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First: A personal tribute

» Grenoble [not far off from here] was the place to be in
scientific computing in the 1960’s and 1970’s

hMoél Gastinal

Jean Kuntzmann

» Jean Kuntzmann [1912-1992] and Noel Gastinel [1925-1984]
played a huge role in Grenoble’s pre-eminence in Numerical
Analysis and Computer Science in France and Europe
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Introduction: Numerical Linear Algebra

Numerical linear algebra has always been a “universal” tool in
science and engineering. lts focus has changed over the years
to tackle “new challenges”

1940s—1950s: Major issue: the flutter problem in aerospace
engineering. Focus: eigenvalue problem.

» Triggered discoveries of the LR and QR algorithms, and the
package Eispack followed a little later

1960s: Problems related to the power grid promoted what we
know today as general sparse matrix techniques.

1970s: Finite Element methods, Computational Fluid Dynam-
Ics, reinforced need for general sparse techniques
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Late 1980s — 1990s: Focus on parallel matrix computations.

Late 1990s: Big spur of interest in “financial computing” (After
which the stock market collapsed ...)

» Computational Mechanics (e.g., Fluid Dynamics, structures)
has been a driving force in past few decades

» But new forces are reshaping numerical linear algebra

Recent/Current: Google page rank, data mining, problems

related to internet technology, knowledge discovery, bio-informatics,
nano-technology, ...
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» Major factor: Synergy between disciplines.

Example: Discoveries in materials (e.g. semi conductors re-
placing vacuum tubes in 1950s) lead to faster computers, which
In turn lead to better physical simulations..

» What about data-mining and materials?
» Potential for a perfect union

» A lot of recent interest
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The plan:

1 The traditional: Sparse iterative solvers

— a brief tutorial

— recent research
2 The challenging: Materials science

— a brief tutorial

— solving very large eigenvalue problems
3 The new: Data Mining/ Machine learning

— a brief overview

— dimension reduction
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Introduction: Linear System Solvers

Direct sparse Iterative Methods
Solvers Preconditioned Krylov

\ / General
Ax=b ¢ Purpose
-A u=f +bc
¢ Specialized

Fast Poisson Multigrid
Solvers Methods
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Long standing debate: direct vs. iterative

» Starting inthe 1970’s: huge progress of sparse direct solvers

» |terative methods - much older - not designed for ‘general
systems’. Big push in the 1980s with help from ‘preconditioning’

» General consensus now: Direct methods do well for 2-D
problems and some specific applications [e.g., structures, ...]

» Usually too expensive for 3-D problems
» Huge difference between 2-D and 3-D case

» Test: Two Laplacean matrices of same dimension n =
122,500. First: on a 350 x 350 grid (2D); Second: on a
50 X 50 X 49 grid (3D)
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» Pattern of a similar [much smaller] coefficient matrix
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A few observations

» Problems are getting harder for Sparse Direct methods
(more 3-D models, much bigger problems,..)

» Problems are also getting difficult for iterative methods
Cause: more complex models - away from Poisson

» Researchers on both camps are learning each other’s tricks
to develop preconditioners.

Current Challenges:
(1) Scalable (HPC) performance [for general systems]

(2) Robustness, general purpose preconditioners
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Background: Preconditioned Krylov subspace methods

Two ingredients:

e An accelerator: Conjugate gradient, BiCG, GMRES,
BICGSTAB,.. ['Krylov subspace methods’]

e A preconditioner: makes the system easier to
solve by accelator, e.g. Incomplete LU factorizations;
SOR/SSOR; Multigrid, ...

One viewpoint:

» (Goal of preconditioner: generate good basic iterates.. [Gauss-
Seidel, ILU, ...]

» (Goal of accelerator: find best combination of these iterates
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Acceleration: Krylov subspace methods

» Let oy = initial guess, and ro = b — Ax( = initial residual
» Define K,, = span{rg, Arg,--- , A™ 1ry}

» ... L,, another subspace of dim. m

Basic Krylov step: seek

Projection method on
T, = g+ 0; 0 € K,,, such that
b— Az, | L. K,,, orthogonally to L,,

»  Approximation theory viewpoint:

® |x,, = 9 + pm(A)re|Where p,, = polynomial of deg. m—1
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Two common and imporant choices

1. L,, = K,, — class of Galerkin or orthogonal projection
methods (e.g., Conjugate Gradient Method). When A is SPD:

|lx* — || 4 = min || — z|| 4.
zeK

2. L, = AK,, — class of minimal residual methods: CR,
GCR, ORTHOMIN, GMRES, CGNR, .... x,,, satisfies:

|lb — AZ||s = min,cx ||b — Az||2

» Key to success of Krylov methods: Preconditioning
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Preconditioning — Basic principles

