f' { _. TNN B SOTA v CITIES

Numerical Linear Algebra for data-related
applications

Yousef Saad

Department of Computer Science
and Engineering

University of Minnesota

Gijon, June 15, 2021



Introduction: a historical perspective

In 1953, George Forsythe published a paper titled:
“Solving linear systems can be interesting”.

e Survey of the state of the art linear algebra at that time:
direct & iterative methods, conditioning, preconditioning, the
Conjugate Gradient method, acceleration methods, ...

» An amazing paper in which the author was urging researchers
to start looking at solution methods for linear systems.
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Introduction: a historical perspective

In 1953, George Forsythe published a paper titled:
“Solving linear systems can be interesting”.

e Survey of the state of the art linear algebra at that time:
direct & iterative methods, conditioning, preconditioning, the
Conjugate Gradient method, acceleration methods, ...

» An amazing paper in which the author was urging researchers
to start looking at solution methods for linear systems.

» Almost 7 decades later — we can similarly state that:

“Linear Algebra problems in Machine Learn-
iIng can be interesting”
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Focus of numerical linear algebra changed many times over
the years

1940s—1950s: Major issue: the flutter problem in aerospace
engineering — eigenvalue problem [cf. Olga Taussky Todd]

» Then came the discoveries of the LR and QR algorithms.
The package Eispack followed a little later

1960s: Problems related to the power grid promoted what we
would call today general sparse matrix techniques

Early-late 1990: Thrust on parallel matrix computations.
Early 2000: Spur of interest in “financial computing”

Current: Machine learning, data-centered computing
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Solution of PDEs (e.g., Fluid Dynamics) and problems in me-
chanical eng. (e.g. structures) major force behind numerical
linear algebra algorithms in the past few decades.

» Strong new forces are now reshaping the field
» Machine learning is appearing everywhere:

= Design of materials, drugs, ...
= Machine learning in geophysics
= Self-driving cars, ..

. Even: solving PDEs

» Big impact on the economy .. and on jobs:

Cedya2l, 06-15-2021 p. 5



Graph

[—Au:f]

Preconditioning
Partitioning

[Model reduction] Ax= X\x _Dom{ain

H2 / HSS matrices

Decompdsition

LARGE SYSTEMS

Sparse matrices

atlab,PETSc,



emi-Supervised
Learning

Regression @a Spar@

LASSO  BIG DATA!

Conquer

Graph Preconditioning 3

[—A u= f] Partitioning 0

E

B,

[Model reduction] Ax=L X .Domain 3
Decomposition ©

H2 / HSS matrices S - :}

arse matrices

LARGE SYSTEMS Q=P L

: Dimension [

(5]
Q= uz vT PCA Clustering ] peguction U
0

Graph B
Laplaceans Divide & 3
-

o

R

0
=)




1. A mini-tutorial: machine learning
2. Focus: Graph methods ...
3. ... and Graph coarsening.
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Graph Laplacians - Definition

e “Laplace-type” matri-
ces associated with gen- — L = ?
eral undirected graphs —

» Given a graph G = (V, E) define

e A matrix W of weights w;; for each edge with:
Wi 4 > O, W;; — 0, and W;; = Wy \V/(’L,])

o The diagonal matrix D = diag(d;) with d; = > w;;

» Corresponding graph Laplacian L=D—-W
of Gis —
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» Simplest case: W;; = {

Example:

1

~ 0

we

1if (¢2,9) € E &1 # 3
0 else

(1 -1 0 0 0)
-12 0 0 —1
0 0 1 0 —1
0 0 0 1 —1

\0 -1-1-1 3 |
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Basic results on graph Laplacians

Proposition:

1. L is symmetric semi-positive definite.

2. L is singular with 1 as a null vector. If G is connected,
then Null(L) = span{1}

3. If G has k£ > 1 connected components G, Ga, -+ , G,
then the nullity of L is k and Null(L) is spanned by the
vectors z9), j =1, ..., k defined by:

