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Introduction

» Focus of this talk: 1) Trace estimation techniques 2) and their applications
» Problem: Estimate the trace of a matrix that is not explicitly available.

» *Many* Applications from physics to data-science

Outline: |

1. general introduction, 2. trace estimation, 3. the DOS, 4. howto
compute it, 5. how to use it (applications)
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Introduction: A few examples

Problem 1: Compute Tr[f (A)], f a certain function

» Many applications in Physics, e.g., estimations of Tr ( f(A)) extensively
used by quantum chemists to approximate Density of States, see

[H. Roder, R. N. Silver, D. A. Drabold, J. J. Dong, Phys. Rev. B. 55, 15382
(1997)]. Will be covered in detail later

Problem 2: Compute Tr[inv[A]] the trace of the inverse.
» Arises in cross validation methods [Stats]

» Motivation for the work [Golub & Meurant, “Matrices, Moments, and
Quadrature”, 1993, Book with same title in 2009]
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Problem 3: Compute diag[inv(A)] the diagonal of the inverse

» Dynamic Mean Field Theory [DMFT]. Related approach: Non Equilibrium
Green’s Function (NEGF) approach used to model nanoscale transistors.

» Uncertainty quantification: diagonal of the inverse of a covariance matrix
needed [Bekas, Curioni, Fedulova '09]

Problem 4: Compute diag[ f (A)] ; f = a certain function.

» Arises in density matrix approaches in quantum modeling

1 Here, f = Fermi-Dirac operator
fle) =+ T oxp(SE Notef when T — 0 then f — a step
function.

» Linear-Scaling methods
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Problem 5: Estimate the numerical rank.

» Amounts to counting the number of singular values above a certain thresh-
old 7 == Trace (¢.(AT A))..

¢-(t) is a certain step function.

Problem 6: Estimate the log-determinant (common in statistics)

log det(A) = Trace(log(A)) = > ., log(X\:).

.... many others
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Important tool: Stochastic Trace Estimator

» To estimate diagonal of B = f(A) (e.g., B = A™1), let:
* d(B) = diag(B) [matlab notation]

:  ® and @: Elementwise multiplication and division of vec-
Notation: I fors

 {v;}: Sequence of s random vectors

Result: | d(B)= | v;®Bv;| @ |> vOu,
j=1 j=1

C. Bekas , E. Kokiopoulou & YS ('05); C. Bekas, A. Curioni, |. Fedulova ’09;
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Trace of a matrix

» For the trace - take vectors of unit norm and

1 S
Trace(B) =~ ; E 1 v; Bv;
J:

» Hutchinson’s estimator : take random vectors with components of the
form +1/4/n [Rademacher vectors]

» Extensively studied in literature. See e.g.: Hutchinson '89; H. Avron and
S. Toledo '11; G.H. Golub & U. Von Matt '97; Roosta-Khorasani & U. Ascher
15; ...
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Typical convergence curve for stochastic estimator

» Estimating the diagonal of inverse of two sample matrices
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Alternative: standard probing

» 'Probing’ also called “CPR”, “Sparse Jacobian estimators”,..

ldea: Color columns so that no two columns of the same color overlap.

1 35 12 13 16 20

Entries of same color can be o o . 1 m
computed with 1 matvec . y . ol
»  Corresponds to coloring *
T )
graph of A" A. e e o) N
» For problem of diag(A) need ¢ Lpas
[ ]
only color graph of A ¢ .. 1| co
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In summary:

»  Probing much more powerful when f(A) is known to be nearly sparse
(e.g. banded)..

» Approximate pattern (graph) can be obtained inexpensively

» Generally just a handful of probing vectors needed — Can be obtained by
coloring graph

» However:

» Not as general: need f(A) to be ‘ e —sparse”’




References: |

e J. M. Tang and YS, A probing method for computing the diagonal of a matrix
inverse, Numer. Lin. Alg. Appl., 19 (2012), pp. 485-501.

See also (improvements)

e Andreas Stathopoulos, Jesse Laeuchli, and Kostas Orginos Hierarchical
Probing for Estimating the Trace of the Matrix Inverse on Toroidal Lattices
SISC, 2012. [somewhat specific to Lattice QCD ]

e E. Aune, D. P. Simpson, J. Eidsvik [Statistics and Computing 2012] combine
probing with stochastic estimation. Good improvements reported.
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SPECTRAL DENSITIES & APPLICATIONS |



Spectral Density, a.k.a, Density of States

» Formally, the spectral density of a matrix A is

B(t) =~ 38t~ Ay),

where: e ¢ is the Dirac é-function or Dirac distribution
o N\ < X <...< ), are the eigenvalues of A

» Known as the Density Of States (DOS) in quantum physics
» Note: number of eigenvalues in an interval [a, b] IS
b b
Hia,b] = / Z 5(t — )\j) dt = / nqb(t)dt .
a ,7 a
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Issue: How to deal with distributions?

