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First: A personal tribute

ä Grenoble [not far off from here] was the place to be in
scientific computing in the 1960’s and 1970’s

ä Jean Kuntzmann [1912-1992] and Noel Gastinel [1925-1984]
played a huge role in Grenoble’s pre-eminence in Numerical
Analysis and Computer Science in France and Europe
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Introduction: Numerical Linear Algebra

Numerical linear algebra has always been a “universal” tool in
science and engineering. Its focus has changed over the years
to tackle “new challenges”

1940s–1950s: Major issue: the flutter problem in aerospace
engineering. Focus: eigenvalue problem.

ä Triggered discoveries of the LR and QR algorithms, and the
package Eispack followed a little later

1960s: Problems related to the power grid promoted what we
know today as general sparse matrix techniques.

1970s: Finite Element methods, Computational Fluid Dynam-
ics, reinforced need for general sparse techniques
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Late 1980s – 1990s: Focus on parallel matrix computations.

Late 1990s: Big spur of interest in “financial computing” (After
which the stock market collapsed ...)

ä Computational Mechanics (e.g., Fluid Dynamics, structures)
has been a driving force in past few decades

ä But new forces are reshaping numerical linear algebra

Recent/Current: Google page rank, data mining, problems
related to internet technology, knowledge discovery, bio-informatics,
nano-technology, ...
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ä Major factor: Synergy between disciplines.

Example: Discoveries in materials (e.g. semi conductors re-
placing vacuum tubes in 1950s) lead to faster computers, which
in turn lead to better physical simulations..

ä What about data-mining and materials?

ä Potential for a perfect union

ä A lot of recent interest
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The plan:

1 The traditional: Sparse iterative solvers

– a brief tutorial

– recent research

2 The challenging: Materials science

– a brief tutorial

– solving very large eigenvalue problems

3 The new: Data Mining/ Machine learning

– a brief overview

– dimension reduction
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PART 1: SPARSE ITERATIVE SOLVERS



Introduction: Linear System Solvers

General

Purpose

 Specialized

Direct sparse 
Solvers

Iterative 

A x = b
∆ u = f− + bc

Methods 
Preconditioned Krylov

Fast Poisson
Solvers 

Multigrid
Methods 
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Long standing debate: direct vs. iterative

ä Starting in the 1970’s: huge progress of sparse direct solvers

ä Iterative methods - much older - not designed for ‘general
systems’. Big push in the 1980s with help from ‘preconditioning’

ä General consensus now: Direct methods do well for 2-D
problems and some specific applications [e.g., structures, ...]

ä Usually too expensive for 3-D problems

ä Huge difference between 2-D and 3-D case

ä Test: Two Laplacean matrices of same dimension n =
122, 500. First: on a 350 × 350 grid (2D); Second: on a
50× 50× 49 grid (3D)
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ä Pattern of a similar [much smaller] coefficient matrix
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A few observations

ä Problems are getting harder for Sparse Direct methods
(more 3-D models, much bigger problems,..)

ä Problems are also getting difficult for iterative methods
Cause: more complex models - away from Poisson

ä Researchers on both camps are learning each other’s tricks
to develop preconditioners.

Current Challenges:

(1) Scalable (HPC) performance [for general systems]

(2) Robustness, general purpose preconditioners
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Background: Preconditioned Krylov subspace methods

Two ingredients:

• An accelerator: Conjugate gradient, BiCG, GMRES,
BICGSTAB,.. [‘Krylov subspace methods’]
• A preconditioner: makes the system easier to
solve by accelator, e.g. Incomplete LU factorizations;
SOR/SSOR; Multigrid, ...

One viewpoint:

ä Goal of preconditioner: generate good basic iterates.. [Gauss-
Seidel, ILU, ...]

ä Goal of accelerator: find best combination of these iterates
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Acceleration: Krylov subspace methods

ä Let x0 = initial guess, and r0 = b−Ax0 = initial residual

ä Define Km = span{r0, Ar0, · · · , Am−1r0} ...

ä ... Lm another subspace of dim. m

Basic Krylov step: seek
xm = x0 + δ; δ ∈ Km such that
b−Axm ⊥ Lm

Projection method on
Km orthogonally to Lm

ä Approximation theory viewpoint:

• xm = x0 + pm(A)r0 where pm = polynomial of deg. m−1
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Two common and imporant choices

1. Lm = Km → class of Galerkin or orthogonal projection
methods (e.g., Conjugate Gradient Method). WhenA is SPD:

‖x∗ − x̃‖A = min
z∈K
‖x∗ − z‖A.

