Numerical Linear Algebra: from Scientific Computing to Data Science Applications

Yousef Saad
University of Minnesota

47th Annual Spring Lecture Series
University of Arkansas

May 4–6, 2022
This tutorial: Topics & Plan

- Current state of advanced Numerical Linear Algebra including:
 - First part: Sparse large matrix problems, linear systems, eigenvalue problems
 - Second: data-related problems: graphs, dimension reduction, ...
 - Prerequisite: senior level course in numerical linear algebra
 - 5 lectures + Matlab demos
 - All materials posted here:
<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wed.</td>
<td>8:00–9:00 am</td>
<td>Historical Perspective; Background & Examples; Sparsity; Data structures; Relaxation methods</td>
</tr>
<tr>
<td>Wed.</td>
<td>1:00–2:00 pm</td>
<td>Projection methods for lin. systems, Krylov methods; Eigenvalue Pbs; Proj. Methods; Subs. it.; Lanczos</td>
</tr>
<tr>
<td>Thu.</td>
<td>8:00–9:00 am</td>
<td>Background on Graphs; Graph representations; Graphs for Data; Networks & Centrality; Graph Laplaceans.</td>
</tr>
<tr>
<td>Thu.</td>
<td>1:00–2:00 pm</td>
<td>Graph methods; Clustering; Segmentation; Graph embedding; Dimension Reduction; Information retrieval.</td>
</tr>
<tr>
<td>Fri.</td>
<td>8:00–9:00 am</td>
<td>Supervised Learning; Neural Networks; Coarsening in scientific computing & in Data Sciences</td>
</tr>
</tbody>
</table>
Introduction: a historical perspective

In 1953, George Forsythe published a paper titled: “Solving linear systems can be interesting”.

- Survey of the state of the art linear algebra in early 50s: direct methods, iterative methods, conditioning, preconditioning, The Conjugate Gradient, acceleration methods,

- An amazing paper in which the author was urging researchers to start looking at solving linear systems
Introduction: a historical perspective

In 1953, George Forsythe published a paper titled: “Solving linear systems can be interesting”.

- Survey of the state of the art linear algebra in early 50s: direct methods, iterative methods, conditioning, preconditioning, The Conjugate Gradient, acceleration methods,

➤ An amazing paper in which the author was urging researchers to start looking at solving linear systems

➤ Nearly 70 years later – we can certainly state that:

“Linear Algebra problems in Machine Learning can be interesting”
Focus of numerical linear algebra changes over time

Linear algebra took many direction changes in the past

1940s–1950s: Major issue: flutter problem in aerospace engineering
→ eigenvalue problem [cf. Olga Taussky Todd] → LR, QR, .. → ‘EISPACK’

1960s: Problems related to the power grid promoted what we would call today general sparse matrix techniques

1970s– Automotive, Aerospace, ..: Computational Fluid Dynamics (CFD)

Late 1980s: Thrust on parallel matrix computations.

Late 1990s: Spur of interest in “financial computing”

Current: Machine Learning
Solution of PDEs (e.g., Fluid Dynamics) and problems in mechanical eng. (e.g. structures) major force behind numerical linear algebra algorithms in the past few decades.

Strong new forces are now reshaping the field today: Applications related to the use of “data”

Machine learning is appearing in unexpected places:

- design of materials
- machine learning in geophysics
- self-driving cars, ..
-
Big impact on the economy

- New economy driven by Google, Facebook, Netflix, Amazon, Twitter, Ali-Baba, Tencent, ..., and even the big department stores (Walmart, ...)

- Huge impact on Jobs
Big impact on the economy

- New economy driven by Google, Facebook, Netflix, Amazon, Twitter, Ali-Baba, Tencent, ..., and even the big department stores (Walmart, ...)
- Huge impact on Jobs

- Old leaders - e.g., Mining; Car companies; Aerospace; Manufacturing; offer little growth – Some instances of renewal driven by new technologies [e.g. Tesla]

- Look at what you are doing under new lenses: DATA
H2 / HSS matrices
\[Ax = b \]
Graph Partitioning

Model reduction

\[-\Delta u = f \]

Preconditioning

\[A x = \lambda x \]

Domain Decomposition

LARGE SYSTEMS

Matlab, PETSc, ...
LARGE SYSTEMS

\[Ax = b \]

\[-\Delta u = f \]

H2 / HSS matrices

Model reduction

Graph Partitioning

Ax = \lambda x

Domain Decomposition

Sparse matrices

A = U \Sigma V^T

PCA

Clustering

Dimension Reduction

LASSO

BIG DATA!