- 1ifi € Gy
1)y, — J
(2 )"’_{Oif not.
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A few properties of graph Laplacians

Strong relation between x!Lx and
local distances between entries of

» Let L = a graph Laplacian. Then:
Property 1: forany x € R™:
' Le =

i Wijle; — 52

Property 2: (Generalization) forany Y € R®*4 :

TYTLY] =) wijllyi: — vl
>

» Note: y;. = g-th row of Y. Each row can represent a data
sample.
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Property 3: (Graph partitioning) Consider situation when w;;

€ {0,1}. If x is a vector of signs (£1) then

x'Lr = 4 X (‘number of edge cuts’)

= Edge-cut = pair (2, 5) with x; # =,
= Can be used to partition graphs....

» Minimize (Lz,z) st. © € e (L, x)

{—1,1}*and 17z = 0. — Hard ze{-1,1}% 172=0 (z, x)

» Instead solve a relaxed form of (L, )
problem. Solution = u, 2nd smallest ~_ min
eigenvector of L (Fiedler vector) veRt a0 (, 2)
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Unsupervised learning

PCA - digits : 5 ——7

Data is not labeled

e Example of digits: perform a 2-
D projection. Images of same digit
tend to cluster (more or less) IR I
e Such 2-D representations are * - Photovoltale

. . . Superhard
pOpU'&I’ fOr V|SU3.|IZat|On Superconductors
e Problem: find natural clusters in

data, e.g., in materiaIS Ferromagnetic

: Catalytic

Multi-ferroics Thermo-electric

~N o O
oL
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“Manifold Learning” Example: projection of face images

m Frey Dataset: 1,965 images of an individual — different ex-
pressions. Each image: 20 x 28 grey-scale pixels

Various projections [see H-R Fang, S. Sakellaridi, YS '10]

LLE, k=12, n=1965 multilevel-LLE, k=12, r=2, nr=267 multilevel-LLE, k=12, r=3, nr=45

-r”"'"

2D mappings of Frey Face database using LLE and
multilevel-LLE.
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» Problem: we are given n data items: xi, X2, , x,.
Would like to ‘cluster’ them, i.e., group them so that each group
or cluster contains items that are similar in some sense.

» Example: materials » Example: Digits
Photovoltaic PCA - digits : 5 —— 7
Superhard
Superconductors ., .
O RSO
Ferromagnetic o0t : .. L et
- o o
b o 8 ° .
Q Q 1 ' 0008,00
3k oo ° 5
- . Catalytic b ° °3g, ° *+ 6
Multi-ferroics Thermo-electric S o2 . 7

» Refer to each group as a ‘cluster’ or a ‘class’

» ‘Unsupervised learning’ : Methods do not exploit labeled
data
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Example: Community Detection

» (Communities modeled by an ‘affinity’ graph [e.g., 'user A
sends frequent e-mails to user B’]
» Adjacency Graph represented by a sparse matrix

S IR RS matrix
SFBI e Goalt Find
'.,_:, :.-;'.,:. :_'I-..;.: °'..:,~l.;.-.“.,!l§'?: ..::ﬁ: Ordering SO

[%e Somas B0 % g, sl S %, By

RO PRI AR i L
e, TS v blocks are
° < °.-: ..:.'o-'tl .db:" l:'ft.. .:.-’ % Sooo

L eeyers  as dense as

o
oo . . »® ® . ROTIE s .o.
° :'c"::‘d-;:.:e ;.;"..’. ;. o, } ::'-.g:’. ote ',

re o o 000 %00 o s L o .
SEELEENEI ) possible —

1

» Use ‘blocking’ techniques for sparse matrices
» Advantage of this viewpoint: need not know # of clusters.

[data: www-personal .umich.edu/~mejn/netdata/]
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A basic clustering method: K-means (Background)

» A basic algorithm that uses Euclidean distance

2.