» Highly ‘discontinuous’, not easy to handle numerically

. ) 1
.> S‘olu’uon., repla_ce ¢ by a regular Do (t) = = Zha(t — ),
ized (‘blurred’) version ¢, n
h (t),6=0.1
1 _ 2 T |
Where, for example: h,(t) = (27702)1/2e 20 A

» Smoothed ¢(t) == distribution function
» Probability of finding eigenvalues of A in

infinitesimal [t — &, ¢ + 4]
» Useful for theory and in practice. |
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» How to select smoothing parameter o? Example for S
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» But loss of detail ..
» Compromise: o =

2\/210g(14)’
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Computing the DOS: The Kernel Polynomial Method

» Used by Chemists to calculate the DOS — see Silver and Roder'94
Wang ‘94, Drabold-Sankey’93, + others

» Basic idea: expand DOS into Chebyshev polynomials

» Use trace estimator [discovered independently] to get traces needed in
calculations

» Assume change of variable done so eigenvalues lie in [—1, 1].

» Include the weight function in the expansion so expand:
. 1 —
B(t) = V1—2¢(t) = V1 -2 x =) 8(t— X))
n
j=1

Then, (full) expansion is: @¢(t) = > oo, Tk (t).
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» Expansion coefficients u; are formally defined by:
2— 0 [P 1
. kO
He = /_1 V-1
2 — dro /1 1
v -1V 1 —t2
2 — Oro —
=3 T().
j=1

nw

T (t)p(t)dt

Ti(t)\/1 — t2¢p(t)dt

Here 2 — 69 == 1 when k& = 0 and == 2 otherwise.
Note: ) Ti(\;) = Trace[Ty(A)]
Estimate this, e.g., via stochastic estimator

Generate random vectors vV, v, ... | p(ive)

Y Y Y VY'Y

Assume normal distribution with zero mean
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» Each vector is normalized so that [[v®|| = 1,1 = 1,..., Nyec.

» Estimate the trace of T, (A) with stochastisc estimator:

Nvec

Trace(Ti,(A)) = Z (v(z)>T T (A)v Y.
vec =1
- - 2 — 0o o= T
> | Will lead to the desired [y & kOZ (v®)" T3,(A)w .
estimate: N7 Tvec |7

» To compute vI'T;(A)v, exploit 3-term recurrence of Cheb. polynomials:

with

Tit1(t) = 2tT(t)t — Ti—1(t) = Vkt1 = 2AV, — Vg1
Vi — Tk(A)’U,
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» Jackson smoothing can be used —

18

7 = ==Exact |
e |_._ w /o Jackson
14t ——w/ Jackson |
12+

(1)

ILAS’23, Madrid, 06-16-23



An example: The Benzene matrix

>> TestKpmDos
Matrix Benzene n =8219 nnz = 242669

Degree = 40 # sample vectors = 10
Elapsed time 1s 0.235189 seconds.

%

3
51
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Use of the Lanczos Algorithm

» Background: The Lanczos algorithm generates an orthonormal basis
Vin = [v1, 02, -+ , vy,] fOr the Krylov subspace:

Span{'vl, A’Ul, coo g Am_l’l)l}

(o B> )

B2 oy Bs
» ... such that: Bs a3 B4

VHAV,, = T,, - with T =

e




» Lanczos process builds orthogonal polynomials wrt to dot product:

/ p(t)q(t)dt = (p(A)vr, q(A)vy)

LetO;, : =1--.,m be the eigenvalues of T, [Ritz values]
y; S associated eigenvectors; Ritz vectors: {V,,y; }i—1:m
Ritz values approximate eigenvalues

Could compute 6;’s then get approximate DOS from these

Y Y Y VY Y

Problem: 6; not good enough approximations — especially inside the
spectrum.
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Better idea: exploit relation of Lanczos with (discrete) orthogonal polyno-
mials and related Gaussian quadrature:

/p(t)dt ~ Z a;p(6;) a; = [erfyz-}z

» See, e.g., Golub & Meurant '93, and also Gautschi’'81, Golub and Welsch
'69.

» Formula exact when p is a polynomial of degree < 2m + 1
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» Consider now [ p(t)dt =< p,1 >= (Stieljes) integral =

(p(A)v,v) =D BIp(\i) =< ¢v,p >

» Then (¢,,p) = > a;p(0;) = > a;{dy,,p) —

¢’U ~ Z afz'(se,;

» To mimick the effect of 8; = 1, V4, use several vectors v and average the
result of the above formula over them..
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Other methods

» The Lanczos spectroscopic approach : A sort of signal processing ap-
proach to detect peaks using Fourier analysis

» The Delta-Chebyshev approach: Smooth ¢ with Gaussians, then expand
Gaussians using Legendre polynomials

» Haydock’s method: interesting ‘classic’ approach in physics - uses Lanc-
zos to unravel ‘near-poles’ of (A — eil) ™1

For details see:

e Approximating spectral densities of large matrices, Lin Lin, YS, and Chao
Yang - SIAM Review '16. Also in:
[arXiv: http://arxiv.org/abs/1308.5467]
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APPLICATIONS I



Application 1: Eigenvalue counts

Problem: Estimate pj, 5 = number of eigenvalues of A in [a, b].
Standard method: Sylvester inertia theorem — expensive!

