally,
a sparsification strategy is applied to discard small entries during the graph colouring process. In the
application phase of the preconditioner, a few block SSOR sweeps is performed to reduce residuals at
each FGMRES iteration. Further technical details about the implementation of these preconditioners
are available elsewhere (Li and Saad, 2010; Li et al., 2010).

Given the SIMD paradigm in the GPU, both the setup and application phases of each of the
aforementioned preconditioners lead to local solutions without any (BILU variants) or marginal (in
the case of multicolour SSOR) data dependency. The global solution is obtained by adding
contributions from each local linear system. Despite the high parallelism, the quality of the
preconditioner deteriorates as the number of blocks increases. This deterioration reflects to an
increasing number of iterations. For a wide range of problems it is challenging to determine the
optimal number of GPU threads required to achieve maximum parallelism while maintaining the
effectiveness of the preconditioner. We found that by running a few short inspectional runs with
different number of threads were useful to estimate an optimal number to deliver the best possible
performance. For reservoir cases consisting of around 500,000 gridblocks, a value of 512 thread
blocks was close to the optimal number.

In order to achieve maximum parallel efficiency in the suite of BILU preconditioners, it is
fundamental to reduce irregular memory accesses and balance the load of computational work among
processors. In the context of graphs, the goal is to simultaneously minimize the distance between
nodes (matrix entries) and the number of edge cuts upon assigning nodes to different processors.
Seeking optimal partitioning and reordering of variables to achieve maximum parallel performance
has been actually subject of intensive research (Saad, 2003; Shuttleworth et al., 2009).

Among several reliable graph partitioning software, we use METIS to generate a balance partitioning
of tasks among processors (Karypis and Kumar, 1998). To minimize matrix bandwidth and, therefore,
the degree of fill-in in BILU type of implementations, we rely on the Reverse Cuthill-McKee (RCM)
algorithm (George and Liu, 1981). For large problems, the cost of using both algorithms may be
considerable high relative to the solution process. However, since linear systems are generally solved
hundreds of thousand of times during the span of the simulation, this cost can be effectively
amortized. Generally, both METIS and RCM are required to be used a small fractional number of
times with respect to the total number of timesteps in the whole simulation. We have implemented
simple indicators to automatically perform a fresh METIS or RCM reordering after long intervals of
simulation. In order to be able to perform partitioning or reordering of a given linear system at any
timestep, we only require storing an index permutation vector.

METIS partitioning generates denser diagonal blocks of similar size with respect to the original
matrix. If additionally RCM reordering is applied before METIS, then a more compact banded local
system will be obtained in each block. Note that the use of both partitioning and reordering operations
increases the chances to move more entries inside each diagonal block but, on the other hand, this
may negatively affect the original degree of diagonal dominance and thereby negatively impact the
solver scalability. We have developed a set of automatic criteria to select the use of RCM when
impacts positively in the linear solver convergence.

ECMOR XII – 12 th European Conference on the Mathematics of Oil Recovery
6-9 September 2010, Oxford, UK

4. Numerical Experiments

We consider 4 different simulation cases in our performance study. These cases include an oil-water
case given by the SPE10 synthetic case (Christie and Blunt, 2001) and 3 field cases: a black-oil case
(Case A) and 2 compositional cases (Cases B and C) involving 5 and 8 components, respectively. All
cases are run using the IMPES option with implicit well treatment, so the benchmarks are based on
the solution of the pressure system. Succinct description of these cases is summarized in Table 1.
The four cases yield linear systems that vary significantly in size, sparsity and conditioning. As the
number of mass balance equations increases, we observe that the fraction of the solver responsible for
the total CPU time decreases. In the case of compositional simulation (cases B and C) a fraction of
about 20% is spent in the thermodynamics of the phase behaviour calculation.

 Table 1. Benchmark cases.