Use Krylov subspace method

1 — 1
on a modified system, e.g.: M~ Az = M™"b.

e The matrix M ~1A need not be formed explicitly; only need
to solve M w = v whenever needed.

e Requirement : ‘easy’ to compute M ~1v for arbitrary v

e Effect of preconditioner: spectrum of M ~1A more favorable
for Krylov subspace accelerators
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Both A and M are SPD: Preconditioned CG (PCG)

ALGORITHM : 1 Preconditioned Conjugate Gradient

1. Compute ro ;= b — Axg, 29 = M_l’l"(), andpo = 20
2. For3 = 0,1,..., until convergence Do:

3. o = (15, 25) / (AP}, Pj)

4. Ljt1 «— Ly —+ 5D

5. rjt1 = T; — ajApj

6. Zjt1 = M_l’l"j_|_1

/. Bj = (415 2j41) /()5 25)

8. Pj+1 := Zjt1 + B;P;

9. EndDo

» Krylov method for M~tAx = M—'b but use M-inner
product to preserve self-adjointness.
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Background: Incomplete LU (ILU) preconditioners

ILU: A=~ LU

Simplest Example: ILU(0) —

Common difficulties of ILUs:
Often fail for indefinite problems
Not too good for highly parallel environments
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Sparse matrix computations with GPUs **

» Very popular approach to: inexpensive supercomputing

» (Can buy ~ one Teraflop peak power for around $1,000

Tesla C1060 | 240 cores; 930GF peak

A

» Next: Fermi; followed by Kepler; then <" " "';;ﬁ

Maxwell e

» TeslaK80:2 x 2,496 — 4992 GPU cores. 24 GB Mem:_;
Peak: =~ 2.91 TFLOPS double prec. [with clock Boost].
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The CUDA environment: The big picture
» A host (CPU) and an attached device (GPU)

Typical program: I

1. Generate data on CPU
2. Allocate memory on GPU

cudaMalloc(...)
3. Send data Host — GPU
cudaMemcpy (.. .)
4. Execute GPU ‘kernel’:
kernel << (...)>>>(..) |+ S
5. Copy data GPU —CPU : rY oy
cudaMemcpy (.. .) CPU
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Sparse matrix computations on GPUs

Main issue in using GPUs for sparse computations:

e Huge performance degradation due to ‘irregular sparsity’

Matrix -name N NNZ
» Matrices: FEM/Cantilever| 62,451 4,007,383
Boeing/pwtk 217,918 11,634,424

» Performance of Mat-Vecs on NVIDIA Tesla C1060

Single Precision Double Precision

Matrix CSR JAD DIA+ |CSR|JAD DIA+
FEM/Cantilever| 9.4 |[10.8 25.7 | 7.5 5.0 13.4
Boeing/pwtk | 8.9 16.6| 29.5 | 7.2 10.4] 14.5
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» More recent tests: NVIDIA M2070 (Fermi), Xeon X5675
» Double precision in Gflops

MATRIX Dim. N |CPU| CSR| JAD| HYB| DIA

rmai0 46,835 3.80|10.19/12.61| 8.48 -
cfd2 123,440 2.88| 8.52 11.95/12.18 -
majorbasis 160,000 2.92| 4.81 11.70/11.54 13.06
af _shell8 504,855 | 3.13|10.34|14.56 | 14.27 -
lap7pt 1,000,000 | 2.59| 4.66|11.5812.44/18.70
atmosmodd 1,270,432| 2.09| 4.69 10.89/10.97|16.03

» CPU SpMV: Intel MKL, parallelized using OpenMP
» HYB:from CUBLAS Library. [Uses ellpack+csr combination]

(*) Thanks: all matrices from the Univ. Florida sparse matrix collection
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Sparse Forward/Backward Sweeps

» Next major ingredient of precond. Krylov subs. methods

for 1=1:n
> ILU preconditioning for j=ia(i):ia(i+1)
operations require L/U x(i) = x(i) - a(j)*x(ja(j))
solves: ¢ < U 'L~z end

» Sequential outer loop. end

» Parallelism can be achieved with level scheduling:

e Group unknowns into levels

e Compute unknowns x(z) of same level simultaneously
ol < nlev<n
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ILU: Sparse Forward/Backward Sweeps

e \ery poor performance [relative to CPU]

Matrix N CPU GPU-Lev
Mflops  #lev |Mflops

Boeing/bcsstk36| 23,052 | 627 (4,457 43
FEM/Cantilever | 62,451 | 653 2,397 168
COP/CASEYK 696,665 394 @ 273 @ 142
COP/CASEKU 208,340 373 | 272 @ 115

Prec: miserable :-)

GPU Sparse Triangular Solve with Level Scheduling

» Very poor performance when #levs is large

» A few things can be done to reduce the # levels but perf. will

remain poor
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So...