First alternative: integrate the Spectral Density in [a, b].
b m b
- Ty(t)
Hia,b] ~ n (/ ¢(t)dt) =N E HE ( dt) = ...
a k=0 a V1—1t

Second method: Estimate trace of the -
. P = Z U,
related spectral projector P ¢
(— u;’'s = eigenvectors <> \;’s)

A; € [a b]

» |t turns out that the 2 methods are identical.
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Application 2: “Spectrum Slicing”

» Situation: very large number of eigenvalues to be computed

» Goal: compute spectrum by slices by applying filtering

Pol. of degree 32 approx§(.5) in [-1 1]

» Apply Lanczos or Subspace iteration to
problem:

$A)u = p g

¢(t) = polynomial or rational filter o

Rationale. Eigenvectors on both ends of wanted spectrum need not be
orthogonalized against each other — reduced orthogonalization costs
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How do I slice my spectrum?

Slice spectrum into 8 with the DOS

0.025

0.02
0.015

Answer: Use the DOS.

0.005-

-0.005

tit1 1 b
» We must have: o(t)dt = / o(t)dt

t; Nslices
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Application 3: Estimating the rank

» Very important problem in signal processing applications, machine learn-
Ing, etc.

» Often: a certain rank is selected ad-hoc. Dimension reduction is applica-
tion with this “guessed” rank.

» (Can be viewed as a particular case of the eigenvalue count problem - but
need a cutoff value..




Approximate rank, Numerical rank

» Notion defined in various ways. A common one:

re = min{rank(B) : B € R™*", ||A — B||» < €},

re = Number of sing. values > ¢

» Two distinct problems:
1. Get a good e 2. Estimate number of sing. values > ¢
» We will need a cut-off value ('threshold’) e.

» Could use ‘noise level’ for €, but not always available
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Threshold selection

» How to select a good threshold?

» Answer: Obtain it from the DOS function
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Exact DOS plots for three different types of matrices.
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Exact DOS by KPM, deg = 30

—— KPM (Chebyshev)
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» To find: point immediatly following the initial sharp drop observed.
» Simple idea: use derivative of DOS function ¢

» For an n x n matrix with eigenvalues A\,, < \,,_1 < -+ < Aq:

e =min{t : A\, <t < A\, ¢'(t) = 0}.

» In practice replace by

e =min{t : A\, <t < Ay, |d'(¢t)| > tol}
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DOS with KPM, deg = 50

Lanczos Approximation (matrix size=1961)
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(A) The DOS found by KPM.
(B) Approximate rank estimation by The Lanczos method for the example

netz4504.
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Tests with Matern covariance matrices for grids
» Important in statistical applications

Approximate Rank Estimation of Matérn covariance matrices

Type of Grid (dimension) Matrix # \;’s Te

Size > € | KPM |Lanczos
1D regular Grid (2048 x 1) 2048 | 16 16.75| 15.80
1D no structure Grid (2048 x 1) | 2048 20 120.10| 20.46
2D regular Grid (64 x 64) 4096 | 72 |72.71 72.90
2D no structure Grid (64 x 64) | 4096 70 169.20, 71.23
2D deformed Grid (64 x 64) 4096 69 68.11 69.45

» For all test M (deg) = 50, n,=30
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A few other applications

4. Evaluate the Log-determinant of A: ( A is SPD)

log det(A) = Trace(log(A)) = > ", log(A\:).

» Equivalent to estimating the trace of f(A) = log(A)
5: Log-likelihood. Used to optimize Gaussian processes

» Objective: maximize the log-likelinood w.r.t. parameter &

logp(z | &) = —% [zTS’(é)_lz + log det S(&) + CS’[}

where z = data vector and S (&) == covariance matrix
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6. Calculating nuclear norm

> Xl = Y (X)) = 3 V/A(XTX)

» Generalization: Schatten p-norms

”X”*,p — [Z o-i(X)p]l/p

» For details on these last 3 applications, see:

S. Ubaru, J. Chen, YS, “Fast estimation of tr(f(A)) via stochastic Lanczos
quadrature”, SIMAX (2017).
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Conclusion

» Estimating traces & Spectral densities are key ingredients in many algo-
rithms

» Physics, machine learning, matrix algorithms, ..

» .. many new problems related to ‘data analysis’ and ’'statistics’, and in
signal processing,

» A good instance of a method from physics finding its way in numerical
linear algebra

Can we do better than standard random sampling?
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