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Solving large interior eigenvalue problems

1. Shift-invert: A — (A —oI)™!
2. Polynomial filtering: A — p(A)
3. Rationalfiltering: A — > a;(A—o;I)™!

Main issue with shift-and invert | (and related approaches)

» Direct methods may be too expensive — don't scale well

Three broad
approaches:

» Could use iterative methods .... But these do not always
work — because :
e Systems are highly indefinite

» Alternative: ‘Spectrum slicing’ with filtering
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Filtering and “Spectrum Slicing”

» (Context: very large number of eigenvalues to be computed

» (Goal: compute spectrum by slices by applying filtering

Pol. of degree 32 approx§(.5) in [-1 1]

» Apply Lanczos or Sub-
space iteration to problem:

P(A)u = pu =

¢(t) = a polynomial or . .
rational function that en- e i —
hances wanted eigenvalues
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Compute slices separately

... |
JU I

Y

For each slice Do:
[get *all* eigenpairs in a slice]
EndDo

Goal: Compute each slice independently from the others.
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Rationale. Eigenvectors associated with different slices need
not be orthogonalized against each other :
)

i i

» (Can get the spectrum by ‘slices’ or 'windows’ [e.g., a few
hundreds or thousands of pairs at a time]

» Note: Orthogonalization + RR cost can be very high if we
do not slice the spectrum
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Illustration: All eigenvalues in [0, 1] of a 49° Laplacean

Computing all 1,971 e.v.—s. in [0, 1]
600 T T T T

|
I \Vatvec
[ 10rth
I Total
500
400
) — _
£ 300
=
200+ ]
100
0 1 1 I .__ .__
1 2 3 4 5 6

Number of slices

1 This is a small pb. in a scalar environment. Effect

Note: likely much more pronounced in a fully parallel case.
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Polynomial filtering

» Apply Lanczos or Sub- 5 _ o(A) where ¢(t) is
space iteration to: a polynomial

» Each matvec y = Avisreplacedby y = ¢p(A)v
» Eigenvalues in high part of filter will be computed first

» Old (forgotten) idea. But new context is *very* favorable
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What polynomials?

» For end-intervals: use standard
Chebyshev polynomials (1st kind)

» For ‘interior case’ we need a
polynomial that has large values
for A € |a, bl small values
elsewhere

Deg. 6 Cheb. polynom., damped interv=[0.2, 2]

Pol. of degree 32 approxd(.5) in [-1 1]
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Simplest technique: d-Dirac function

» QObtain the LS approxi-
mation to the d — Dirac func-
tion — Centered at some
point (TBD) inside the inter-
val. S

Three filters using different smoothing

- - -No damping
sl ——4Jackson
——Lanczos ¢

p, (1)
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Pol. of degree 32 approx§(.5) in [-1 1]

1
1
1
1
1
2
1
I \
1
0 — 1 L

~~—~ N\

<— Can use same damp-
ing: Jackson, Lanczos o
damping, or none.
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The Chebyshev expansion of 9, is

N | =

3=0

Px(t) = Z’ujTj(t) with p; = {cos(j cos ' (vy)) 7 >0

3=0

» Recall: The delta Dirac function is not a function — we can't
properly approximate it in least-squares sense. However:

Proposition Let pg(t) be the polynomial that minimizes
|l7(£)||., over all polynomials = of degree < k, such that
r(v) = 1, where ||.||., represents the Chebyshev L2-norm.

Then pi(t) = pr(t)/pPr(Y)-




‘The soul of a new filter’ — A few technical details

Pm(t) = X707 T (t)

Hr =

{1/2 if kb ==

cos(k cos™1(«)) otherwise
'yj(-m) — Damping coefficients.

» quite simple...

» .. provided we handle a few practical issues
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Issue # one: | ‘balance the filter’

» To facilitate the selection of ‘wanted’ eigenvalues [Select A’s
such that ¢(\) > bar] we need to ...