Semi-Supervised Learning

Regression

Graph Laplaceans

Preconditioning

Translate

Divide & Conquer

Data Sparsity

Domain

Python, PyTorch

Matlab, PETSc, etc.
My course: CSCI 8314: Sparse Matrix Computations
[url: my website - follow teaching]

... Has changed substantially in past 4-6 years

Before: — PDEs, solving linear systems, Sparse direct solvers, Iterative methods, Krylov methods, Preconditioners, Multigrid,..

Now: — a little of sparse direct methods + Applications of graphs, dimension reduction, Krylov methods. Examples in: PCA, Information retrieval, Segmentation, Clustering, ...
This tutorial is about Numerical Linear Algebra – both the classical kind and the new:

- Standard matrix computations (e.g. solving linear systems, eigenvalue/SVD problems, ...)
- Graph algorithms and tools (Sparse graphs, graph coarsening, graphs and sparse methods).
- Dimension reduction methods; Graph embeddings;
- Specific machine learning algorithms; unsupervised/ supervised learning;
- Graph coarsening methods in scientific computing and machine learning
Example: Fluid flow

- Physical Model
 - Nonlinear PDEs
 - Discretization
 - Linearization (Newton)
 - Sparse Linear Systems $Ax = b$
Many applications require the computation of a few eigenvalues and associated eigenvectors of a matrix A.

- Structural Engineering – (Goal: frequency response)
- Electronic structure calculations [Schrödinger equation..] – Quantum chemistry
- Stability analysis [e.g., electrical networks, mechanical system,..]
- ...

Example: Eigenvalue Problems
Example: Vibrations

Problem: Determine the vibration modes of the mechanical system [to avoid resonance]. See details in Chapter 10 (sec. 10.2) of above reference.

➤ Problem type: Eigenvalue Problem
If one were to do a random walk from web page to web page, following each link on a given web page at random with equal likelihood, which are the pages to be encountered this way most often?

Problem type: (homogeneous) Linear system. Eigenvector problem.
Example: Power networks

- Electrical circuits .. [Kirchhoff’s voltage Law]

Problem: Determine the loop currents in a an electrical circuit - using Kirchhoff’s Law ($V = RI$)

- Problem: Sparse Linear Systems [at the origin Sparse Direct Methods]
Example: Economics/Marketing/Social Networks

- Given: an influence graph G: $g_{ij} =$ strength of influence of j over i
- Goal: charge member i price p_i in order to maximize profit
- Utility for member i: $[x_i =$ consumption of $i]$

$$u_i = ax_i - bx_i^2 + \sum_{j \neq i} g_{ij}x_j - p_ix_i$$

1: ‘Monopolist’ fixes prices; 2: agent i fixes consumption x_i

Result: Optimal pricing proportional to Bonacich centrality:

$$(I - \alpha G)^{-1} \parallel \text{where } \alpha = \frac{1}{2b} \text{ [Candogan et al., 2012 + many refs.]}$$
➤ ‘centrality’ defines a measure of importance of a node (or an edge) in a graph

➤ Many other ideas of centrality in graphs [degree centrality, betweenness centrality, closeness centrality,

➤ Important application: Social Network Analysis
First use of least squares by Gauss, in early 1800’s:

A planet follows an elliptical orbit according to $ay^2 + bxy + cx + dy + e = x^2$ in cartesian coordinates. Given a set of noisy observations of (x, y) positions, compute a, b, c, d, e, and use to predict future positions of the planet. This least squares problem is nearly rank-deficient and hence very sensitive to perturbations in the observations.

Problem type: Least-Squares system

Read Wikipedia’s article on planet ceres:
http://en.wikipedia.org/wiki/Ceres_(dwarf_planet)
Example: Dynamical systems and epidemiology

A set of variables that fill a vector y are governed by the equation

$$\frac{dy}{dt} = Ay$$

Determine $y(t)$ for $t > 0$, given $y(0)$ [called ‘orbit’ of y]

- Problem type: (Linear) system of ordinary differential equations.

Solution:

$$y(t) = e^{tA}y(0)$$

- Involves exponential of A [think Taylor series], i.e., a matrix function
This is the simplest form of dynamical systems (linear).

Consider the slightly more complex system:

\[
\frac{dy}{dt} = A(y)y
\]

Nonlinear. Requires ‘integration scheme’.