2. Lm = AKm → class of minimal residual methods: CR,
GCR, ORTHOMIN, GMRES, CGNR, .... xm satisfies:

‖b−Ax̃‖2 = minz∈K ‖b−Az‖2

ä Key to success of Krylov methods: Preconditioning
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Preconditioning – Basic principles

Use Krylov subspace method
on a modified system, e.g.: M−1Ax = M−1b.

• The matrix M−1A need not be formed explicitly; only need
to solve Mw = v whenever needed.

• Requirement : ‘easy’ to compute M−1v for arbitrary v

• Effect of preconditioner: spectrum of M−1A more favorable
for Krylov subspace accelerators
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Both A and M are SPD: Preconditioned CG (PCG)

ALGORITHM : 1 Preconditioned Conjugate Gradient

1. Compute r0 := b−Ax0, z0 = M−1r0, and p0 := z0

2. For j = 0, 1, . . ., until convergence Do:
3. αj := (rj, zj)/(Apj, pj)
4. xj+1 := xj + αjpj
5. rj+1 := rj − αjApj
6. zj+1 := M−1rj+1

7. βj := (rj+1, zj+1)/(rj, zj)
8. pj+1 := zj+1 + βjpj
9. EndDo

ä Krylov method for M−1Ax = M−1b but use M -inner
product to preserve self-adjointness.
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Background: Incomplete LU (ILU) preconditioners

ILU: A ≈ LU

Simplest Example: ILU(0) →

Common difficulties of ILUs:
Often fail for indefinite problems
Not too good for highly parallel environments
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Sparse matrix computations with GPUs ∗∗

ä Very popular approach to: inexpensive supercomputing

ä Can buy∼ one Teraflop peak power for around $1,000

Tesla C1060 240 cores; 930GF peak

ä Next: Fermi; followed by Kepler; then
Maxwell

ä Tesla K 80 : 2 × 2,496→ 4992 GPU cores. 24 GB Mem.;
Peak: ≈ 2.91 TFLOPS double prec. [with clock Boost].
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The CUDA environment: The big picture

ä A host (CPU) and an attached device (GPU)

Typical program:

1. Generate data on CPU
2. Allocate memory on GPU

cudaMalloc(...)
3. Send data Host→ GPU

cudaMemcpy(...)
4. Execute GPU ‘kernel’:
kernel <<<(...)>>>(..)
5. Copy data GPU→CPU

cudaMemcpy(...) C P U

G
 P

 U
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Sparse matrix computations on GPUs

Main issue in using GPUs for sparse computations:

• Huge performance degradation due to ‘irregular sparsity’

ä Matrices:
Matrix -name N NNZ
FEM/Cantilever 62,451 4,007,383
Boeing/pwtk 217,918 11,634,424

ä Performance of Mat-Vecs on NVIDIA Tesla C1060

Single Precision Double Precision
Matrix CSR JAD DIA+ CSR JAD DIA+

FEM/Cantilever 9.4 10.8 25.7 7.5 5.0 13.4
Boeing/pwtk 8.9 16.6 29.5 7.2 10.4 14.5
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ä More recent tests: NVIDIA M2070 (Fermi), Xeon X5675
ä Double precision in Gflops

MATRIX Dim. N CPU CSR JAD HYB DIA
rma10 46,835 3.80 10.19 12.61 8.48 -
cfd2 123,440 2.88 8.52 11.95 12.18 -
majorbasis 160,000 2.92 4.81 11.70 11.54 13.06
af_shell8 504,855 3.13 10.34 14.56 14.27 -
lap7pt 1,000,000 2.59 4.66 11.58 12.44 18.70
atmosmodd 1,270,432 2.09 4.69 10.89 10.97 16.03

ä CPU SpMV: Intel MKL, parallelized using OpenMP
ä HYB: from CUBLAS Library. [Uses ellpack+csr combination]

(*) Thanks: all matrices from the Univ. Florida sparse matrix collection
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Sparse Forward/Backward Sweeps

ä Next major ingredient of precond. Krylov subs. methods

ä ILU preconditioning
operations require L/U
solves: x← U−1L−1x
ä Sequential outer loop.