Case Size Model
type

%
Solver

N.
wells

N.
Timesteps

Most relevant
characteristics

SPE10 60x220x85 Oil-water 90% 5 1423
(50 days) Highly heterogeneous

A 140x230x44 Black-Oil 81% 83 2524
(34 years)

Waterflooding, highly
heterogeneous

B 128x155x19 5 comp. 75% 445 19429
(35 years)

Highly faulted, water
injection

C 257x228x21 8 comp. 72% 124 1641
(5 years)

Highly
compartmentalized

We first focus our attention on comparing the performance of the FGMRES iterative solver using
BILU(0), BILUT and MC-SSOR on a single core CPU and on the GPU. The fill-in and drop
threshold for BILUT were set 30 and 1.D-4, respectively. The number of SSOR iterations was set to
2. These preconditioners can be considered the main work-horse options in any reservoir simulator
solver available today. In all cases to be shown, the FGMRES solver was assumed to converge when a
relative residual less or equal to 10-4 was achieved.

We hardware specifications are the following:

• Dual Intel Nehalem (Intel Xeon X5570, 2.93 Ghz, 8MB L3 Cache), 16GB RAM
• NVIDIA Tesla C2050 (installed with Intel Intel Nehalem X5570), 448 cores, 3.22 GB RAM

The Intel Nehalem family architecture is considered the fastest multicore CPU available nowadays.
All runs are carried out on Linux. Our in-house simulator was compiled using the –O2 option and
linked with the GPU Solver already compiled as a form of a library. The resulting object code was run
it on the two hardware platforms mentioned above. Since we are mainly concerned with maintaining
accuracy in real field simulations, we restrict our analysis to a double precision version of the GPU
solver library. Hence, the compiler option for the C interface to CUDA was set to –arch sm_20 in
order to enable the double precision option and global memory cache.

Tables 2, 3 and 4 shows the solver performance using the BILU(0), BILUT and MC-SSOR
preconditioners on the GPU for isolated systems obtained from the 4 cases considered. The BILU set
of preconditioners rely on METIS partitioning. We are omitting the RCM reordering since it did not
show a major influence in the CPU timings for the cases considered. We can note that the BILUT
becomes more effective than BILU(0) as the problems sizes increases. The MC-SSOR strategy
outperforms these two BILU strategies in all cases. Most the gain here is due to the inexpensive
construction of the preconditioner for the MC-SSOR. In each case, we can observe that the CPU
Spmv operation is practically negligible compared to the application of the preconditioner.

ECMOR XII – 12 th European Conference on the Mathematics of Oil Recovery
6-9 September 2010, Oxford, UK

The left side of Figure 2 compares the performance of the GPU-based solver using the BILU(0)
preconditioner relative to the CPU-based solver using the ILU preconditioner upon completion of the
simulation. The right side of Figure 2 shows the relative simulation performance using these two
solvers. Note that the solver time represents a fraction of the whole simulation (see column 4 on Table
1). The GPU BILU(0) solver shows a gain factor of approximately 3x with respect to Intel Nehalem.
It is worth to mention that the GPU BILU solver is weaker than the ILU sequential implementation as
the iterative solver generally takes more iterations. Nevertheless, GPU solver is still able to
outperform, since thousands of GPU threads are exploited in each of the FGMRES iterations.

Table 2. Comparative performance assessment using the GPU BILU(0) solver.

Cases Prec Prec.
Setup (s)

Prec.
Appl. (s)

Matvec
(s)

Remainder
(s)

Total
(s)

METIS
(s)

N.
Iterations

SPE10 BILU(0) 1.06 3.54 0.35 0.58 5.53 1.32 168
A BILU(0) 0.25 0.58 0.06 0.30 1.19 1.03 58
B BILU(0) 0.08 0.23 0.03 0.09 0.43 0.20 55
C BILU(0) 0.08 0.08 0.01 0.02 0.19 0.14 22

Table 3. Comparative performance assessment using the GPU BILUT solver.