» ... find ~ so that ¢(&) == ¢(n)

SRR

Procedure: Solve the equation ¢ (&) — ¢-(n) = 0 with re-
spect to ~, accurately. Use Newton or eigenvalue formulation.
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Issue # two: | Determine degree & polynomial (automatically)

Jackson Chebyshev on [-1, -0.95]; deg. =3:2: 15 1 Jackson Chebyshev on [0.3, 0.6]; deg. =5:5:25
l‘ 1
0.9 1§ - 0.9
‘ U
0.8 ‘\ B 0.8
0 0.7
_ osf : 1 o
< <
~ 05 1 — ~ 05
X '
< Q 0.4
0.3
0.2 B 0.2
]
01t ! N 01k
[ ]
0 5- 0

8 -0.75 -0.7 -0.6!
A

» 1) Start low (e.g. 2); 2) Increase degree until value (s) at the
boundary (ies) become small enough —

» (Can also use criterion based on derivatives at £ & 7y
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7; Sigma damping

Degree

4; Sigma damping

Degree

3; Sigma damping
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Degree = 13; Sigma damping
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0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Degree = 23; Sigma damping

0.75 0.8 0.85 0.9 0.95

A zoom on the final polynomial found
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Issue # Three : | Gibbs oscillations

» Discontinuous ‘function’ approximated — Gibbs oscillations

Three filters using different smoothing
-- -No démpiné | | | | |
.l ——Jackson
“||——Lanczos ¢
» Three options:
e No damping =
e Jackson damping o2

e Lanczos o damping

\ 1
-0.2

-0.4
-1

» (Good compromise: Lanczos o damping
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Backround: The Lanczos Algorithm

» Algorithm builds orthonormal basis V,,, = [v1, v, ¢+ , V)]
for the Krylov subspace: = span{wv;, Avy,--- , A™ 'v;}

(Oﬂ1 B2 \

B2 aa B3
» ... such that: B3 ag B4

VHAV,, = T,, - with Tm =

\ B )

»  Note: three
term recurrence:

Bj+1vj+1 = Av; — av; — B4

» Eigenvalues of A on both ends of spectrum are well approx-
imated by eigenvalues of T;,, (Ritz values).
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Which Projection: Lanczos,w/o restarts, Subspace iteration,..

Options:

» Subspace iteration: quite appealing in some applications
(e.g., electronic structure): | Can re-use previous subspace.

» Simplest: (+ most efficient) Lanczos without restarts

» Lanczos with Thick-Restarting [TR Lanczos, Stathopoulos
et al ‘98, Wu & Simon’00]

» Crucial tool in TR Lanczos: deflation ('Locking’)

Main idea: Keep extracting eigenvalues in interval [€, 1] un-
til none are lefft.

» |f filter is good: Can catch all eigenvalues in interval
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Polynomial filtered Lanczos: No-Restart version

Degree = 23; Sigma damping

» Use Lanczos with full reortho-
gonalization on p(A). Eigenval-
ues of p(A): p(\;)

» Acceptif p(\;) > bar
» Ignore if p(N\;) < bar

08 1.0
| p(A)
+—0~—< ® ® *—o—@ | b—‘~‘~+ P

Unwanted eigenvalues Wanted

21
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How do I slice a spectrum?

» Tools: Density of States (used in EVSL) or eigenvalue counts
(used in FEAST)

e L.Lin, YS, Chao Yang [Siam review '16] — E. Di Napoli, E.
Polizzi, YS ['16]

e KPM method — see, e.q., : [Weisse, Wellein, Alvermann,
Fehske, '06]

e | Interesting instance of a tool from physics used in linear
algebra.

» Misconception: ‘load balancing will be assured by just hav-
ing slices with roughly equal numbers of eigenvalues’

» In fact - will help mainly in balancing memory usage..
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Slice spectrum into 8 with the DOS

0.025

0.02 -

0.015

0.01F

0.005 -

—-0.005

/a | b(b)dt

1
Nslices

T (t)dt

t:

)

» We must have:
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What about matrix pencils?

» DOS for generalized eigen- Axr — \Bx
value problems

» Assume: A is symmetric and B is SPD.

» In principle: can just apply methods to B~1Ax = Az, using
B - inner products.

» Requires factoring B. Too expensive [Think 3D Pbs]
* Observe: B is usually very *strongly* diagonally dominant.

» Especially true after Left+Right Diag. scaling :

~

B=S"'BS™! S =diag(B)Y?
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General observation for FEM mass matrices [See, e.g., Wa-
then’87, Wathen Rees '08]:

* Conforming tetrahedral (P1) elements in 3D — (B) < 5

* Rectangular bilinear (Q1) elements in 2D — x(B) < 9.

Example: | Matrix pair Kuu, Muu from Suite Sparse collec-
tion.

» Matrices A and B have dimensionn = 7,102. nnz(A) =
340,200 nnz(B) = 170, 134.