for i=1:n
for j=ia(i):ia(i+1)

x(i) = x(i) - a(j)*x(ja(j))
end

end

ä Parallelism can be achieved with level scheduling:

• Group unknowns into levels

• Compute unknowns x(i) of same level simultaneously

• 1 ≤ nlev ≤ n
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ILU: Sparse Forward/Backward Sweeps

• Very poor performance [relative to CPU]

Matrix N
CPU GPU-Lev

Mflops #lev Mflops
Boeing/bcsstk36 23,052 627 4,457 43
FEM/Cantilever 62,451 653 2,397 168
COP/CASEYK 696,665 394 273 142
COP/CASEKU 208,340 373 272 115

P
re

c:
m

is
er

ab
le

:-)

GPU Sparse Triangular Solve with Level Scheduling

ä Very poor performance when #levs is large

ä A few things can be done to reduce the # levels but perf. will
remain poor
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So...

... prepare for the demise of the GPUs...

... or the demise of the ILUs ?
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Alternative: Low-rank approximation preconditioners

• Goal: use standard
Domain Decomposition
framework
• Exploit Low-rank correc-
tions
• Consider a domain par-
titioned in p sub-domains
using vertex- based parti-
tioniong (edge-separator)
ä Interface nodes in each
domain are listed last. 32 4 5

7 8 9 10

11 12 13 15

17 18

21 22 23 24 25

201916

6

1

14
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The global system: Global view

ä Global system can be
permuted to the form→
ä ui’s internal variables
ä y interface variables

External interface points

Interior points

points
Local interface


B1 . . . F̂1

B2 . . . F̂2
... . . . ...

Bp F̂p
ÊT

1 ÊT
2 . . . ÊT

p C




u1

u2
...
up
y

 = b

ä F̂i maps local interface points to
interior points in domain Ωi

ä ÊT
i does the reverse operation
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Example:
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Splitting

ä Split as: A ≡
(
B F̂

ÊT C

)
=

(
B
C

)
+

(
F̂

ÊT

)

ä Define: F ≡
(
F̂
−I

)
; E ≡

(
Ê
−I

)
Then:[

B F̂

ÊT C

]
=

[
B + F̂ ÊT 0

0 C + I

]
− FET .

ä Property: F̂ ÊT is ’lo-
cal’, i.e., no inter-domain
couplings→

A0 ≡
[
B + F̂ ÊT 0

0 C + I

]
= block-diagonal
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Low-Rank Approximation DD preconditioners

Sherman-Morrison→ A−1 = A−1
0 +A−1

0 FG−1ETA−1
0

G ≡ I − ETA−1
0 F

Options: (a) Approximate A−1
0 F,ETA−1

0 , G−1

(b) Approximate only G−1 [this talk]

ä (b) requires 2 solves with A0.

Let G ≈ Gk

Preconditioner→
M−1 = A−1

0 +A−1
0 FG−1

k E
TA−1

0
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Symmetric Positive Definite case

ä Recap: Let G ≡ I − ETA−1
0 E ≡ I −H . Then

A−1 = A−1
0 +A−1

0 EG−1ETA−1
0

ä Approximate G−1 by G−1
k → preconditioner:

M−1 = A−1
0 + (A−1

0 E)G−1
k (ETA−1

0 )

ä Matrix A0 is SPD

ä Can show: 0 ≤ λj(H) < 1 .
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ä Now take rank-k approximation to H :
H ≈ UkDkU

T
k Gk = I − UkDkU

T
k →

G−1
k ≡ (I − UkDkU

T
k )−1 = I + Uk[(I −Dk)

−1 − I]UT
k

ä Observation: A−1 = M−1 +A−1
0 E[G−1 −G−1

k ]ETA−1
0

ä Gk: k largest eigenvalues of H matched – others set == 0

ä Result: AM−1 has
• n− s+ k eigenvalues == 1
• All others between 0 and 1
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Alternative: reset lowest eigenvalues to constant

ä Let H = UΛUT = exact (full) diagonalization of H

ä We replaced Λ by:

λ1

λ2
. . .

λk
0

. . .
0



ä Alternative: replace Λ by

λ1

λ2
. . .

λk
θ

. . .
θ


ä Interesting case: θ = λk+1

ä Question: related approximation to G−1?