... prepare for the demise of the GPUs...

... or the demise of the ILUs ?
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Alternative: Low-rank approximation preconditioners

e Goal: use standard
Domain  Decomposition
framework

e Exploit Low-rank correc-
tions

e Consider a domain par-
titioned in p sub-domains
using vertex- based parti-
tioniong (edge-separator)
» |nterface nodes in each
domain are listed last.
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The global system: Global view

» Global system can be
permuted to the form —
» ;s internal variables
» 1y interface variables

External interface points

- iy

Bz F2 U-

. : 5 = b
L ?pﬁp Up
\ET ET ...ET C) \ v

» F; maps local interface points to
Interior points in domain €2;

» ET does the reverse operation
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Splitting
. B F B F
» Split as: A= (ET C) — ( C) + (ET )

)ﬁ%me.FE<F>;.EE<E>'Wm:

—1 —1I
"B F|_ |B+FET o T
~ — — FE~.
ET C 0 |C+1
» Property: FET is ’lo- | B+ FET| o
cal’, i.e., no inter-domain Ao = 0 C L1
couplings —

= block-diagonal
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Low-Rank Approximation DD preconditioners

A~ = A+ AJ'FGT'ET A
G=I1I-E"A'F

Options: | (a) Approximate A;'F, ETA;', G~
(b) Approximate only G~ [this talk]

» (b) requires 2 solves with Ay.

Sherman-Morrison —

Let G = G

A M= A;' + A,'FG, 'ETA;"
Preconditioner —
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Symmetric Positive Definite case

» Recap: Let|G =1 — ETA;'E=1— H| Then

A= A '+ AJ'EG'ETAL!

» Approximate G~ by G;." — preconditioner:

M~ = A" + (4 'E)G, (BT Ag )

» Matrix Ay is SPD
» Canshow: 0 < A;(H) <1
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» Now take rank-k approximation to H:

G.'= (I —-UDUN =T+ Ui[(I - Dy) ' —1UL

» Observation: A== M~!' 4+ A;'E[G™' — G, '|ETA;"

» (. k largest eigenvalues of H matched — others set ==

» Result: AM 1 has

e n — s + k eigenvalues ==
e All others between 0 and 1
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Alternative: reset lowest eigenvalues to constant

» Let H = UAU? = exact (full) diagonalization of H
» We replaced A by:

B

» Alternative: replace A by

» Interesting case: 60 = A\;11

\

» Question: related approximation to G=1?
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» Result: Lety = 1/(1 — 6). Then approx. to G~ 1 is:
vo =71+ Ui[(I — Dy) " —~IIU;;

» Gy k largest eigenvalues of G matched — others set ==
» 6O = 0 yields previous case

» When A1 < 6 < 1 we get

_ 4 e n — s + k eigenvalues == 1
» Result: AM ™" has e All others > 1

» Next: An example for a 900 x 900 Laplacean, 4 domains,
s = 119.
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Eigenvalues of AM ~!. Used: k=5 . Two cases
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Proposition | Assume @ is so that |Axr1 < 6 < 1| Then

the eigenvalues n; of AM ~! satisfy:

1 _
L<m; < 14— A4 B2

» (Can Show: For the Laplacean (FD)

_ _ _ 1
||A1/2A0 1E||§ — ”ETA() 1AA0 1E||2 < Z
regardless of the mesh-size.
» Best upper bound for 8 = A1

» Set @ = Apy1. Then k(AM™1') < constant, if k large
enough so that Ay ; < constant.

» |.e., need to capture sufficient part of spectrum
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The symmetric indefinite case

» Appeal of this approach over ILU: approximate inverse —
Not as sensitive to indefiniteness

» Part of the results shown still hold
» But \;(H) can be > 1 now.

» (Can change the setting slightly [by introducing a parameter
«] to improve diagonal dominance

» Detalls skipped.
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Parallel implementations

» Recall :

M~ = A" [T + EG,,ET A
ro =L+ Ui[(I — D)~ —~IU;}

» Steps involved in applying M ! to a vector « :

ALGORITHM : 2 Preconditioning operation

SR N =

z = Aalw // B;-solves and C, solve C,=C+1)
y= FE1z // Interior points to interface (Loc.)

