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Introduction

ä Focus of this talk: 1) Trace estimation techniques 2) and their applications

ä Problem: Estimate the trace of a matrix that is not explicitly available.

ä *Many* Applications from physics to data-science

Outline:

1. general introduction, 2. trace estimation, 3. the DOS, 4. how to
compute it, 5. how to use it (applications)
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Introduction: A few examples

Problem 1: Compute Tr [ f (A)], f a certain function

ä Many applications in Physics, e.g., estimations of Tr ( f(A)) extensively
used by quantum chemists to approximate Density of States, see

[H. Röder, R. N. Silver, D. A. Drabold, J. J. Dong, Phys. Rev. B. 55, 15382
(1997)]. Will be covered in detail later

Problem 2: Compute Tr[inv[A]] the trace of the inverse.

ä Arises in cross validation methods [Stats]

ä Motivation for the work [Golub & Meurant, “Matrices, Moments, and
Quadrature”, 1993, Book with same title in 2009]
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Problem 3: Compute diag[inv(A)] the diagonal of the inverse

ä Dynamic Mean Field Theory [DMFT]. Related approach: Non Equilibrium
Green’s Function (NEGF) approach used to model nanoscale transistors.

ä Uncertainty quantification: diagonal of the inverse of a covariance matrix
needed [Bekas, Curioni, Fedulova ’09]

Problem 4: Compute diag[ f (A)] ; f = a certain function.

ä Arises in density matrix approaches in quantum modeling

f(ε) =
1

1 + exp(ε−µ
kBT

)

Here, f = Fermi-Dirac operator
Note: when T → 0 then f → a step
function.

ä Linear-Scaling methods
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Problem 5: Estimate the numerical rank.

ä Amounts to counting the number of singular values above a certain thresh-
old τ == Trace (φτ(ATA))..

φτ(t) is a certain step function.

Problem 6: Estimate the log-determinant (common in statistics)

log det(A) = Trace(log(A)) =
∑n

i=1 log(λi).

.... many others
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Important tool: Stochastic Trace Estimator

ä To estimate diagonal of B = f(A) (e.g., B = A−1), let:

Notation:

• d(B) = diag(B) [matlab notation]

•� and �: Elementwise multiplication and division of vec-
tors

• {vj}: Sequence of s random vectors

Result: d(B) ≈

 s∑
j=1

vj �Bvj

�
 s∑
j=1

vj � vj


C. Bekas , E. Kokiopoulou & YS (’05); C. Bekas, A. Curioni, I. Fedulova ’09;
...
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Trace of a matrix

ä For the trace - take vectors of unit norm and

Trace(B) ≈
1

s

s∑
j=1

vTj Bvj

ä Hutchinson’s estimator : take random vectors with components of the
form ±1/

√
n [Rademacher vectors]

ä Extensively studied in literature. See e.g.: Hutchinson ’89; H. Avron and
S. Toledo ’11; G.H. Golub & U. Von Matt ’97; Roosta-Khorasani & U. Ascher
’15; ...
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Typical convergence curve for stochastic estimator

ä Estimating the diagonal of inverse of two sample matrices
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Alternative: standard probing

ä ’Probing’ also called “CPR”, “Sparse Jacobian estimators”,..

Idea: Color columns so that no two columns of the same color overlap.

Entries of same color can be
computed with 1 matvec

ä Corresponds to coloring
graph of ATA.

ä For problem of diag(A) need
only color graph of A
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In summary:

ä Probing much more powerful when f(A) is known to be nearly sparse
(e.g. banded)..

ä Approximate pattern (graph) can be obtained inexpensively

ä Generally just a handful of probing vectors needed – Can be obtained by
coloring graph

ä However:

ä Not as general: need f(A) to be ‘ ε – sparse ’
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References:

• J. M. Tang and YS, A probing method for computing the diagonal of a matrix
inverse, Numer. Lin. Alg. Appl., 19 (2012), pp. 485–501.

See also (improvements)

• Andreas Stathopoulos, Jesse Laeuchli, and Kostas Orginos Hierarchical
Probing for Estimating the Trace of the Matrix Inverse on Toroidal Lattices
SISC, 2012. [somewhat specific to Lattice QCD ]

• E. Aune, D. P. Simpson, J. Eidsvik [Statistics and Computing 2012] combine
probing with stochastic estimation. Good improvements reported.
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SPECTRAL DENSITIES & APPLICATIONS



Spectral Density, a.k.a, Density of States

ä Formally, the spectral density of a matrix A is

φ(t) =
1

n

n∑
j=1

δ(t− λj),

where: • δ is the Dirac δ-function or Dirac distribution
• λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of A

ä Known as the Density Of States (DOS) in quantum physics

ä Note: number of eigenvalues in an interval [a, b] is

µ[a,b] =

∫ b

a

∑
j

δ(t− λj) dt ≡
∫ b

a

nφ(t)dt .
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Issue: How to deal with distributions?