HPC Days 04/08/2016 p. 32



ä Result: Let γ = 1/(1− θ). Then approx. to G−1 is:

G−1
k,θ ≡ γI + Uk[(I −Dk)

−1 − γI]UT
k

ä Gk: k largest eigenvalues of G matched – others set == θ

ä θ = 0 yields previous case

ä When λk+1 ≤ θ < 1 we get

ä Result: AM−1 has
• n− s+ k eigenvalues == 1
• All others≥ 1

ä Next: An example for a 900 × 900 Laplacean, 4 domains,
s = 119.
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Eigenvalues of AM−1. Used: k = 5 . Two cases

θ = 0
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Proposition Assume θ is so that λk+1 ≤ θ < 1 . Then

the eigenvalues ηi of AM−1 satisfy:

1 ≤ ηi ≤ 1 +
1

1− θ
‖A1/2A−1

0 E‖2
2.

ä Can Show: For the Laplacean (FD)

‖A1/2A−1
0 E‖2

2 = ‖ETA−1
0 AA−1

0 E‖2 ≤
1

4
regardless of the mesh-size.

ä Best upper bound for θ = λk+1

ä Set θ = λk+1. Then κ(AM−1) ≤ constant, if k large
enough so that λk+1 ≤ constant.

ä i.e., need to capture sufficient part of spectrum
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The symmetric indefinite case

ä Appeal of this approach over ILU: approximate inverse→
Not as sensitive to indefiniteness

ä Part of the results shown still hold

ä But λi(H) can be > 1 now.

ä Can change the setting slightly [by introducing a parameter
α] to improve diagonal dominance

ä Details skipped.
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Parallel implementations

ä Recall : M−1 = A−1
0

[
I + EG−1

k,θE
TA−1

0

]
G−1
k,θ = γI + Uk[(I −Dk)

−1 − γI]UT
k

ä Steps involved in applying M−1 to a vector x :

ALGORITHM : 2 Preconditioning operation

1. z = A−1
0 x // B̂i-solves andC∗ solve (C∗ ≡ C + I)

2. y = ETz // Interior points to interface (Loc.)
3. yk = G−1

k,θy // Use Low-Rank approx.
4. zk = Eyk // Interface to interior points (Loc.)
5. u = A−1

0 (x+ zk) // B̂i-solves andC∗- solve
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A0 Solves Note:

A0 =


B̂1

B̂2
. . .

B̂p

C∗


ä Recall B̂i = Bi + EiE

T
i

ä A solve with A0 amounts to all p B̂i-solves and a C∗-solve

ä Can replace C−1
∗ by a low degree polynomial [Chebyshev]

ä Can use any solver for the B̂i’s
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Parallel tests: Itasca (MSI)

ä HP linux cluster- with Xeon 5560 (“Nehalem”) processors

ä Simple Poisson equation on regular grid

2-D

Mesh Nproc Rank #its Prec-t Iter-t
256× 256 2 8 29 2.30 .343
512× 512 8 16 57 2.62 .747

1024× 1024 32 32 96 3.30 1.32
2048× 2048 128 64 154 4.84 2.38

3-D

Mesh Nproc Rank #its Prec-t Iter-t
32× 32× 32 2 8 12 1.09 .0972
64× 64× 64 16 16 31 1.18 .381

128× 128× 128 128 32 62 2.42 .878
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PART 2: ALGORITHMS FOR ELECTRONIC STRUCTURE



Approximations/theories used

ä Original Schrödinger equation very complex

ä Approximations developed started the 1930s reached ex-
cellent level of accuracy. Among them...

Density Functional Theory: (DFT) observable quantities are
uniquely determined by ground state charge density.

Kohn-Sham equation:

[
−
∇2

2
+ Vion + VH + Vxc

]
Ψ = EΨ
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The three potential terms[
−∇2

2
+ Vion + VH + Vxc

]
Ψ(r) = EΨ(r) With:

• Charge density: ρ(r) =
∑occup
i=1 |ψi(r)|2

• Hartree potential (local) ∇2VH = −4πρ(r)

• Vxc depends on func-
tional. For LDA:

Vxc = f(ρ(r))

• Vion = nonlocal – does
not explicitly depend on ρ

Vion = Vloc +
∑
aPa

ä Note: VH and Vxc depend nonlinearly on eigenvectors
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Self Consistence

ä The potentials and/or charge densities must be self-consistent:
Can be viewed as a nonlinear eigenvalue problem. Can be
solved using different viewpoints

• Nonlinear eigenvalue problem: Linearize + iterate to self-
consistence

• Nonlinear optimization: minimize energy [again linearize +
achieve self-consistency]

The two viewpoints are more or less equivalent

ä Preferred approach: Broyden-type quasi-Newton technique

ä Typically, a small number of iterations are required
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Self-Consistent Iteration

ä Most time-consuming part = computing eigenvalues / eigen-
vectors.