Next: a little digression into our interesting times...
Example: The SIR model in epidemiology

A population of N individuals, with $N = S + I + R$ where:

- **S** Susceptible population. These are susceptible to being contaminated by others (not immune).
- **I** Infectious population: will contaminate susceptible individuals.
- **R** ‘Removed’ population: either deceased or recovered. These will no longer contaminate others.

Three equations:

$$\frac{dS}{dt} = -\beta IS; \quad \frac{dI}{dt} = (\beta S - \mu)I; \quad \frac{dR}{dt} = \mu I$$

$1/\mu$ = infection period; $\beta = \mu R_0/N$; R_0 = reproduction number.
The importance of reducing R_0 (a.k.a. “social distancing”):

See the latest on this ($R_0 \approx 8.2$ for variant BA.1 and ≈ 12 for BA.2 !!)

... and keep away from each other
Problems in Numerical Linear Algebra

- Linear systems: $Ax = b$. Often: A is large and sparse
- Least-squares problems $\min \|b - Ax\|_2$
- Eigenvalue problem $Ax = \lambda x$. Several variations -
 - SVD .. and
 - ... Low-rank approximation
- Tensors and low-rank tensor approximation
- Matrix equations: Sylvester, Lyapunov, Riccati, ..
- Nonlinear equations – acceleration methods
- Matrix functions and applications
- Many many more ...
What are sparse matrices?

Vague definition: “..matrices that allow special techniques to take advantage of the large number of zero elements and the structure.”

A few applications of sparse matrices: Structural Engineering, Reservoir simulation, Electrical Networks, optimization problems, ...

Goals: Much less storage and work than dense computations.

Observation: A^{-1} is usually dense, but L and U in the LU factorization may be reasonably sparse (if a good technique is used).
Sample sparsity patterns

ARC130: Unsymmetric matrix from laser problem. a.r.curtis, oct 1974

SHERMAN5: fully implicit black oil simulator 16 by 23 by 3 grid, 3 unk
Sparse matrices in Matlab

- Explore the scripts Lap2D, mark (provided in matlab suite) for generating sparse matrices
- Explore the command spy
- Explore the command sparse
- Run the demos titled demo_sparse0 and demo_sparse1
- Load the matrix can_256.mat from the SuiteSparse collection. Show its pattern
Main goal of Sparse Matrix Techniques: To perform standard matrix computations economically, i.e., without storing the zeros

Example: To add two square dense matrices of size n requires $O(n^2)$ operations. To add two sparse matrices A and B requires $O(nnz(A) + nnz(B))$ where $nnz(X) =$ number of nonzero elements of a matrix X.

For typical Finite Element /Finite difference matrices, number of nonzero elements is $O(n)$.
Data structures: The coordinate format (COO)

\[A = \begin{pmatrix} 1. & 0. & 0. & 2. & 0. \\ 3. & 4. & 0. & 5. & 0. \\ 6. & 0. & 7. & 8. & 9. \\ 0. & 0. & 10. & 11. & 0. \\ 0. & 0. & 0. & 0. & 12. \end{pmatrix} \]

- Also known as ‘triplet format’
- Simple data structure - Often used as ’entry’ format in packages
- Variant used in matlab
- Note: order of entries is arbitrary [in matlab: sorted by columns]

<table>
<thead>
<tr>
<th>AA</th>
<th>JR</th>
<th>JC</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>
Compressed Sparse Row (CSR) format

\[A = \begin{pmatrix}
12. & 0. & 0. & 11. & 0. \\
10. & 9. & 0. & 8. & 0. \\
 7. & 0. & 6. & 5. & 4. \\
 0. & 0. & 3. & 2. & 0. \\
 0. & 0. & 0. & 0. & 1.
\end{pmatrix} \]

- IA(j) points to beginning or row j in arrays AA, JA
- Related: Compressed Sparse Column format, Modified Sparse Row format (MSR).
- Used predominantly in Fortran & portable codes [e.g. Metis] – what about C?