Cases Prec Prec.
Setup (s)

Prec.
Appl. (s)

Matvec
(s)

Remainder
(s)

Total
(s)

METIS
(s)

N.
Iterations

SPE10 BILUT 1.06 2.88 0.27 0.56 4.77 1.32 120
A BILUT 0.82 0.75 0.06 0.33 1.96 1.03 58
B BILUT 0.28 0.50 0.03 0.10 0.91 0.20 51
C BILUT 0.27 0.11 0.01 0.03 0.42 0.14 19

Table 4. Comparative performance assessment using the GPU CS-SSOR(2) solver.

Cases Prec Prec.
Setup (s)

Prec.
Appl. (s)

Matvec
(s)

Remainder
(s)

Total
(s)

N.
Iterations

SPE10 MC-SSOR 0.02 1.88 0.16 0.77 2.83 91
A MC-SSOR 0.02 0.81 0.06 0.26 1.15 59
B MC-SSOR 0.01 0.22 0.03 0.09 0.35 50
C MC-SSOR 0.01 0.13 0.02 0.05 0.21 34

The results shown at the right side of Figure 2 are a immediate consequence of Amdahl’s Law when a
fraction of the original code is only parallelized, namely, the performance improvement PI is given by
PI=1/(s + p), where s represents the sequential fraction and p represents the parallel fraction of the
simulation code. For instance, the solver component of Case C represents 72% of the total time and
the GPU solver is about 2.8 times faster than the CPU Intel Nehalem, thus the expected performance
improvement in the simulation is approximately given by PI = 1/(.28 + .72/2.8) ~ 1.8x. This can be
seen clearly reflected in the right side of Figure 2.

5. Conclusions and Future Work

We have evaluated the current capabilities that many-core GPU on a set of realistic black-oil and
compositional reservoir scenarios. Despite that the study focused only on the solver component of the
simulator and that there is still room for further improvements in the proposed implementation, the
results provide clear indication of the enormous potential that many-core GPU can offer in near future
simulation studies.

ECMOR XII – 12 th European Conference on the Mathematics of Oil Recovery
6-9 September 2010, Oxford, UK

We observed that with a moderate effort in the solver kernel, the GPU can outperform by almost ~3x
the serial implementation on the Intel Nehalem. This improvement resulted in a noticeable
improvement in the simulation of field cases, in the order of 1.8x-2.4x. This gain seems to be more
significant as the problem size increases and more regular computations are fitted into the SIMD
paradigm entailed by GPUs. Potential for achieving higher simulation performance seems to be more
promising using MC-SSOR rather than block ILU type of approaches. Further attention will be
devoted to analyze the interplay of the MC-SSOR preconditioner upon sparsification and other
reordering strategies. Additional performance can be particularly exploited in cell-wise type of
computations such as those involved in physical properties, phase behavior and other vector
computations related to the solution process.

Figure 2. Relative performance for the solver (left) and full simulation (right) on the CPU and GPU.

Despite that the results on GPU look comparatively impressive with respect to the serial
implementation on a state-of-the-art multicore CPU platform, the current factor of 3x may not be
enough to outperform highly scalable parallel algorithms on multicore CPU. However, from our
perspective, the advance in many-core hardware technology has the potential to surpass the current
capabilities of the multicore CPU technology for SIMT type of tasks. We have observed tremendous
benefit exploiting dense and particular sparse BLAS operations (such as our current Spmv
implementation) in our performance studies.

Having the GPU as a specialized accelerator device attached to the multicore CPU, there are clear
opportunities to develop hybrid algorithms that can exploit different levels of parallel granularity in
both of the architectures to effectively handle multiple simultaneous tasks (e.g., multistage
preconditioning, upscaling, well allocation factor computations, reduced order model generation). We
believe that as the parallelism implied by many-core technology becomes more widely accepted, large
and complex scale simulations will be part of day-to-day desktop computations.

Acknowledgements

The authors would like to thank ConocoPhillips Company for allowing the publication of the current
work. This work is also supported by DOE under grant DE-FG 08ER25841. The authors want to
thank NVIDIA for facilitating access to the Fermi architecture.