Characteristic : Large number of eigenvalues /-vectors to
compute [occupied states].

ä Self-consistent loop takes a few iterations (say 10 or 20 in
easy cases).

Challenge: Compute a large number of eigenvalues (nev ≈
104–105) of a large Hamiltonian matrix (N ≈ 107–108)
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PARSEC

ä Represents≈ 15 years of effort by
a multidisciplinary team
ä Real-space Finite Difference;
ä Efficient diagonalization, ...
ä Exploits symmetry, ...
ä PARSEC Released in∼ 2005.
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DIAGONALIZATION: CHEBYSHEV FILTERING



Subspace iteration with Chebyshev filtering

Given a basis [v1, . . . , vm], ’filter’
each vector as

v̂i = pk(A)vi

ä pk = Low deg. polynomial. Enhances wanted eigencompo-
nents

The filtering step is not used
to compute eigenvectors ac-
curately ä

SCF & diagonalization loops
merged
Important: convergence still
good and robust 0 0.5 1 1.5 2

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Deg. 6 Cheb. polynom., damped interv=[0.2, 2]
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Main step:

Previous basis V = [v1, v2, · · · , vm]
↓

Filter V̂ = [p(A)v1, p(A)v2, · · · , p(A)vm]
↓

Orthogonalize [V,R] = qr(V̂ , 0)

ä The basis V is used to do a Ritz step (basis rotation)

C = V TAV → [U,D] = eig(C)→ V := V ∗ U
ä Update charge density using this basis.

ä Update Hamiltonian — repeat
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ä In effect: Nonlinear subspace iteration

ä Main advantages: (1) very inexpensive, (2) uses minimal
storage (m is a little≥ # states).

ä Filter polynomials: if [a, b] is interval to dampen, then

pk(t) =
Ck(l(t))

Ck(l(c))
; with l(t) =

2t− b− a
b− a

• c ≈ eigenvalue farthest from (a+ b)/2 – used for scaling

ä 3-term recurrence of Chebyshev polynommial exploited to
compute pk(A)v. If B = l(A), then Ck+1(t) = 2tCk(t) −
Ck−1(t)→

wk+1 = 2Bwk − wk−1
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Tests with Silicon and Iron clusters (old)

Legend:

•nstate : number of states

•nH : size of Hamiltonian matrix

• # A ∗ x : number of total matrix-vector products

• # SCF : number of iteration steps to reach self-consistency

• total_eV
atom

: total energy per atom in electron-volts

• 1st CPU : CPU time for the first step diagonalization

• total CPU : total CPU spent on diagonalizations

Reference: Y. Zhou, Y.S., M. L. Tiago, and J. R. Chelikowsky,
Phy. Rev. E, vol. 74, p. 066704 (2006).
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A comparison: Si525H276

method # A ∗ x SCF its. CPU(secs)
ChebSI 124761 11 5946.69
ARPACK 142047 10 62026.37
TRLan 145909 10 26852.84

Polynomial degree = 8. Total energies agree to within 8 digits

A larger system: Si9041H1860

nstate # A ∗ x # SCF total_eV
atom

1st CPU total CPU
19015 4804488 18 -92.00412 102.12 h. 294.36 h.

# PEs = 48; nH =2,992,832. Pol. Deg. = 8.
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Spectrum Slicing and the EVSL project

ä Part of our DOE project on excited states

Conceptually simple idea: cut
the overall interval containing
the spectrum into small sub-
intervals and compute eigen-
pairs in each sub-interval inde-
pendently.
Tool: polynomial filtering
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ä To avoid repeting eigenpairs, keep only the computed eigen-
values / vectors that are located in support interval

HPC Days 04/08/2016 p. 52



Levels of parallelism
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The two main levels of parallelism in EVSL
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Simple Parallelism: across intervals

ä Use OpenMP to illustrate scaling: Compute 1002 lowest
eigenpairs of matrix SiO (n = 33, 401, nnz = 1, 317, 655.)