Y = G,;éy // Use Low-Rank approx.

zir = Ey; // Interface to interior points (Loc.)

u = Ay (x + z;) // Bj-solves and C- solve
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Ag Solves \ Note:

&
|

» Recall B; = B; + E;ET
» A solve with Ag amounts to all p Bi-solves and a C,.-solve
» Can replace C_ ! by a low degree polynomial [Chebyshev]

» Can use any solver for the B;’s
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Parallel tests: Itasca (MSI)

» HP linux cluster- with Xeon 5560 (“Nehalem”) processors

» Simple Poisson equation on regular grid

Mesh Nproc | Rank | #its | Prec-t | lter-t
256 X 256 2 8 29 | 2.30 .343
512 X 512 8 16 57 2.62 .747
1024 X 1024 32| 32| 96 | 3.30 |1.32
2048 x 2048 128 64154 4.84 2.38
Mesh Nproc | Rank | #its | Prec-t| lter-t
32 X 32 X 32 2 8 |12 1.09 .0972
64 X 64 X 64 16 16 | 31 1.18 | .381
128 X 128 X 128 128 | 32 | 62 2.42 | .8/8
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Approximations/theories used

» Original Schrédinger equation very complex

» Approximations developed started the 1930s reached ex-
cellent level of accuracy. Among them...

Density Functional Theory: (DFT) observable quantities are
uniquely determined by ground state charge density.

Kohn-Sham equation: |

V2
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The three potential terms

[—V; + Vion + Vi + Vwc} U(r) = E®(r) With:

e Charge density: p(r) = 27577 |i(r)|?
e Hartree potential (local) V*Vyg = —4np(r)
e V.. depends on func- Vie = f(p(7))

tional. For LDA:

e V,,, = nonlocal — does Viow = Viee + 3. P,
not explicitly depend on p o oc

» Note: Vg and V. depend nonlinearly on eigenvectors
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Self Consistence

» The potentials and/or charge densities must be self-consistent:
Can be viewed as a nonlinear eigenvalue problem. Can be
solved using different viewpoints

e Nonlinear eigenvalue problem: Linearize + iterate to self-
consistence

e Nonlinear optimization: minimize energy [again linearize +
achieve self-consistency]

The two viewpoints are more or less equivalent
» Preferred approach: Broyden-type quasi-Newton technique

» Typically, a small number of iterations are required
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Self-Consistent Iteration

» Most time-consuming part = computing eigenvalues / eigen-
vectors.

Characteristic . Large number of eigenvalues /-vectors to
compute [occupied states].

» Self-consistent loop takes a few iterations (say 10 or 20 in
easy cases).

Challenge: Compute a large number of eigenvalues (n., <
10%-10°) of a large Hamiltonian matrix (IN ~ 107-10%)
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PARSEC

P seudopotential
Algorithm for

» Represents = 15 years of effort by
a multidisciplinary team

» Real-space Finite Difference;

» Efficient diagonalization, ...

»  Exploits symmetry, ...

» PARSEC Released in ~ 2005.

Real-;
Space
E lectronic
Calculations
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Subspace iteration with Chebyshevy filtering

Given a basis [v1, . . ., Uy, filter 9 = pr(A)v;
each vector as

» pi. = Low deg. polynomial. Enhances wanted eigencompo-
nents

Deg. 6 Cheb. polynom., damped interv=[0.2, 2]

The filtering step is not used
to compute eigenvectors ac-
curately »

SCF & diagonalization loops
merged

Important: convergence still
good and robust
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Main step: |

Previous basis V' = [vy, v2,++* , U]

.
Filter V = [p(A)v1, p(A)va, -+ , p(A)vyy)]

1
Orthogonalize [V, R] = qr(V,0)

» The basis V is used to do a Ritz step (basis rotation)
C=V'AV = [U,D] =eig(C) =V :=V U
» Update charge density using this basis.

» Update Hamiltonian — repeat
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» In effect: Nonlinear subspace iteration

» Main advantages: (1) very inexpensive, (2) uses minimal
storage (m is a little > # states).