» After scaling by diagonals to have diag. entries equal to
one, all eigenvalues of B are in interval

(0.6254, 1.5899)]
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Approximation theory to the rescue.

* ldea: Compute the DOS for the standard problem
B 12AB 12y = \u

» Use a very low degree polynomial to approximate B~1/2.
» We use Chebyshev expansions.

» Degree k determined automatically by enforcing

[£7/2 — pr(t) || < tol

» Theoretical results establish convergence that is exponential
with respect to degree.

26 CRM, 12.15.18




Example: | Results for Kuu-Muu example

» Using polynomials of degree 3 (!) to approximate B~1/2

» Krylov subspace of dim. 30 (== deg. of polynomial in KPM)

» 10 Sample vectors used

. Kuu-Muu test —— m=30 Pol. Deg for B=3,n_ =10
x107° vec

. Kuu-Muu pair -—— m=30 Pol. Deg for B=3,n =10
X107 vec

. Kuu-Muu pair -—— m=30 Pol. Deg for B=3,n =30
X107 vec

—— DOS from Lanczos algorithm

- - -~ From histogram

——DOS from KPM

- - - From histogram{{ 1

—— DOS from KPM-Legendre,
- - - From histogram H

Lanczos

27

KPM-Chebyshev

KPM-Legendre
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A digression: The KPM method

» Formally, the Density Of States (DOS) of a matrix A is

) e 0 isthe Dirac d-function or Dirac distribution
where .
o A\ < A <Z...<Z )\, arethe eigenvalues of A

» ¢(t) == a probability distribution function == probability of
finding eigenvalues of A in a given infinitesimal interval near t.

» Also known as the spectral density

» \ery important uses in Solid-State physics
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The Kernel Polynomial Method

» Used by Chemists to calculate the DOS — see Silver and
Roder'94 , Wang '94, Drabold-Sankey’93, + others

» Basic idea: expand DOS into Chebyshev polynomials
» Exploits trace estimators [discovered independently]
» Next: A few details

» Assume change of variable done so eigenvalues liein [—1, 1].

» Include the weight function in the expansion so expand:

d(t) = V1 — 2¢(t) = V1 — 2 X %ia(t — ).
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Then, (full) expansion is: ¢(t) = >27°  urTr(t).

Expansion coefficients u are formally defined by:

2 -6 1 .
o == [ mmt)cp(wdt
2 — 5
— "“0/ mTk(t)\/l — t2¢(t)dt
_ 2 ;:ko ; T.(X;),  (8;; = Dirac symbol)

Note: > Ti(N\;) = Trace|Ti(A)]

Estimate this, e.g., via stochastic estimator

nvec

S (v Tu(A).

vec =1

Trace(Tr(A)) =
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» To compute scalars of the form v!T}(A)v, exploit again
3-term recurrence of the Chebyshev polynomial ...

18
I === Fxact |
ier | o2 -w /o Jackson

14} —w/ Jackson [
12}
10+

» Same Jackson smooth-=

=

Ing as before can be used

O N & OV ®




An example with degree 80 polynomials

0.18f
—te— T xxact
0.16} oo | —e— KPM w/ Jackson|
0.14} '
0.12¢
— O.1}
=

KPM, deg = 80

0.08¢
0.06¢
0.04¢
0.02¢

KPM, deg = 80

0.2F | 4 +Exact

0.15¢}

0.05¢}

—e— KPM w/o Jackson

Left: Jackson damping; right: without Jackson damping.

32
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3D discrete Laplacian example (60° — n = 216,000) Used
¢ = 0.8. Partitioning [0.6, 1.2] into 10 sub-intervals. » Goal:
compute all 3,406 eigenvalues in interval [0.6, 1.2]

&is M)

i — &

V[Sz'a"h']

O© 00O NO O1 A WDN .