ä Use 4 and then 10 spec-
tral slices

ä Near optimal scaling ob-
served as # cores increases

ä Note: 2nd level of paral-
lelism [re-orthogonalization
+ MatVecs] not exploited.
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ä Faster solution times with 4 slices (≈ 250 evals per slice)
than with 10 slices (≈ 100 evals per slice)
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PART 3: DATA MINING



Introduction: a few factoids

ä Data is growing exponentially at an “alarming” rate:

• 90% of data in world today was created in last two years

• Every day, 2.3 Million terabytes (2.3×1018 bytes) created

ä Mixed blessing: Opportunities & big challenges.

ä Trend is re-shaping & energizing many research areas ...

ä ... including my own: numerical linear algebra
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Introduction: What is data mining?

Set of methods and tools to extract meaningful information
or patterns from (big) datasets. Broad area : data analysis,
machine learning, pattern recognition, information retrieval, ...

ä Tools used: linear algebra; Statistics; Graph theory; Approx-
imation theory; Optimization; ...

ä This talk: brief introduction – emphasis on linear algebra
viewpoint

ä + our initial work on materials.

ä Focus on “Dimension reduction methods”
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Lots of data: can be hugely beneficial (e.g., Health sciences)
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Major tool of Data Mining: Dimension reduction

ä Goal is not as much to reduce size (& cost) but to:

• Reduce noise and redundancy in data before performing a
task [e.g., classification as in digit/face recognition]

• Discover important ‘features’ or ‘paramaters’

The problem: Given: X = [x1, · · · , xn] ∈ Rm×n, find a

low-dimens. representation Y = [y1, · · · , yn] ∈ Rd×n of X

ä Achieved by a mapping Φ : x ∈ Rm −→ y ∈ Rd so:

φ(xi) = yi, i = 1, · · · , n
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ä Φ may be linear : yi = W>xi , i.e., Y = W>X , ..

ä ... or nonlinear (implicit).

ä Mapping Φ required to: Preserve proximity? Maximize
variance? Preserve a certain graph?
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Example: Principal Component Analysis (PCA)

In Principal Component Analysis W is computed to maxi-
mize variance of projected data:

max
W∈Rm×d;W>W=I

n∑
i=1

∥∥∥∥∥∥yi − 1

n

n∑
j=1

yj

∥∥∥∥∥∥
2

2

, yi = W>xi.

ä Leads to maximizing

Tr
[
W>(X − µe>)(X − µe>)>W

]
, µ = 1

n
Σn
i=1xi

ä SolutionW = { dominant eigenvectors } of the covariance
matrix≡ Set of left singular vectors of X̄ = X − µe>
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SVD:

X̄ = UΣV >, U>U = I, V >V = I, Σ = Diag

ä Optimal W = Ud ≡ matrix of first d columns of U

ä Solution W also minimizes ‘reconstruction error’ ..

∑
i

‖xi −WW Txi‖2 =
∑
i

‖xi −Wyi‖2

ä In some methods recentering to zero is not done, i.e., X̄
replaced by X.
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Unsupervised learning

“Unsupervised learning” : meth-
ods that do not exploit known labels
ä Example of digits: perform a 2-D
projection
ä Images of same digit tend to
cluster (more or less)
ä Such 2-D representations are
popular for visualization
ä Can also try to find natural clus-
ters in data, e.g., in materials
ä Basic clusterning technique: K-
means
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Example: The ‘Swill-Roll’ (2000 points in 3-D)
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2-D ‘reductions’:
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Example: Digit images (a random sample of 30)
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2-D ’reductions’:
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Supervised learning: classification

Problem: Given labels
(say “A” and “B”) for each
item of a given set, find a
mechanism to classify an
unlabelled item into either
the “A” or the “B" class.

?

?
ä Many applications.

ä Example: distinguish SPAM and non-SPAM messages

ä Can be extended to more than 2 classes.
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Supervised learning: classification

ä Best illustration: written digits recognition example

Given: a set of
labeled samples
(training set), and
an (unlabeled) test
image.
Problem: find

label of test image
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ä Roughly speaking: we seek dimension reduction so that
recognition is ‘more effective’ in low-dim. space
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Supervised learning: Linear classification

Linear classifiers: Find a hy-
perplane which best separates
the data in classes A and B.