» Filter polynomials: if [a, b] is interval to dampen, then

Cr(l®) (- 2t=b-a
Ci(l(c)) b—a

e c =~ eigenvalue farthest from (a + b) /2 — used for scaling

pr(t) =

» 3-term recurrence of Chebyshev polynommial exploited to
compute px(A)v. If B = [(A), then Cy11(t) = 2tCi(t) —
Ck_l(t) —

Wi4+1 = 2Bwp, — w4
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Tests with Silicon and Iron clusters (old)

Legend:

® n.qte . NUMber of states
e ngy : Size of Hamiltonian matrix
o # A x x : number of total matrix-vector products

e # SCF : number of iteration steps to reach self-consistency

total eV
o
atom

e 1st CPU : CPU time for the first step diagonalization

. total energy per atom in electron-volts

e total CPU : total CPU spent on diagonalizations

Reference: Y. Zhou, Y.S., M. L. Tiago, and J. R. Chelikowsky,
Phy. Rev. E, vol. 74, p. 066704 (2006).
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A comparison: Stso5Hor6

method # A x x| SCF its. CPU(secs)
ChebSI | 124761 11 5946.69
ARPACK 142047 10 62026.37
TRLan | 145909 10 26852.84

Polynomial degree = 8. Total energies agree to within 8 digits

A larger system: Stg9941H 1560

Natate | # A *x #SCF| tetaleV | 45t CPU total CPU

atom

190154804488 18 -92.00412 102.12 h.|294.36 h.

# PEs =48; nyg =2,992,832. Pol. Deg. = 8.
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Spectrum Slicing and the EVSL project

» Part of our DOE project on excited states

Conceptually simple idea: cut
the overall interval containing -
the spectrum into small sub- _ ..
iIntervals and compute eigen- _ ..
pairs in each sub-interval inde-
pendently.

Tool: polynomial filtering

» To avoid repeting eigenpairs, keep only the computed eigen-
values / vectors that are located in support interval
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Levels of parallelism |

Slice 1

JL

Macro-task 1

Domain 1

Slice 2

JL

Domain 2

Slice 3

JU

Domain 3

Domain 4

The two main levels of parallelism in EVSL
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Simple Parallelism: across intervals

» Use OpenMP to illustrate scaling: Compute 1002 lowest
eigenpairs of matrix sio (n = 33,401, nnz = 1,317, 655.)

Parallel scaling of the divide and conquer strategy
1100 T T T

——4 intervals

» Use 4 and then 10 spec-

. 1000+ Q‘ -é -10 intervals|
tral slices 900/
800
» Near optimal scaling ob- 5 0 .

600~

served as # cores increases

Time (sec.)

500

» Note: 2nd level of paral- 4o » |
lelism [re-orthogonalization ™ ™~ T ‘

2001

+ MatVecs] not exploited. 100, . . . ; o
Number of OpenMP threads

» Faster solution times with 4 slices (= 250 evals per slice)
than with 10 slices (= 100 evals per slice)
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Introduction: a few factoids

» Data is growing exponentially at an “alarming” rate:

e 90% of data in world today was created in last two years
e Every day, 2.3 Million terabytes (2.3 x 10'® bytes) created
» Mixed blessing: Opportunities & big challenges.
» Trend is re-shaping & energizing many research areas ...

» ... including my own: numerical linear algebra
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Introduction: What is data mining?

Set of methods and tools to extract meaningful information
or patterns from (big) datasets. Broad area : data analysis,
machine learning, pattern recognition, information retrieval, ...

» Tools used: linear algebra; Statistics; Graph theory; Approx-
imation theory; Optimization; ...

» This talk: brief introduction — emphasis on linear algebra
viewpoint

» + our initial work on materials.
» Focus on “Dimension reduction methods”
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Lots of data: can be hugely beneficial (e.g., Health sciences)

Home — Medical Computing — IBM's Watson Could Diagnose Cancer Better Than Doctors

IBM's Watson Could Diagnose Cancer Better Than Doctors

fRvi=lel+

36

Posted in Medical Computing by Qmed Staff on October 22, 2013

Several years ago, IBM’s Watson supercomputer gained fame after
beating some of the world's top Jeopardy! players. To accomplish that
feat, researchers fed thousands of points of information into Watson's
database, allowing it to retrieve information presented through natural
language. While winning Jeopardy! might be an exciting challenge for
researchers, Watson's next goal could revolutionize oncology. |IBM is
currently working on the third-generation of the Watson platform, which
has the power to debate and reason, according to IBM CEO Ginni

Rometty.

The latest version of Watson can absorb and analyze vast amounts of
data, allowing it to make diagnoses that are more accurate than human
doctors. If a Watson-style computer was deployed through a cloud
interface, healthcare facilities may be able to improve diagnosis

accuracy, reduce costs and minimize patient wait times.

Il mmmalb i adine can

A
e

]

The third generation of IBM's Watson platform
will be able to actively reason.
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Major tool of Data Mining: Dimension reduction

» Goal is not as much to reduce size (& cost) but to:

e Reduce noise and redundancy in data before performing a
task [e.g., classification as in digit/face recognition]

e Discover important ‘features’ or ‘paramaters’

The problem: \Given: X =[xy, ,x,] € R™*™ find a

low-dimens. representation Y = [y, ,y,] € R>"of X

» Achievedbyamapping @®:ax € R™ — y € R®  so:

¢(wz):yza 7::19"'9”/
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» dmaybelinear: y=W'z; ,ie, Y =W'X ,.