—_i
o

0.60000, 0.67568]
0.67568, 0.74715]
0.74715, 0.81321]
0.81321, 0.87568]
0.87568, 0.93574]
0.93574, 0.99339]
0.99339, 1.04805]
1.04805, 1.10090)]
1.10090, 1.15255]
1.15255, 1.20000)]

0.07568
0.07147
0.06606
0.06247
0.06006
0.05765
0.05466
0.05285
0.05165
0.04745

337
351
355
321
333
340
348
339
334
348
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Resuﬂsl

deg

~.

iter

matvec

CPU time (sec)

residual

matvec

total

max

avg

116
129
145
159
171
183
198
209
219
243

O© 00O NO Ol WD =

—i
o

1814
2233
2225
1785
2239
2262
2277
1783
2283
1753

210892
288681
323293
284309
383553
414668
451621
373211
500774
426586

430.11
587.14
658.44
580.09
787.00
848.71
922.64
762.39
1023.24
874.11

759.24

986.67
1059.57

891.46
1180.67
1255.92
1338.47
1079.30
1433.04
1184.76

6.90 x 1079
5.30x 10~%
6.60 x 10~
3.60x10%
6.80 x 10~
9.90 x 10~%
2.30x10~%
8.50x 109
4.30 x 1079
5.70x 10~%

7.02x10711
7.39x1071!
5.25x 10711
4.72x 10~ 1
9.45 x 101!
1.13x 10711
3.64x10~1!
1.34x 1010
4.41x 10~ 4
1.41x 10711

Note: # of eigenvalues found inside each [&;, ;] is exact.
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Hamiltonian matrices from the PARSEC set

Matrix n ~ nnz [a, b] 1€, 1] Ve ]
GegrHrg 112,985 7.9M [—1.21,32.76] [—0.64, —0.0053] | 212
GegoH 100 112,985 | 8.5M | [—1.22,32.70] [—0.65, —0.0096] | 250
Siy1GesHyo 185,639 |15.0M | [—1.12,49.82] | [—0.64, —0.0028] | 218
SigrHrg 240,369 | 10.6 M | [—1.19,43.07] | [-0.66, —0.0300] | 213
Gay Asy Hro | 268,096 | 18.5M | [—1.25,1301] | [—0.64, —0.0000] | 201

Numerical results for PARSEC matrices
, , CPU time (sec) residual
Matrix deg| iter | matvec
matvec| total max avg
GegrHrg 26|1431| 37482 282.70| 395.91/9.40x107%|2.55x 1010
GeggH 19 26 |1615| 42330| 338.76| 488.91/9.10x107%9|2.26 x 1010
Sis1Geys1Hye | 35/1420| 50032 702.32| 891.983.80x107%|8.38 x 101!
Sig7Hrg 30|1427| 43095| 468.48| 699.90|7.60x107%|3.29x 1010
Gay1Asy Hyo 2022334 (471669 [8179.51(9190.46 |4.20x 10712/ 4.33 x 10713
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Why use rational filters?

» (Consider a spectrum like this one:

» Polynomial filtering utterly ineffective for this case

» Second issue: situation when Matrix-vector products are
expensive

» Generalized eigenvalue problems.
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» Alternative is to H(z) =
use rational filters:

Jz 0']

P(A) = aj(A—o; )7 We now need to solve
linear systems

» Tool: Cauchy integral representations of spectral projectors

/\ | PEmi(A-sDTds
_/

e Numer. integr. P — 1—3
e Use Krylovor S.l.on P

»  Sakurai-Sugiura approach [Krylov]
» Polizzi [FEAST, Subsp. lter. ]
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What makes a good filter

25

0.5

real(c) =[ 0.0]; imag(oc) =[ 1.1]; pow =3

real(c) =[ 0.0]; imag(c) =[ 1.1]; pow =3

- 3 ‘ _-
Opt. pole — Opt. pole® : N £ PR
== Single pole 0817 == Single pole | K A
. 3 i
| - * - Single-pole 1,4l * - Single-pole® ! Y
" ’
- - -Gauss 2-poles - - -Gauss 2-poles v £ e .
4 o
- - - Gauss 2-poles? 07H{ - - - Gauss 2-poles? Y -
! ! ! /$ &"\
N i Piie
! I i -
! * 1 ‘r"\
N
1 1
) £
1 A
1 f A'/
' f A
1 1,'
1 \,‘
1 K4
- !
yyyyyy I
A 1
vvvvvv - !
- L ! ! ! ! !
2 1.5 1 -0.9 -0.8 -0.7 -0.6 -0.5

7 7 J -

» Assume subspace iteration is used with above filters. Which
filter will give better convergence?

» Simplest and best indicator of performance of a filter is the
magnitude of its derivative at -1 (or 1)
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The Gauss viewpoint: Least-squares rational filters

» Given: poles 01,02, , 0p

» Related basis functions ' ¢;(z) =

1

Z—O'j

d(z) = Z?Zl aj¢;(z) that minimizes

JZoo w(t)|h(t) — o(t)|*dt

» h(t) = step function x(_1,1]-

» w(t)= weight function.
For example a = 10,
B = 0.2

40

w(t)

(0 if  |t| > a
Bit |t <1

L 1 else
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How does this work?