Linear

classifier

ä Note: The world in non-linear. Often this is combined with
Kernels – amounts to changing the inner product
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Face Recognition – background

Problem: We are given a database of images: [arrays of pixel
values]. And a test (new) image.

↖ ↑ ↗

?

Question: Does this new image correspond to one of those
in the database?
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ä Techniques used in words:

“Build a (linear) projector that does well on some training data.
Use that same projector to predict class of new item”

• Some methods use a graph - e.g., neighborhood graph

• Some methods use kernels (change inner products).
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Example: Eigenfaces [Turk-Pentland, ’91]

ä Idea identical with the one we saw for digits:

– Consider each picture as a (1-D) column of all pixels
– Put together into an arrayA of size #_pixels×#_images.

. . . =⇒ . . .

︸ ︷︷ ︸
A

– Do an SVD ofA and perform comparison with any test image
in low-dim. space

– Similar to LSI in spirit – but data is not sparse.
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Graph-based methods in a supervised setting

Test: ORL 40 subjects, 10 sample images each – sample
shown earlier # of pixels : 112× 92; TOT. # images : 400
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ESTIMATING MATRIX RANKS



What dimension to use?

ä Important question – but a hard one.

ä Often, dimension k is selected in an ad-hoc way.

ä k = intrinsic rank of data.

ä Can we estimate it?

Two scenarios:

1. We know the magnitude
of the noise, say τ . Then,
ignore any singular value
below τ and count the oth-
ers.

2. We have no idea on the
magnitude of noise. De-
termine a good threshold τ
to use and count singular
values > τ .
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Use of Density of States [Lin-Lin, Chao Yang, YS]

ä Formally, the Density Of States (DOS) of a matrix A is

φ(t) =
1

n

n∑
j=1

δ(t− λj),

where
• δ is the Dirac δ-function or Dirac distribution
• λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of A

ä Term used by mathematicians: Spectral Density

ä Note: number of eigenvalues in an interval [a, b] is

µ[a,b] =

∫ b

a

∑
j

δ(t− λj) dt ≡
∫ b

a
nφ(t)dt .
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ä φ(t) == a probability distribution function == probability of
finding eigenvalues of A in a given infinitesimal interval near t.

ä In Solid-State physics, λi’s represent single-particle energy
levels.

ä So the DOS represents # of levels per unit energy.

ä Many uses in physics
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The Kernel Polynomial Method

ä Used by Chemists to calculate the DOS – see Silver and
Röder’94 , Wang ’94, Drabold-Sankey’93, + others

ä Basic idea: expand DOS into Chebyshev polynomials

ä Use trace estimators [discovered independently] to get traces
needed in calculations

ä Assume change of variable done so eigenvalues lie in [−1, 1].

ä Include the weight function in the expansion so expand:

φ̂(t) =
√

1− t2φ(t) =
√

1− t2 ×
1

n

n∑
j=1

δ(t− λj).

Then, (full) expansion is: φ̂(t) =
∑∞
k=0µkTk(t).
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ä Expansion coefficients µk are formally defined by:

µk =
2− δk0

π

∫ 1

−1

1
√

1− t2
Tk(t)φ̂(t)dt

=
2− δk0

π

∫ 1

−1

1
√

1− t2
Tk(t)

√
1− t2φ(t)dt

=
2− δk0

nπ

n∑
j=1

Tk(λj).

ä Note:
∑
Tk(λi) = Tr [Tk(A)]

ä Estimate this, e.g., via stochastic estimator

ä Generate random vectors v(1), v(2), · · · , v(nvec) (normal dis-
tribution, zero mean)

ä Some calculations similar to those of eigenvalue counts
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An example with degree 80 polynomials
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Left: Jackson damping; right: without Jackson damping.
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Integrating to get eigenvalue counts

ä As already mentioned

µ[a,b] =

∫ b

a

∑
j

δ(t− λj) dt ≡
∫ b

a
nφ(t)dt

ä If we use KPM to approximate φ(t) = φ̂(t)/
√

1− t2 then

µ[a,b] ≈
m∑
k=0

µk

∫ b

a

Tk(t)√
1− t2

dt

ä A little calculation shows that the result obtained in this way
is identical with that of the eigenvalue count by Cheb expansion
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Application: Estimating a threshold for rank estimation

ä When no other information is available, DOS can be used
to find a good cut-off value θ to use to estimate ranks

ä Common behavior:
DOS decreases then in-
creases (or stabilizes).
ä If there is a significant
gap use this to set-up θ.
ä Often gives good
guess for cut-off between
‘noise’ and ‘real’ sing.
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Updating the partial SVD

ä In applications, data matrix X often updated

Challenge: Update the partial SVD as fast as possible [e.g.
for ‘online’ applications..]