» ... or nonlinear (implicit).

» Mapping @ required to: Preserve proximity? Maximize
variance? Preserve a certain graph?
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Example: Principal Component Analysis (PCA)

In  Principal Component Analysis W is computed to maxi-
mize variance of projected data:

_ T
max E yi——§ Yill » ¥yi =W a;.
WeRmMXdWTW =] n

i=1 j=1

» Leads to maximizing
T [WH(X —pe" ) (X —pe”)TW], p=_ 3"

» Solution W = { dominant eigenvectors } of the covariance
matrix = Set of left singular vectors of X = X — pe'
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SVD:

X=UXVT, U'U=1, V'V =1, ¥ = Diag

» Optimal W = U,; = matrix of first d columns of U

» Solution W also minimizes ‘reconstruction error’ ..

Y o flws — WW || =) |l — Wy

» In some methods recentering to zero is not done, i.e., X
replaced by X.

HPC Days 04/08/2016



Unsupervised learning

PCA - digits : 5 ——7

“Unsupervised learning” : meth-
ods that do not exploit known labels
» Example of digits: perform a 2-D
projection
» Images of same digit tend to
cluster (more or less)

» Such 2-D representations are
popular for visualization

» (Can also try to find natural clus-
ters in data, e.g., in materials

» Basic clusterning technique: K-
means

° o
o 3 °
: Eao
o ® °
o
3 o ° oO ° 5
. o 00& °° . 6
(-] ° o 7
= ” > o 4 6 8
Photovoltaic
Superhard
Superconductors
.
Ferromagnetic

: Catalytic

Multi-ferroics Thermo-electric
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Example: The ‘Swill-Roll’ (2000 points in 3-D)

Original Data in 3-D
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2-D ‘reductions’: |

PCA LPP
15¢ 15¢
10t “b 10t X onntsBe A0 Xog e -3
o..‘.. &“ é‘: ~§:)“:' (] g

0 0 ‘. og !
3 LRy
-5 51 S
[P ¥ et ®
‘o% M L e
o e Lt
=10+ -10¢ ?l o ST eY
-15 : : : ! -15 : : : : :
=20 -10 0 10 20 -15 -10 -5 0 5 10
Eigenmaps ONPP

e,
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Example: Digit images (a random sample of 30)

10

X
vl

20
5 10 15 5 10 15

10

w

20

W)

5 10 15
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Eﬂ

a1
=
o

15

=
o

N

N
o

a1
=
o

15
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2-D ‘reductions’:

PCA - digits: 0 —— 4

LLE - digits : 0 —— 4

6 0.15¢
x + 0
4t x 1| 0.1}
O 2505}
2t A 3
4| Or
O L
-0.05}
_2 L
-0.1}
d -0.15}
-6 : ' -0.2 ' . .
-10 -5 0 5 10 ~0.2 -0.1 0 0.1 0.2
K-PCA - digits : 0 —— 4 ONPP - digits: 0 —— 4
0.2 0.1¢
X X + 0
015 3% « 1] 005}
% XX %
0.1} XX HEX o 2| ol
xR A 3
0.05} 4|-0.05}
Or i 0.1}
-0.051 -0.15}
-0.1} -0.2} x
X
-0.15 ' ' ' ' -0.25 ' ' X%
0.07 0071 0072 0073  0.074 ~54341 -5.4341 -54341 -54341 -5.4341
-3
x 10
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Supervised learning: classification

Problem:  Given labels
(say “A” and “B”) for each Lo
item of a given set, finda =
mechanism to classify an
unlabelled item into either
the “A” or the “B" class. o

f)

» Many applications.
» Example: distinguish SPAM and non-SPAM messages

» (Can be extended to more than 2 classes.

HPC Days 04/08/2016



Supervised learning: classification

» Best illustration: written digits recognition example

Digit 0
" Digfit 1
' Digit 2

Given: a set of

Digit 9
1 Digit ??

labeled samples mEm

(training set), and| ||/l 11 11— 5
an (unlabeled) test] | ||| 2
image. Training data Test data :
Problem: find -
label of test image : § 3 S

Digit 9
Digit ??

0000000000 - - - UDDD |

» Roughly speaking: we seek dimension reduction so that
recognition is ‘more effective’ in low-dim. space
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Supervised learning: Linear classification

Linear classifiers: Find a hy-
perplane which best separates
the data in classes A and B.