1. Select p initial centers: ¢4,c2,...,c, for classes

19 27 9D
For each x; do: determine class of x; as argmin, ||x; — ck||

3. Redefine each ¢, to be the centroid of class k
4. Repeat until convergence

C1

. ° e s , = Simple algorithm
. . °c3 o = Works well but can be slow
ey ° o = Performance depends on initializa-
° ® tion
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Spectral clustering: General approach

1. Given: Collection of data samples {x1, 2, + , Ty}

2. Build a similarity graph between
items

3. Compute (smallest) d eigenvectors of resulting graph
Laplacian [this ‘embeds’ graph to R9]

4. Use k-means on eigenvector (s) of Laplacean
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Graph embeddings

= In Similarity Graphs: we build a graph to represent data

s Graph embedding: We do the opposite, i.e., map a graph to
vectors

Vertex embedding: map every vertex x; to a vector y; € R¢

— Data:Y = [y, Y2, ,Yn] IN R?

» Trivial use: visualize a graph (d = 2)

Graph embedding: map whole graph G to a vector yg € R?
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» Many applications [clustering, finding missing link, semi-
supervised learning, community detection, ...]

» Embeddings are central to Graph Neural Networks (GNNSs)

= Graph built to captures similarities in
data

m Goal of the embedding is to preserve
these similarities.

= Done via the Graph (e.g., Laplacian)

» Many methods do this. Examples:
Eigenmaps Isomap LLE

» Used in earlier illustration with Frey dataset
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Graph-based dimension reduction

e A class of methods that exploit graphs to perform dimension-
ality reduction [eigenmaps, LLE, isomap, LLP, ..]

General Approach:
( e o
1) Build sim. graph e

" DatainR" |

Maioping
Yy Y Y
2) Embed graph

Datain R ‘
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Supervised learning

Now: data is ‘labeled’
e Example: (health sciences) ‘malignant’- 'non malignant’
e Example: (materials) ‘photovoltaic’, 'hard’, ‘conductor, ...

e Example: D|g|t recognition) Digits '0", '1°, ...., 9’

c

©D

BN @

a

Q.
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Supervised learning

We now have data that is ‘labeled’
e Example: (health sciences) ‘malignant’- 'non malignant’
e Example: (materials) ‘photovoltaic’, 'hard’, ‘conductor, ...

e Example: D|g|t recognition) Digits 0", '1°, ...., 9’

® .@ &
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Supervised learning: classification

» Example: written digits recognition

Given: a set of
labeled samples
(training set), and
an (unlabeled) test
image.

Problem: find
label of test image

Digit 0

" Digfit 1
Digit 2
Digit 9

1 Digit ??

» Roughly speaking: we seek dimension reduction so that

Training data Test data

Digit 0
Digfit 1
Digit 2

Digit 9
Digit ??

100000000000 - - - UDDD |

recognition is ‘more effective’ in low-dim. space

CedyaZ2l, 06-15-2021
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Basic method: K-nearest neighbors (KNN) classification

» |dea of a voting system: get
distances between test sample
and training samples

» Get the k nearest neighbors

(here k = 8)

» Predominant class among
these k items is assigned to the
test sample (“+” here)

N 4
\\\ v
@ L)
* %
* /¥
v ®q
_/”/ ® ®
*
v Y O
v
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Supervised learning: Linear classification

Linear classifiers: Find
a hyperplane that best
separates data in two
classes. Examples:

e Fisher’'s Linear Dis-
criminant Analysis (LDA)

e Support Vector Ma-

chines (SVM) Ic;Ii::\‘se:lirfier

» Note: The world in non-linear. Often this is combined with
Kernels — amounts to changing the inner product
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A harder case

Spectral Bisection (PDDP)

-1

» Use kernels to transform



Projection with Kernels —— 0% = 2.7463

0.1r
0.08}
i
0.06F . ot
© Hf% *
0.04+ ch ++£¢ I
® 8 N 4
+
0.02+ ﬁ
+f
iy
- +
0 A g}
~0.02} +t
+
iy
) +
~0.04| o 3 igf
++ iy i
+ t; 4
~0.06 o, %
-0.08} %
_0.1 1 1 1 1 1 1 J
~0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06

Transformed data with a Gaussian Kernel
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A few words on Deep Neural Networks (DNNs)

» l|deas of neural networks goes back to the 1960s - were
popularized in early 1990s — then laid dormant until recently.