» Small example : Laplacean on a 43 X 53 grid. (n = 2279)

» 4 poles obtained from mid-point rule
» Want: all (nev = 31) eigenvalues in [0, 0.2]

» Use 1) standard subspace iteration + Cauchy (FEAST) then
2) subspace iteration + LS Rat. Appox.
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3.5 T T T 100 T T E|
- - -Cauchy fun. -+ -Cauchy fun.|]
sl —LSrat.-fun. || [ —e— LS rat. fun. ||
25¢ 1 107k
2 PEIERN 1 10°k
\
15 ) \ 1 1oL
! ~
1 10°F .
S
h
\ 6 ~
0.5+ ,l N 4 107k ‘\,_\
’ *
- ~ - 7
~05 I I I I I I I I I 108 L L
5 -4 -3 -2 -1 0 1 2 3 4 5 0 5 10 15

» LS Uses the same poles + same factorizations as Cauchy
but

» ... much faster as expected from a look at the curves of the
functions
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» QOther advantages:

e Can select poles far away from real axis — faster iterative
solvers

e \ery flexible — can be adapted to many situations
e (Can repeat poles (!)
» Implemented in EVSL.. [Interfaced to UMFPACK as a solver]




Spectrum Slicing and the EVSL project

» EVSL package now at version 1.1.x

» Uses polynomial and rational filtering: Each can be appeal-
Ing in different situations.

Spectrum slicing: Invokes Kernel Polynomial Method or Lanc-
Z0s quadrature to cut the overall interval containing the spec-
trum into small sub-intervals.
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Levels of parallelism |

Slice 2 Slice 1

Slice 3

JL

Macro-task 1

Domain 1

JL

Domain 2

JU

Domain 3

Domain 4

The two main levels of parallelism in EVSL

45
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EVSL Main Contributors (version 1.1.0+) & Support

-
i Fa |

e Ruipeng Li e Yuanzhe Xi e Luke Erlandson
LLNL Asst. Prof. Emory  PhD Student, GTech.

» Work supported by NSF (past work: DOE)

» See web-site for details:

http://www—users.cs.umn.edu/~saad/software/EVSL/
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EVSL: current status & plans

Version 1.0 | Released in Sept. 2016

47

Matrices in CSR format (only)

Standard Hermitian problems (no generalized)
Spectrum slicing with KPM (Kernel Polynomial Meth.)
Trivial parallelism across slices with OpenMP

Methods:
e Non-restart Lanczos — polynomial & rational filters
e Thick-Restart Lanczos — polynomial & rational filters

e Subspace iteration — polynomial & rational filters
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Version 1.1.x |V_1 .1.0 Released back in August 2017.

® general matvec [passed as function pointer]
" Ax = \Bx

= Fortran (03) interface.

® Spectrum slicing by Lanczos and KPM

m Efficient Spectrum slicing for Az = ABx (no solves
with B).

Version 1.2.x | pEVSL — In progress

[

= Fully parallel version [MPI + openMP]




Spectrum slicing and the EVSL package

e All eigenvalues in [0, 1] of of a 49° discretized Laplacian
e cigs(A,1971,sa’): 14830.66 sec
e Solution: Use DOS to partition [0, 1] into 5 slices

e Polynomial filtering from EVSL on Mesabi MSI, 23 threads/slice

(a;y a;iq] # eigs mact;vPeLcJ: tlc;rr]ti.(setg)tal max residual
0.00000,0.37688] 386 @ 1.31 18.26/28.66 2.5x 10~
0.37688,0.57428] 401 | 3.28 38.2556.75 8.7x 10713
0.57428,0.73422] 399 | 4.69 36.47 56.73 1.7 x 10712
0.73422,0.87389] 400 | 597 38.6061.40 6.6x10 12
0.87389,1.00000] 385 @ 6.84 36.1659.45 4.3x 10712

» Grand tot. = 263 s. Time for slicing the spectrum: 1.22 sec.
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Computing the Earth normal modes

surface —>

W T E A
M 2 TR o
.‘-;' i W - .‘ - af
: : .
b ay 3 r )
by i i ah
A . Ly \
3 e s SIS X Vp (km/s)
bl -3 13.71
At ¥
"N b § =
« L J