ä Example: Information Retrieval (IR), can add documents,
add terms, change weights, ..

ä Methods based on projection techniques – developed in E.
Vecharynski and YS’13. Details skipped
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MATERIALS INFORMATICS



Data mining for materials: Materials Informatics

Definition: “The application of computational methodologies
to processing and interpreting scientific and engineering data
concerning materials” [Editors. 2006 MRS bulletin issue on
materials informatics]

ä Huge potential in exploiting two trends:

1 Improvements in efficiency and capabilities in computa-
tional methods for materials

2 Recent progress in data mining techniques

ä Current practice: “One student, one alloy, one PhD” [see
special MRS issue on materials informatics]→ Slow ..

ä Data Mining: can help speed-up process
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Unsupervised learning

ä 1970s: Unsupervised
learning “by hand”: Find
coordinates that will clus-
ter materials according to
structure
ä 2-D projection from
physical knowledge
ä ‘Anomaly Detection’:
helped find that compound
Cu F does not exist

see: J. R. Chelikowsky, J. C. Phillips, Phys Rev. B 19 (1978).
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Question: Can modern data mining achieve a similar dia-
grammatic separation of structures?

ä Should use only information from the two constituent atoms

ä Experiment: 67 binary ‘octets’.

ä Use PCA – exploit only data from 2 constituent atoms:

1. Number of valence electrons;

2. Ionization energies of the s-states of the ion core;

3. Ionization energies of the p-states of the ion core;

4. Radii for the s-states as determined from model potentials;

5. Radii for the p-states as determined from model potentials.
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ä Result:
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Supervised learning: classification

Problem: classify an unknown binary compound into its
crystal structure class

ä 55 compounds, 6 crystal structure classes
ä “leave-one-out” experiment

Case 1: Use features 1:5 for atom A and 2:5 for atom B. No
scaling is applied.

Case 2: Features 2:5 from each atom + scale features 2 to 4
by square root of # valence electrons (feature 1)

Case 3: Features 1:5 for atom A and 2:5 for atom B. Scale
features 2 and 3 by square root of # valence electrons.
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Three methods tested

1. PCA classification. Project and do identification in space of
reduced dimension (Euclidean distance in low-dim space).

2. KNN K-nearest neighbor classification –

3. Orthogonal Neighborhood Preserving Projection (ONPP) - a
graph based method - [see Kokiopoulou, YS, 2005]

Recognition rates for 3
different methods using
different features

Case KNN ONPP PCA
Case 1 0.909 0.945 0.945
Case 2 0.945 0.945 1.000
Case 3 0.945 0.945 0.982
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Current work

ä Some data is becoming available
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Current work

ä Huge recent increase of interest in the physics/chemstry
community

1. Predicting enthalpy of formation for a certain class of com-
pounds.. [current]

2. Application to Orthophosphates of lanthanides (LnPO4)
[current – with Edoardo di Napoli TRWH]

3. Project: Predict Band-gaps
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Conclusion

ä Many, interesting new matrix problems in areas that involve
the effective mining of data

ä Among the most pressing issues is that of reducing compu-
tational cost - [SVD, SDP, ..., too costly]

ä Many online resources available

ä Huge potential in areas like materials science though inertia
has to be overcome

ä On the + side: materials genome project is starting to ener-
gize the field

ä To a researcher in computational linear algebra : big tide of
change on types or problems, algorithms, HPC, culture,..
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ä But change should be welcome

Two quotes:

“When one door closes, another opens; but we
often look so long and so regretfully upon the
closed door that we do not see the one which has
opened for us.

– Alexander Graham Bell

“Life is like riding a bicycle. To keep your balance,
you must keep moving”

– Albert Einsten
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