References

T. M. Al-Shaalan, A. H. Dogru, H. Klie and M.F. Wheeler. Studies of Robust Two-Stage
Preconditioners for the Solution of Fully Implicit Multiphase Problems. SPE Reservoir Simulation
Symposium, SPE paper N. 118722, The Woodlands, Texas, Feb. 2-4, 2009.

ECMOR XII – 12 th European Conference on the Mathematics of Oil Recovery
6-9 September 2010, Oxford, UK

S. Barrachina, M. Castillo, F.D. Igual, R. Mayo, E.S. Quintana-Orti and G. Quintana-Orti. Exploiting
the Capabilities of GPUs for Dense Matrix Computations. Technical Report ICC 01-11-2008,
Departamento de Ingenieria y Ciencias de Computadores, Castellon, Spain, 2008.

M. M. Baskaran and R. Bordawekar. Optimizing Sparse Matrix-Vector Multiplication on GPUs.
Technical report, IBM Research, 2009.

N. Bell, M. Garland. Implementing sparse matrix-vector multiplication on throughput-oriented
processors. SC '09: Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis, ACM, 1-11, 2009.

L. Buatois, G. Caumon, B. Levy. Concurrent number cruncher: A GPU Implementation of a General
Sparse Linear Solver. International Journal of Parallel, Emergent and Distributed Systems, 24: 205-
223, 2009.

M.A. Christie and M.J. Blunt. Tenth SPE Comparative Solution Project: A Comparison of Upscaling
Techniques. SPE Reservoir Simulation Symposium, SPE paper N. 72469, Houston, Feb. 11-14, 2001.

B. Deschizeaux and J-Y. Blanc. Imaging Earth’s Subsurface using CUDA. GPU Gems 3, Chapter 38,
H. Nguyen editor, NVIDIA Corporation, 831-850, 2008.

A.H. Dogru, L.S.K. Fung, U. Middya, T.M. Al-Shaalan, J.A. Pita, K. Hemanth, Kumar, H.J. Su,
J.C.T. Tan, H. Hoy, W.T. Dreiman, W.A. Hahn, R.Al-Harbi, A. Al-Youbi, N.M. Al-Zamel.
M.Mezghani, T. Al-Mani. A Next Generation Parallel Reservoir Simulator for Giant Reservoirs. SPE
Reservoir Simulation Symposium, SPE paper N. 119272, The Woodlands, TX, Feb, 2009

J.A. George and J.W. Liu. Computer Solution of Large Sparse Positive Definite Systems. Prentice-
Hall, Englewwod Cliffs, N.J., 1981.

G. Karypis and V. Kumar. A Parallel Algorithm ofor Multilevel Graph Partitioning and Sparse
Matrix Ordering. Journal of Parallel and Distributed Computing, 48: 71-95, 1998.

R.Li, Y. Saad. Preconditioned Iterative Linear Solvers on GPUs. In preparation, 2010.

R. Li, H. Klie, H. Sudan, and Y. Saad. Towards realistic reservoir simulations on manycore platforms.
SPE Journal, 2010. Submitted.

E. Lindholm, J. Nickolls, S. Oberman and J. Montrym. NVIDIA Tesla: A Unified Graphics and
Computing Architecture. Micro, IEEE. 28:39-55, 2008.

P. Micikevicius. 3D finite difference computation on GPUs using CUDA. Proceedings of 2nd
Workshop on General Purpose Processing on Graphics Processing Units, ACM, 79-84, 2009.

J. Nickolls, I.Buck, M. Garland and K. Skadron. Scalable Parallel Programming with CUDA. Queue,
ACM. 6:40-53, 2008.

Y. Saad. Iterative Methods for Sparse Linear Systems. 2nd edition, Society for Industrial and Applied
Mathematics, Philadelphia, 2003.

M. Wang, H. Klie, M. Parashar and H. Sudan. Solving Sparse Linear Systems on NVIDIA Tesla
GPUs. Lecture Notes in Computer Science, Springer, 5544: 864-873, 2009.