» Training a neural network amounts to approximating a
function ¢ which is defined via sets (‘layers’) of parameters:

o 2
(2 Al 2 e\
£ 0% 59 xQ £ Q
Probl 9""6‘0 o0 £ 0 £ e sl
- A P

Find sets of parameters such
that () = y

000000

Ym

O(X)
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WN
@ g,

Input: x, Output: y

Set: 2z =«

Forl=1:1+1 Do:
z1=oc(Wltz_1 + b))

End

Set: y = ¢(x) := zr41

e layer # 0 = input layer
o Iayer # (L -+ ]_) = ou’[put |ayer ® Input ® I:iaclyc::rn ® Output

Layer Layer

» Matrix W, associated with layerl forl =1,2,--- , L 4+ 1

» Problem: Find ¢ (i.e., matrices W)) s.t. ¢(z) =~ y

CedyaZ2l, 06-15-2021 p. 36



DNN (continued)

= Problem is not convex and it is highly over-parameterized
= Main method used: Stochastic gradient descent [basic]

= It all works like alchemy... but great results for certain appli-
cations

= Training is still quite expensive — GPUs can help
= “Very” active area of research
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Graph Coarsening in scientific computing

» Goal : exploit coarse representation of problem

» Fewer nodes so: cheaper
» (Can be used recursively

F
» Success story: Multigrid, Alge-| *® ) "F
braic Multigrid C
» AMG: Define coarse / fine nodes C
based on ‘strength of coupling’ — . j .

CedyaZ2l, 06-15-2021 p. 39



Example: Multilevel ILU [D. Osei-Kuffuor, R. Li, YS, ’15]

Goal: Form of ILU preconditioning with improved robustness

» To define coarse nodes: traverse edges (i,7) € Nz(A) in
decreasing order of the weights:

w;; = min{ i , aij] } where:
” ﬁr(i) 0c(7) ”
A, |4 A
5r ) — ~ and 5C ) =
©) = etAn) () =
» Select ¢ as ‘coarse’ if o; > o and |l

O =

9 otherwise, where — dr(k)dc(k)

CedyaZ2l, 06-15-2021 p. 40



» (Matlab) Test with matrix Raefsky3 !
» 4 levels of coarsening. Then reorder matrix and:
» Solve with ILUT- GMRES(50) or BSOR - GMRES(50)

Mat;ipyafter 4 levels of coarsening 105 MLcoarsen vs ILUT -- Raefsky3
0 ' i ) T T
0 E - o -ML-Bsor
' i -v--1LUT
04 L ! |ii - & -ML-order-ILUT ||
1
0.6 f ” ni
11
0.8 t g i 1
i 2 i 262
TR i s a2 o S e o 4 oA i An A
12t o hhl; *-o
1.4 | o u e
. m 1 o= e 1S ®
16 1 e
' \ v e, ,0.33
\
18 ¢ -
o 257 8
: " b \\ 10-5 1 1
0 0.5 1 1.5 2 0 50 100 150
nz = 1488768 <104 GMRES iterations

CedyaZ2l, 06-15-2021 p. 41
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Coarsening approaches by matching: Pairwise aggregation

@ 0 Q@

000000

1. Visit edges (7, j) in decreasing value of their weight w; ;

2. Ifboth 2 and 3 have no parents yet (left), create a new coarse
node (‘'new’). Set parents of ¢ and 3 to be new.

3. When loop is completed deal with unassigned nodes: Either
(middle) add as a coarse nodes if disconnected (“singleton")
or (right) lump as a child to an existing coarse node

» We will refer to this as: Heavy Edge Matching (HEM)
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Coarsening by independent sets

Recall: An independent set & C V consists of vertices that

are not adjacent to each other: 2,7 € S =— a;; =0

» & is maximal if it cannot be augmented into another IS
» Cantake V. = & as a coarse set. Need to define edges.