Linear
classifier

» Note: The world in non-linear. Often this is combined with
Kernels — amounts to changing the inner product
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Face Recognition — background

Problem: We are given a database of images: [arrays of pixel
values]. And a test (new) image.

Question: Does this new image correspond to one of those
in the database?
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» Techniques used in words:

“Build a (linear) projector that does well on some training data.
Use that same projector to predict class of new item”

e Some methods use a graph - e.g., neighborhood graph

e Some methods use kernels (change inner products).
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Example: Eigenfaces [Turk-Pentland, °91]

» |dea identical with the one we saw for digits:

— Consider each picture as a (1-D) column of all pixels
— Put together into an array A of size #_pixels X # _i1mages.

HEEEE N -

- 7

A

— Do an SVD of A and perform comparison with any
In low-dim. space

— Similar to LSl in spirit — but data is not sparse.

HPC Days 04/08/2016



Graph-based methods in a supervised setting

Test: ORL 40 subjects, 10 sample images each — sample
shown earlier # of pixels : 112 X 92; TOT. # images : 400

ORL —- TrainPer—-Class=5

0.98
0.96

094 ¢

0.92

0sF o, x» 'V'
’ ¢
0.88 _! l‘ ,r \\0““,/ \\0 o//’, \\\o, \0/
. PN . s ¢
" & ¢ =*=0npp
4 o Y, as
0.86H 4 ‘0 2 == pca \
t =B= olpp—-R
osar, & ¢ laplace
v' -v-fisher
0821 - =& onpp-R
3 =k=0lpp
08‘ 1 1 1 1 1 1 | | J
10 20 30 40 50 60 70 80 90 100
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What dimension to use?

» Important question — but a hard one.

» Often, dimension k is selected in an ad-hoc way.

» k = intrinsic rank of data.
» (Can we estimate it?

Two scenarios:

1. We know the magnitude
of the noise, say 7. Then,
ignore any singular value
below 7 and count the oth-
ers.

2. We have no idea on the
magnitude of noise. De-
termine a good threshold 7
to use and count singular
values > T.
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Use of Density of States [Lin-Lin, Chao Yang, YS]

» Formally, the Density Of States (DOS) of a matrix A is

o(t) = : > 6t — ),

n -

where
e 0 is the Dirac d-function or Dirac distribution
o N\ < A < ...< ), arethe eigenvalues of A

» Term used by mathematicians: Spectral Density

» Note: number of eigenvalues in an interval |a, b] is

b b
“["’”’]:/a 36t — Aj) dtz/ no(t)dt .
j a
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» ¢(t) == a probability distribution function == probability of
finding eigenvalues of A in a given infinitesimal interval near t.

» |n Solid-State physics, \;’'s represent single-particle energy
levels.

» So the DOS represents # of levels per unit energy.

» Many uses in physics
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The Kernel Polynomial Method

» Used by Chemists to calculate the DOS — see Silver and
Roder'94 , Wang '94, Drabold-Sankey’93, + others

» Basic idea: expand DOS into Chebyshev polynomials

» Use trace estimators [discovered independently] to get traces
needed in calculations

» Assume change of variable done so eigenvalues liein [—1, 1].

» Include the weight function in the expansion so expand:
- 1 &
P(t) = V1 —t2¢(t) = VI — 12 x — > (Lt — Aj).
n -
71=1
Then, (full) expansion is: ¢(t) = >.7° e Tk(t).
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» Expansion coefficients u are formally defined by:

Ty.(t)d(t)dt

2_5k0/ 1
\/1—t2

py, =
2= 0po
_ / mTk(t)\/l () dt
2 5k0
— e ;Tk(AJ)

» Estimate this, e.g., via stochastic estimator

» Generate random vectors vV, v, ... | v(Pw) (normal dis-
tribution, zero mean)

» Some calculations similar to those of eigenvalue counts
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An example with degree 80 polynomials

KPM, deg = 80 KPM, deg = 80
0.18f - I ! LN 02F T ¥ T T
o | —— Exact . Y —&— Exact
0.16¢ oo | —e— KPM w/ Jackson| 1 d | —e— KPM w/o Jackson
0.14} |
0.15¢
0.12¢
= 0.1r =
= = 0.1
= 0.08} <
0.06¢
0.05¢

0.04 |

0.02}

Left: Jackson damping; right: without Jackson damping.
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Integrating to get eigenvalue counts

» As already mentioned

b b
Lo :/a Zé(t— ;) dt E/a no(t)dt
J

> If we use KPM to approximate &(t) = ¢(t)/+/1 — 2 then
P T(t)

» A little calculation shows that the result obtained in this way
IS identical with that of the eigenvalue count by Cheb expansion
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Application: Estimating a threshold for rank estimation

» When no other information is available, DOS can be used
to find a good cut-off value @ to use to estimate ranks

DOS with KPM, deg = 70

25

» Common behavior:
DOS decreases then in-
creases (or stabilizes).
» If there is a significant
gap use this to set-up 6.
»  Often gives good
guess for cut-off between
‘noise’ and ‘real’ sing.
values
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Updating the partial SVD

» In applications, data matrix X often updated

Challenge: Update the partial SVD as fast as possible [e.g.
for ‘online’ applications..]

» Example: Information Retrieval (IR), can add documents,
add terms, change weights, ..

» Methods based on projection techniques — developed in E.
Vecharynski and YS’13. Details skipped
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Data mining for materials: Materials Informatics

Definition: “The application of computational methodologies
to processing and interpreting scientific and engineering data
concerning materials” [Editors. 2006 MRS bulletin issue on
materials informatics]

» Huge potential in exploiting two trends:

1 Improvements in efficiency and capabilities in computa-
tional methods for materials

2 Recent progress in data mining techniques

» Current practice: “One student, one alloy, one PhD” [see
special MRS issue on materials informatics] — Slow ..

» Data Mining: can help speed-up process
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Unsupervised learning

CN STRUCTURE ]

L ‘2‘2%%2;%#‘;#0’*'“ v > 1.9705: Unsuperws.ed
RN T LT learning “by hand”: Find
t ol cowouos LT coordinates that will clus-
A ter materials according to
Ei Jemer T structure
ook PR e » 2-D projection from
i 1ol "y cuon—= 0k physical knowledge
Sl emn o e » ‘Anomaly Detection’:

et helped find that compound

000 050 1.00 150 200 CU F does not exist

tr = [rp(A)- rs(A)] + [rp(B)-rs(B)]
see: J. R. Chelikowsky, J. C. Phillips, Phys Rev. B 19 (1978).
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Question: Can modern data mining achieve a similar dia-
grammatic separation of structures?

» Should use only information from the two constituent atoms
» Experiment: 67 binary ‘octets’.

» Use PCA — exploit only data from 2 constituent atoms:

1. Number of valence electrons;

2. lonization energies of the s-states of the ion core;

3. lonization energies of the p-states of the ion core;

4. Radii for the s-states as determined from model potentials;

5. Radii for the p-states as determined from model potentials.
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Supervised learning: classification

Problem: classify an unknown binary compound into its
crystal structure class

» 55 compounds, 6 crystal structure classes
» “leave-one-out” experiment

Case 1: Use features 1:5 for atom A and 2:5 for atom B. No
scaling is applied.

Case 2: Features 2:5 from each atom + scale features 2 to 4
by square root of # valence electrons (feature 1)

Case 3: Features 1:5 for atom A and 2:5 for atom B. Scale
features 2 and 3 by square root of # valence electrons.
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Three methods tested

1. PCA classification. Project and do identification in space of
reduced dimension (Euclidean distance in low-dim space).

2. KNN K-nearest neighbor classification —

3. Orthogonal Neighborhood Preserving Projection (ONPP) - a
graph based method - [see Kokiopoulou, YS, 2005]

Recognition rates for 3
different methods using
different features

Case KNN ONPP PCA

Case 1 0.909 0.945 0.945
Case 2 0.945 0.945 1.000
Case 3 0.945 0.945 0.982
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» Some data is becoming available

daterials Project :: Home ttps imaterialsproject.c
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» Huge recent increase of interest in the physics/chemstry
community

1. Predicting enthalpy of formation for a certain class of com-
pounds.. [current]

2. Application to Orthophosphates of lanthanides (LnPO4)
[current — with Edoardo di Napoli TRWH]

3. Project: Predict Band-gaps
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Conclusion

» Many, interesting new matrix problems in areas that involve
the effective mining of data

» Among the most pressing issues is that of reducing compu-
tational cost - [SVD, SDP, ..., too costly]

» Many online resources available

» Huge potential in areas like materials science though inertia
has to be overcome

» On the + side: materials genome project is starting to ener-
gize the field

» To a researcher in computational linear algebra : big tide of
change on types or problems, algorithms, HPC, culture,..

HPC Days 04/08/2016



» But change should be welcome

Two quotes:

“‘When one door closes, another opens; but we
often look so long and so regrettfully upon the
closed door that we do not see the one which has

opened for us.
— Alexander Graham Bell

“Life is like riding a bicycle. To keep your balance,

you must keep moving”
— Albert Einsten
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