12

10

inner core boundary

e Collaborative effort: Rice-UMN:
J. Shi, R. Li, Y. Xi, YS, and M. V. De Hoop

e FEM model leads to a generalized eigenvalue problem:
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A, Ep [u” M, ] [u”
0 Ay ul | = Ww? M ¢ u’
_Efil:s Accl; AP _pe_ _ O_ _pe_

e Want all eigen-values/vectors inside a given interval
e Issue 1: ‘mass’ matrix has a large null space..
e Issue 2: interior eigenvalue problem

e Solution for 1: change formulation of matrix problem [elimi-
nate p® ...]
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» New formulation :

w2 MS 0 u’
0 Mf 'u,f

N

—~

M

» Use polynomial filtering — need to solve with M but ...
e ... severe scaling problems if direct solvers are used
Hence:

» Replace action of M ~! by a low-deg. polynomial in M [to
avoid direct solvers]
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» Memory : parallel shift-invert and polynomial filtering

Machine: | Comet, SDSC

2_x104 | | | | \9&“&'
15| Ilshift-invert (peak)
Matrix size |# Proc.s %1.6 - Il shift-invert (avg)
591,303 32 §" | IMpoly. filtering
1,157,131 64 £
2,425,349 128 S 0s|
4,778,004 256 506!
9,037,671 512 2

32 64 128 256 512
number of processors




Recent: weak calability test for different solid (Mars-like)
models on TACC Stampede?2

nn/np Mat-size | Av (ms) |+ Eff. | Mv (ms) |« Eff. | M~'v (us) |« Eff.
2/96 1,038,084 | 1760 @ 1.0 495 1.0 | 0.01044 | 1.0

4/192 2,060,190 | 1819 |0.960, 568 |0.865| 0.0119 |0.870
8/384 3,894,783 @ 1741 1 0.948| 571 10.813 0.0119 |0.825
16/768 | 7,954,392 | 1758 |0.959 621 |0.763 0.0129 |0.774
32/1536 | 15,809,076 | 1660 |1.009, 572 [0.824 0.0119 0.834
64/3072 | 31,138,518 1582 [1.043| 566 0.820| 0.0117 | 0.837
128/6144 | 61,381,362 | 1435 1.133| 546 |0.838| 0.0113 |0.851
256/12288|120,336,519| 1359 |1.173| 592 0.757 0.01221 |0.774
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EVSL Eﬁw\é a library of (sequential) eigensolvers based on spectrum slicing. Version 1.0
released on [09/11/2016]
EVSL provides routines for computing eigenvalues located in a given interval, and their
associated eigenvectors, of real symmetric matrices. It also provides tools for spectrum
slicing, i.e., the technique of subdividing a given interval into p smaller subintervals and
computing the eigenvalues in each subinterval independently. EVSL implements a
polynomial filtered Lanczos algorithm (thick restart, no restart) a rational filtered Lanczos
algorithm (thick restart, no restart), and a polynomial filtered subspace iteration.

ITSOL a library of (sequential) iterative solvers. Version 2 released. [11/16/2010]

ITSOL can be viewed as an extension of the ITSOL module in the SPARSKIT package. It
is written in C and aims at providing additional preconditioners for solving general sparse
linear systems of equations. Preconditioners so far in this package include (1) ILUK (ILU
preconditioner with level of fill) (2) ILUT (ILU preconditioner with threshold) (3) ILUC
(Crout version of ILUT) (4) VBILUK (variable block preconditioner with level of fill - with
automatic block detection) (5) VBILUT (variable block preconditioner with threshold -
with automatic block detection) (6) ARMS (Algebraic Recursive Multilevel Solvers --
includes actually several methods - In particular the standard ARMS and the ddPQ version
which uses nonsymmetric permutations).

ZITSOL a complex version of some of the methods in ITSOL is also available.

http://www-users.cs.umn.edu/~saad/software/
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Conclusion

» EVSL code available here: [Current version: version 1.1.1]

www.cs.umn.edu/~saad/software/EVSL

» EVSL Also on github (development)

Plans: (1) Release fully parallel code; (2) Block versions;
(3) lterative solvers for rational filt.; (4) Nonhermitian case;

Earth modes calculations done with fully parallel code
Scalability issues with parallel direct solvers ...

... Needed: iterative solvers for the highly indefinite case

Yy Y VYY

Frontier in eigenvalue problem: ' Nonlinear case