» Let L = reordered graph Lapla- D. _F
cian (n. vertices of V. listed first): L = (—F(‘:T B )
(note: D.. is diagonal)

> Replace B by Df = FT1 Sc — D, — FD—lFT
and define G. = graph of S, — /

Property: S. = Graph Laplacian of coarse graph G.

CedyaZ2l, 06-15-2021 p. 43



Coarsening by ‘algebraic distance’

» Motivated by “bootstrap algebraic multigrid” (BAMG) [Brandt’01]

» In BAMG notion of closeness (used for coarsening) defined
from a few steps of Gauss-Seidel for solving Az = 0

» Speed of convergence of the iterate determines an ‘alge-
braic distance’ between variables.

» Exploited to aggregate the unknowns and define restriction
and interpolation operators. Analysis in [Chen-Safro’11]
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Coarsening by ‘kron’ decomposition

» Kron reduction of networks proposed back in 1939 by Kron

» Revived by Dorfler and Bullo(2013) and Shuman et al. (2016)

Main idea:

e Select a coarse set V;: Shuman-al use eigenvectors

e Reorder matrix so that nodes of V4 7 — [Lu L12]
come 1st. Laplacean becomes — L{, Lo

e Kron reduction of L defined 1y
L(Vy) =Ly — L{xL.; L
as the Schur complement: (V1) H 12722 12

Property L(V;) == graph Laplacian of V; [Dorfler-Bullo]

CedyaZ2l, 06-15-2021 p. 45



Example:

. —F _
Two ways of using Dy D=t
mdepeng’ent sets for _FT ~FT| D,
coarsening.
. l

109 ® 11

Kron coarsening

Independent
set coarsening

L.=D;—FD;'F"

CedyaZ2l, 06-15-2021

p. 46



Q. 1: How to deal with ‘denser’ graph?

A Sparsify - using spectral sparsificaition

Q. 2: How to select V;?

A Use signs of largest eigenvector of original Laplacian L
» Ifuy = [€, &, -+, &)1 = the largest eigenvector.

» Define V, = {i|§; > 0} and V_ = {z|& < 0}

» Then select one of V,, V_ as V.

» Opposite of what is done in spectral graph partitioning

CedyaZ2l, 06-15-2021 p. 47
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Left side: spectral graph partitioning. Right: Coarsening with-
largest eigenvector

» Easy to show: (under mild condition on eigenvector) Each
node of V. (resp. V_) must have at least one nearest neighbor
node from V_ (resp. V).
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Multilevel Dimension Reduction

Idea: | “
Coarsen for a few levels.
Use resulting data set X to
find a projector P from R™
to R%. Use this P to project
data items. Pkl 9y e

Ny

» Gain: Dimension reduction is done with a much smaller set.

» Wish: not much loss compared to using whole data

CedyaZ2l, 06-15-2021 p. 50



Multilevel Dimension Reduction (for sparse data- e.g., text)

» Use Hypergraph Coarsening with column matching — similar
to a common one used in graph partitioning

» Compute the non-zero inner product (a'?, a9} between
two vertices 7 and 3, i.e., the 2th and j3th columns of A.

> Note: (a®,a?)) = [la®||[|a?]| cos 6y

Modif. 1: Parameter: 0 < € < 1. Match

o . . tan6;; < €
columns z & 3 only if angle satisfies:

Modif. 2: Re-Scale. If ¢ and
4 match and ||a?]|o > ||a?]|o c®) = (1 + cos? gm) a(®
replace a® and aV) by

CedyaZ2l, 06-15-2021 p. 51



» (Call C the coarsened matrix obtained from A using the
approach just described

Lemma: Let C € R™*¢ be the coarsened matrix of A
obtained by one level of coarsening of A € R™>™ " with
columns a'® and a%) matched if tan 8; < €. Then

|z" AATz — 2"CC' x| < 3€||A|l%,
for any x € R™ with ||xz||2 = 1.
» Very simple bound for Rayleigh quotients for any .
» |Implies some bounds on singular values and norms - skipped.

» See details + experiments in [Ubaru-YS '19]

CedyaZ2l, 06-15-2021 p. 52



Graph coarsening for graph embeddings: HARP and MILE

» Vertex embedding: Given G = (V, E) find mapping ®:
P:veV — @®(v) € R?  gissmal:d < n

Hierarchical Representation
Learning  for  Networks
(HARP): (Chen et al. '18)
coarsen for a few levels. Find
embedding ®© for coarsest
graph (level ¢). Then a
succession of expansions to
higher level + refinement.

» (Gain: Embedding done with a much smaller set.

CedyaZ2l, 06-15-2021 p. 53



» MILE approach [Liang et al. 18] very similar (difference in
refinement).

Experiment to evaluate the effectiveness of HARP.

» Baseline. Three embedding algorithms: DeeplWalk [Perozzi-
al’14], LINE [Tang-al'15] and Node2vec [Grover-Leskovec’'16]

» (Combined with Coarsening methods:

1. Heavy Edge Matching (HEM) - sketched earlier
2. Algebraic distance (ALG) - sketched earlier
3. Leverage Score Coarsening (LESC) — variant of HEM

CedyaZ2l, 06-15-2021 p. 54



» Problem: Multilabel classification with dataset Citeseer

[Citation network. Publications in computer science consisting
of 3.3K nodes and 4.5K edges. Label (zeros and ones) indi-
cates research areas to which a paper belongs.]

0.50 4 0.50 4 0.50 A
0.45 0.45 4 0.45 A
v
O
w 0.40 0.40 0.40
-
L
2
P 0.35 0.35 1 0.35 1
= - LINE —— MNode2vec —— DeepWalk
0.30 HARP(HEM)+LINE 0.30 - HARP(HEM)+Node2vec 0.30 4 HARP[HEM)+DeepWalk
: =@~ HARP(ALG)+LINE : =#— HARPIALG)+MNodeZvec ’ =8~ HARP(ALG)}+DeepWalk
=~ HARP[LESC)+LINE =~ HARPI(LESC)}+Node2vec —#— HARPILESC)+DespWalk
0.25 T T T T 0.25 T T T T 025 T T T T
0.02 0.04 0.06 0.08 0.02 0.04 0.06 0.08 0.02 0.04 0.06 0.08
Fraction of labeled data Fraction of labeled data Fraction of labeled data

Multi-label classification results. x-axis == portion of nodes
randomly sampled for training. y-axis == Macro F score
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Coarsening with eigenvectors

= It is possible to coarsen a graph with the goal of exactly
preserving a few eigenvectors.

= This has turned out not to be too useful in practice.

= Instead we use eigenvectors to define ‘importance of nodes’
for the graph traversal

Leverage Scores

» A=UXVT (ran (A) =ran (U)) U 12
. ni = ||Uill3
» Leverage score of z-th row —

e Used to measure importance of row ¢ in random sampling
methods [e.g. El-Aloui & Mahonney '15]

CedyaZ2l, 06-15-2021 p. 56



e Let A now be a graph Laplacian and A = UAU? with \; <
Ao < oov < Ay

In Leverage-score coarsening (LESC) m= " ( e~ ™MUjL)?
we dampen lower sing. vectors —

e Use n; to decide order of traversal in coarsening algorithm
e Slightly different way of handling left-over nodes (‘singletons’)

e Next: visualization with 5 different coarsening methods on a
graph with n = 312 nodes and ne = 761 edges

CedyaZ2l, 06-15-2021 p. 57



Original, ne = 761  HEM ne = 340

1. Local Variation (Loukas’2019)

CedyaZ2l, 06-15-2021 p. 58



Consider case whenr = n (or simply 7 is large)
n
— Z(G_T)\kUik)2 Ze—ZT)\klU |2 T —2TL e;.
k=1

» 7); equals the ¢-th diagonal entry of the matrix H = exp(—271L)

Alternative definition I

» We consider the following alternative - related to LT

2 2
ik 1 . 1
m=> |—=Uy| = m=) —Ui'>

= (W\f J) = (W‘j :

U;; U

Property: Z\/)\ U = T

CedyaZ2l, 06-15-2021 p. 59



“'High

i Gy ewy

:/ /;W’

Node Priority

Low

Traversal order: HEM (left) and LESC (right) on a small graph.
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» LT has long been used to define node importance

» The nonzero entries of LT define resistance distance. lts
trace is the Effective graph resistance. Related to betweenness
centrality measure... + many other links.

» |mportant fact: n helps measure the change in LT
Let the graph be connected. The magnitude of the difference

between LT and L!_ caused by assigning the +oo edge
weight to an edge e(z, 7) is bounded by

|ALT|[2 < w(L) (L], + L),
where k = effective condition number.

[Adapted from a result of Hermsdorff and Gunderson’19]

CedyaZ2l, 06-15-2021 p. 61



Application: Graph classification

Problem: determine the label of a graph [e.g., graph of a
molecule in chemistry applications].

Method: Graph Neural Networks [GNN]

» GNNs find an embedding of a graph by using several ‘pool-
Ing’ layers of a neural network. We use:

1. SortPool
2. DiffPool

3. TopKPool
4. SAGPool
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What are these ‘pooling’ methods?

Aim: generalize the convolu-

tion and subsampling layers of
Convolutional Neural Networks

to graphs:
I % 2) ¢ ReLu (Nonlinear)

3) Sub-sample (e.g., max-pool)

1)

Convolution

4) Next Layer -- repeat

» End result : embedding of a graph.
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Datasets: |

D&D protein data set (predict protein functions from structure)
REDDIT-BINARY (REBI) and

REDDIT-MULTI-5K (RE5K) social network data sets from the
discussion forum Reddit [Graph: discussion threads]

DD REBI RES5SK
#GRAPHS 1178 2000 4999

Stats. | H#CLASSES 2 2 5

AVG.#NODES 284.32 429.63 508.52
AVG.#EDGES 715.66 497.75 594.87

» Method: preprocess (coarsen) each graph prior to using it.
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] (2 s 3 preprocess

SortPool DiffPool SAGPool TopKPool
HEM -0.1% +0.5% +0.2% +0.1%
LV -1.1% +0.9% -1.0% +0.9%
LESC +0.7% +1.1% +4.5% +5.7%
0 1 0 1 1 1
()
e
GEJHEM -8.4% -8.9% -10.4% -85% @
()
= =
LY :5:3% -5.4% -4.0% -4.6% O
5 >
g 5
O LESC +1.2% -1.2% -0.9% +0.0% §
O
0 1 0 1 1 1 <
HEM -12.8% -15.1% -14.6% -14.1%
LV 2.3% -1.8% 2.0% -2.4%
LESC +0.1% -1.3% -1.6% -2.1%
0 1 0 1 1 1

Relative times vs. original (No coarsening). Percentates on
right of each figure: gain (loss) in accuracy
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Conclusion

= "Many” interesting new matrix problems in areas that involve
the effective exploitation of data

= Many online resources available
= Huge potential in scientific areas like materials science

= To a researcher in computational linear algebra : Tsunami
of change on types or problems, algorithms, frameworks,
culture,..

= But change should be welcome :
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» From “Who Moved My Cheese?” [Spencer Johnson '02]:

“The quicker you let go of old cheese, the sooner you find new
cheese.”

“If you do not change, you can become extinct!”

Thank you ! |

» Visit my web-site at www.cs.umn.edu/~saad
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