ä Highly ‘discontinuous’, not easy to handle numerically

ä Solution: replace φ by a regular-
ized (‘blurred’) version φσ:

φσ(t) =
1

n

n∑
j=1

hσ(t− λj),

Where, for example: hσ(t) =
1

(2πσ2)1/2
e−

t2

2σ2

ä Smoothed φ(t) == distribution function
ä Probability of finding eigenvalues of A in
infinitesimal [t− δ, t+ δ]

ä Useful for theory and in practice.
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ä How to select smoothing parameter σ? Example for Si2
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ä But loss of detail ..
ä Compromise: σ = h

2
√

2 log(κ)
,

ä h = resolution, κ = parameter > 1
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Computing the DOS: The Kernel Polynomial Method

ä Used by Chemists to calculate the DOS – see Silver and Röder’94 ,
Wang ’94, Drabold-Sankey’93, + others

ä Basic idea: expand DOS into Chebyshev polynomials

ä Use trace estimator [discovered independently] to get traces needed in
calculations

ä Assume change of variable done so eigenvalues lie in [−1, 1].

ä Include the weight function in the expansion so expand:

φ̂(t) =
√

1− t2φ(t) =
√

1− t2 ×
1

n

n∑
j=1

δ(t− λj).

Then, (full) expansion is: φ̂(t) =
∑∞

k=0 µkTk(t).
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ä Expansion coefficients µk are formally defined by:

µk =
2− δk0
π

∫ 1

−1

1
√
1− t2

Tk(t)φ̂(t)dt

=
2− δk0
π

∫ 1

−1

1
√
1− t2

Tk(t)
√

1− t2φ(t)dt

=
2− δk0
nπ

n∑
j=1

Tk(λj).

ä Here 2− δk0 == 1 when k = 0 and == 2 otherwise.

ä Note:
∑
Tk(λi) = Trace[Tk(A)]

ä Estimate this, e.g., via stochastic estimator

ä Generate random vectors v(1), v(2), · · · , v(nvec)

ä Assume normal distribution with zero mean
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ä Each vector is normalized so that ‖v(l)‖ = 1, l = 1, . . . , nvec.

ä Estimate the trace of Tk(A) with stochastisc estimator:

Trace(Tk(A)) ≈
1

nvec

nvec∑
l=1

(
v(l)
)T
Tk(A)v(l).

ä Will lead to the desired
estimate:

µk ≈
2− δk0
nπnvec

nvec∑
l=1

(
v(l)
)T
Tk(A)v(l).

ä To compute vTTk(A)v, exploit 3-term recurrence of Cheb. polynomials:

Tk+1(t) = 2tTk(t)t− Tk−1(t)→ vk+1 = 2Avk − vk−1
with
vk ≡ Tk(A)v,
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ä Jackson smoothing can be used –
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An example: The Benzene matrix

>> TestKpmDos
Matrix Benzene n =8219 nnz = 242669

Degree = 40 # sample vectors = 10
Elapsed time is 0.235189 seconds.
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Use of the Lanczos Algorithm

ä Background: The Lanczos algorithm generates an orthonormal basis
Vm = [v1, v2, · · · , vm] for the Krylov subspace:

span{v1, Av1, · · · , Am−1v1}

ä ... such that:
V H
m AVm = Tm - with Tm =



α1 β2

β2 α2 β3

β3 α3 β4

. . .

. . .

βm αm
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ä Lanczos process builds orthogonal polynomials wrt to dot product:∫
p(t)q(t)dt ≡ (p(A)v1, q(A)v1)

ä Let θi, i = 1 · · · ,m be the eigenvalues of Tm [Ritz values]

ä yi’s associated eigenvectors; Ritz vectors: {Vmyi}i=1:m

ä Ritz values approximate eigenvalues

ä Could compute θi’s then get approximate DOS from these

ä Problem: θi not good enough approximations – especially inside the
spectrum.
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Better idea: exploit relation of Lanczos with (discrete) orthogonal polyno-
mials and related Gaussian quadrature:∫

p(t)dt ≈
m∑
i=1

aip(θi) ai =
[
eT1 yi

]2
ä See, e.g., Golub & Meurant ’93, and also Gautschi’81, Golub and Welsch
’69.

ä Formula exact when p is a polynomial of degree ≤ 2m+ 1
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ä Consider now
∫
p(t)dt =< p, 1 >= (Stieljes) integral ≡

(p(A)v, v) =
∑
β2
ip(λi) ≡< φv, p >

ä Then 〈φv, p〉 ≈
∑
aip(θi) =

∑
ai 〈δθi, p〉 →

φv ≈
∑

aiδθi

ä To mimick the effect of βi = 1, ∀i, use several vectors v and average the
result of the above formula over them..
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Other methods

ä The Lanczos spectroscopic approach : A sort of signal processing ap-
proach to detect peaks using Fourier analysis

ä The Delta-Chebyshev approach: Smooth φ with Gaussians, then expand
Gaussians using Legendre polynomials

ä Haydock’s method: interesting ’classic’ approach in physics - uses Lanc-
zos to unravel ‘near-poles’ of (A− εiI)−1

For details see:

• Approximating spectral densities of large matrices, Lin Lin, YS, and Chao
Yang - SIAM Review ’16. Also in:
[arXiv: http://arxiv.org/abs/1308.5467]
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APPLICATIONS



Application 1: Eigenvalue counts

Problem: Estimate µ[a,b] ