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Introduction: What is data mining?

ä Common goal of data mining methods: to extract
meaningful information or patterns from data. Very broad
area – includes: data analysis, machine learning, pattern
recognition, information retrieval, ...

ä Main tools used: linear algebra; graph theory; approximation
theory; statistics; optimization; ...

ä In this talk: brief introduction with emphasis on dimension
reduction; Applications.
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Major tool of Data Mining: Dimension reduction

ä Given d� m find a mapping

Φ : x ∈ Rm −→ y ∈ Rd

ä Mapping may be explicit [typically linear], e.g.: y = V Tx

ä Or implicit (nonlinear)

ä Techniques depend on application: Preserve angles? Pre-
serve distances? Maximize variance? ..

ä Primary goals of dimension reduction :

• Reduce noise and redundancy in data
• Discover ‘features’ or ‘patterns’
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Basic linear dimensionality reduction: PCA

ä We are given points
in Rn and we want to
project them in Rd. Best
way to do this?
ä i.e.: find the best axes
for projecting the data
ä Q: “best in what
sense”?
ä A: maximize variance
of new data

ä Principal Component Analysis [PCA]
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Unsupervised learning: Clustering

Problem: partition a given set into subsets such that items
of the same subset are most similar and those of two different
subsets most dissimilar.

Superhard
Photovoltaic

Superconductors

Catalytic

Ferromagnetic

Thermo−electricMulti−ferroics

ä Basic technique: K-means algorithm [slow but effective.]

ä Example of application : cluster bloggers by ‘social groups’
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Example: Sparse Matrices viewpoint (J. Chen & YS ’09)

ä Communities modeled by an ‘affinity’ graph [e.g., ’user A
sends frequent e-mails to user B’]

ä Adjacency Graph repre-
sented by a sparse matrix

ä Goal: find ordering so blocks
are as dense as possible:

ä Advantage of this viewpoint: need not know # of clusters.
ä Use ‘blocking’ techniques for sparse matrices
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Supervised learning: classification

Problem: Given labels
(say “A” and “B”) for each
item of a given set, find a
mechanism to classify an
unlabelled item into either
the “A” or the “B” class.

?

?
ä Many applications.

ä Example: distinguish SPAM and non-SPAM messages

ä Can be extended to more than 2 classes.
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Linear

classifier

Linear classifiers: Find a hyperplane which best separates the
data in classes A and B.
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Linear classifiers

ä Let X = [x1, · · · , xn] be the data matrix.

ä and L = [l1, · · · , ln] the labels either +1 or -1.

ä 1st Solution: Find a vector v
such that vTxi close to li ∀i
ä Common solution: SVD to
reduce dimension of data [e.g.
2-D] then do comparison in this
space. e.g.
A: vTxi ≥ 0 , B: vTxi < 0

v
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Need for nonlinear classifiers
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Linear Discriminant Analysis (LDA)

Define “between scatter”: a measure of how well separated two
distinct classes are.

Define “within scatter”: a measure of how well clustered items
of the same class are.

ä Goal: to make “between scatter” measure large, while mak-
ing “within scatter” small.

Idea: Project the data in low-dimensional space so as to
maximize the ratio of the “between scatter” measure over
“within scatter” measure of the classes.
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Let µ = mean
of X, and µ(k) =
mean of the k-th
class (of size nk).
Define:

SB =
c∑

k=1

nk(µ
(k) − µ)(µ(k) − µ)T ,

SW =
c∑

k=1

∑
xi ∈Xk

(xi − µ(k))(xi − µ(k))T .

H

GLOBAL CENTROID 

CLUSTER CENTROIDS

H
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ä Project set on
a one-dimensional
space spanned by
a vector a.
Then:

aTSBa =
c∑
i=1

nk|aT(µ(k) − µ)|2,

aTSWa =
c∑

k=1

∑
xi ∈ Xk

|aT(xi − µ(k))|2

ä LDA projects the data so as
to maximize the ratio of these two
numbers:

max
a

aTSBa

aTSWa

ä Optimal a = eigenvector associated with the largest eigen-
value of:

SBui = λiSWui .
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LDA – Extension to arbitrary dimension

ä Would like to project in d dimensions –

ä Wish to maximize the ratio of two traces
s.t. UTU = I

Tr [UTSBU ]

Tr [UTSWU ]

ä Reduced dimension data: Y = UTX.

Common belief: Hard to maximize. In fact not a big issue –
See Ngo, Bellalij & YS

ä Common alternative: Solve
instead the (easier) problem:

max
UTSWU=I

Tr [UTSBU ]

ä Solution: largest eigenvectors of SBui = λiSWui .
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Face Recognition – background

Problem: We are given a database of images: [arrays of pixel
values]. And a test (new) image.

↖ ↑ ↗

Question: Does this new image correspond to one of those
in the database?
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Difficulty Positions, Expressions, Background, Lighting, Neck-

ties, ...,

Eigenfaces: Principal Component Analysis technique

ä Specific situation: Poor images or delib-
erately altered images [‘occlusion’]
ä See real-life examples – [international
man-hunt]
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Eigenfaces

– Consider each picture as a (1-D) column of all pixels
– Put together into an arrayA of size # pixels×# images.

. . . =⇒ . . .

︸ ︷︷ ︸
A

– Do an SVD ofA and perform comparison with any test image
in low-dim. space

– Similar to LSI in spirit – but data is not sparse.

Idea: replace SVD by Lanczos vectors (same as for IR)
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Tests with two well-known data sets

ORL 40 subjects, 10 sample images each – example:

# of pixels : 112× 92; TOT. # images : 400

AR set 126 subjects – 4 facial expressions selected for each
[natural, smiling, angry, screaming] – example:

# of pixels : 112× 92; TOT. # images : 504
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Tests: Face Recognition

Recognition accuracy of Lanczos approximation vs SVD

ORL dataset
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y-axis: average error rate. x-axis: Subspace dimension
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GRAPH-BASED TECHNIQUES



Graph-based methods

ä Start with a graph of data. e.g.: graph
of k nearest neighbors (k-NN graph)
Want: Do a projection so as to pre-

serve the graph in some sense

ä Define a graph Laplacean:

L = D −W

x

x
j

i

y
i

y
j

e.g.,: wij =

{
1 if j ∈ Ni

0 else D = diag

dii =
∑
j 6=i

wij


with Ni = neighborhood of i (excl. i)
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Example: The Laplacean eigenmaps approach

Laplacean Eigenmaps *minimizes*

FEM(Y ) =
n∑

i,j=1

wij‖yi−yj‖2 subject to Y DY > = I .

Motivation: if ‖xi − xj‖ is small
(orig. data), we want ‖yi − yj‖ to be
also small (low-D data)
Note: Min instead of Max as in PCA

ä Above problem uses original data
indirectly through its graph
ä Leads to n× n sparse eigenvalue
problem [In ‘sample’ space]

x

x
j

i

y
i

y
j
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Graph-based methods in a supervised setting

ä Subjects of training set are known (labeled). Q: given a test
image (say) find its label.
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Question: Find label (best match) for test image.

Hong Kong, 01-05-2012 p. 25



Methods can be adapted to supervised mode. Idea: Build
G so that nodes in the same class are neighbors. If c = #
classes, G consists of c cliques.

ä Matrix W is block-
diagonal
ä Note:
rank(W ) = n− c.

W =


W1

W2

W3

W4

W5


ä Can be used for LPP, ONPP, etc..

ä Recent improvement: add repulsion Laplacean [Kokiopoulou,
YS 09]
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APPLICATION TO MATERIALS



Application to materials

ä Studying materials properties using ab-initio methods can a
major challenge

ä Density Functional Theory
& Kohn Sham equation used
to determine electronic struc-
ture
ä Often solved many many
times for a single simulation
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Kohn-Sham equations→ nonlinear eigenvalue Pb

[
−

1

2
∇2 + (Vion + VH + Vxc)

]
Ψi = EiΨi, i = 1, ..., no

ρ(r) =
no∑
i

|Ψi(r)|2

∇2VH = −4πρ(r)

ä Both Vxc and VH, depend on ρ.
ä Potentials & charge densities must be self-consistent.
ä Most time-consuming part: diagonalization
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Data mining for materials: Materials Informatics

ä Huge potential in exploiting two trends:

1 Improvements in efficiency and capabilities in computa-
tional methods for materials

2 Recent progress in data mining techniques

ä Current practice: “One student, one alloy, one PhD”→ Slow
pace of discovery

ä Data Mining: can help speed-up process, e.g., by exploring
in smarter way

Hong Kong, 01-05-2012 p. 30



ä However: databases, and generally sharing, in materials
are not in great shape.

The inherently fragmented and multidisciplinary nature of
the materials community poses barriers to establishing
the required networks for sharing results and information.
One of the largest challenges will be encouraging scien-
tists to think of themselves not as individual researchers
but as part of a powerful network collectively analyzing
and using data generated by the larger community.
These barriers must be overcome.

NSTC report to the white house, June 2011.

ä Materials genome initiative [NSF]
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Unsupervised clustering

ä 1970s: Data Mining “by hand”: Find coordi-
nates to cluster materials according to structure
ä 2-D projection from physical knowledge

see: J. R. Chelikowsky, J. C.
Phillips, Phys Rev. B 19 (1978).
ä ‘Anomaly Detection’:
helped find that compound Cu
F does not exist
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Question: Can modern data mining achieve a similar dia-
grammatic separation of structures?

ä Should use only information from the two constituent atoms

ä Experiment: 67 binary ‘octets’.

ä Use PCA – exploit only data from 2 constituent atoms:

1. Number of valence electrons;

2. Ionization energies of the s-states of the ion core;

3. Ionization energies of the p-states of the ion core;

4. Radii for the s-states as determined from model potentials;

5. Radii for the p-states as determined from model potentials.
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ä Result:
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Supervised learning: classification

ä Problem: classify an unknown binary compound into its
crystal structure class
ä 55 compounds, 6 crystal structure classes
ä “leave-one-out” experiment

Case 1: Use features 1:5 for atom A and 2:5 for atom B. No
scaling is applied.

Case 2: Features 2:5 from each atom + scale features 2 to 4
by square root of # valence electrons (feature 1)

Case 3: Features 1:5 for atom A and 2:5 for atom B. Scale
features 2 and 3 by square root of # valence electrons.
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Three methods tested

1. PCA classification. Project and do identification in space of
reduced dimension (Euclidean distance in low-dim space).

2. KNN K-nearest neighbor classification –

3. Orthogonal Neighborhood Preserving Projection (ONPP) - a
graph based method - [see Kokiopoulou, YS, 2005]
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K-nearest neighbor (KNN) classification

ä Arguably the simplest of all methods

ä Idea of a voting system:
get distances between test
sample and all other com-
pounds
ä Classes of the k nearest
neighbors are considered (k=8)
ä The predominant class
among these k items is as-
signed to the test sample (“as-
terisk” here)
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Results

Case KNN ONPP PCA
Case 1 0.909 0.945 0.945
Case 2 0.945 0.945 1.000
Case 3 0.945 0.945 0.982

Recognition rate for 3 different methods using the data in differ-
ent ways
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Melting point prediction

ä It can be very difficult to predict materials properties by
correlations alone.

ä Test: 44 AB suboctet compounds

ä Experimental melting points used

ä “Leave-one-out” experiment

ä Use simple linear regression with Tikhonov regulation
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Atomic features used:

(1) Number of valence electrons;
(2) Radius for s states as determined from model potentials;
(3) Radius for p states as determined from model potentials;
(4) Electron negativity;
(5) Boiling point;
(6) 1st ionization potential;
(7) Heat of vaporization;
(8) Atomic number.
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Conclusion

ä Many, interesting new matrix problems related to data min-
ing as well as emerging scientific fields:

1 Information technologies [learning, data-mining, ...]

2 Computational Chemistry / materials science

3 Bio-informatics: computational biology, genomics, ..

ä Important: Lots of resources available online: reposito-
ries, tutorials,.. Easy to get started.

ä Materials informatics: likely be energized by the materials
genome project.
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