Ark. 47th Spring Lect., May 4-6, 2022
CSR (CSC) format - C-style

* CSR: Collection of pointers of rows & array of row lengths

```c
typedef struct SpaFmt {
    /*---------------------------------------------
    | C-style CSR format - used internally
    | for all matrices in CSR/CSC format
    |---------------------------------------------*/
    int n;    /* size of matrix */
    int *nzcount; /* length of each row */
    int **ja;    /* to store column indices */
    double **ma;    /* to store nonzero entries */
} SparMat;
```

aa[i][*] == entries of i-th row (col.);
ja[i][*] == col. (row) indices,
nzcount[i] == number of nonzero elmts in row (col.) i
Data structure used in Csparse

[T. Davis’ SuiteSparse code]

typedef struct cs_sparse
{ /* matrix in compressed-column or triplet form */
 int nzmax ; /* maximum number of entries */
 int m ; /* number of rows */
 int n ; /* number of columns */
 int *p ; /* column pointers (size n+1) or col indices (size nzmax) */
 int *i ; /* row indices, size nzmax */
 double *x ; /* numerical values, size nzmax */
 int nz ; /* # of entries in triplet matrix, -1 for compressed-col */
} cs ;

- Can be used for CSR, CSC, and COO (triplet) storage
- Easy to use from Fortran
Computing $y = Ax$; row and column storage

Row-form:
Dot product of $A(i,:)$ and x gives y_i

Column-form:
Linear combination of columns $A(:,j)$ with coefficients x_j yields y
void matvec(csptr mata, double *x, double *y)
{
 int i, k, *ki;
 double *kr;
 for (i=0; i<mata->n; i++) {
 y[i] = 0.0;
 kr = mata->ma[i];
 ki = mata->ja[i];
 for (k=0; k<mata->nzcount[i]; k++)
 y[i] += kr[k] * x[ki[k]];
 }
}

- Uses sparse dot products (sparse SDOTS)
- Operation count
void matvecC(csptr mata, double *x, double *y)
{
 int n = mata->n, i, k, *ki;
 double *kr;
 for (i=0; i<n; i++)
 y[i] = 0.0;
 for (i=0; i<n; i++)
 {
 kr = mata->ma[i];
 ki = mata->ja[i];
 for (k=0; k<mata->nzcount[i]; k++)
 y[k*ki[k]] += kr[k] * x[i];
 }
}

Uses sparse vector combinations (sparse SAXPY)

Operation count
Using the CS data structure from Suite-Sparse:

```c
int cs_gaxpy (cs *A, double *x, double *y) {
    n = A->n; Ap = A-> p; Ai = A->i; Ax = A->x;
    for (j=0; j<n; j++) {
        for (p=Ap[j]; p<Ap[j+1]; p++)
            y[Ai[p]] += Ax[p] * x[j];
    }
    return(1)
}
```
BASIC RELAXATION METHODS
Relaxation schemes: based on the decomposition $A = D - E - F$

$D = \text{diag}(A)$, $-E = \text{strict lower part of } A$ and $-F$ its strict upper part.

For example, Gauss-Seidel iteration:

$$(D - E)x^{(k+1)} = Fx^{(k)} + b$$

Most common techniques 60 years ago.

Now: used as smoothers in Multigrid or as preconditioners

Note: If $\rho_i^{(k)} = i$th component of current residual $b - Ax$ then relaxation version of GS is:

$$\xi_i^{(k+1)} = \xi_i^{(k)} + \frac{\rho_i^{(k)}}{a_{ii}}$$

for $i = 1, \cdots, n$
Iteration matrices

- Jacobi, Gauss-Seidel, SOR, & SSOR iterations are of the form

\[x^{(k+1)} = M x^{(k)} + f \]

- \(M_{Jac} = D^{-1}(E + F) = I - D^{-1}A \)

- \(M_{GS}(A) = (D - E)^{-1}F = I - (D - E)^{-1}A \)

SOR relaxation:

\[\xi_i^{(k+1)} = \omega \xi_i^{(GS,k+1)} + (1 - \omega) \xi_i^{(k)} \]

- \(M_{SOR}(A) = (D - \omega E)^{-1}(\omega F + (1 - \omega)D) \)
 \[= I - (\omega^{-1}D - E)^{-1}A \]

- Matlab: take a look at: \textit{gs.m}, \textit{sor.m}, and \textit{sorRelax.m} in iters/
The iteration \(x^{(k+1)} = Mx^{(k)} + f \) is attempting to solve \((I - M)x = f\). Since \(M \) is of the form \(M = I - P^{-1}A \) this system can be rewritten as

\[
P^{-1}Ax = P^{-1}b
\]

where for SSOR, we have

\[
P_{SSOR} = (D - \omega E)D^{-1}(D - \omega F)
\]

referred to as the SSOR ‘preconditioning’ matrix.

In other words:

\[
\text{Relaxation Scheme} \iff \text{Preconditioned Fixed Point Iteration}
\]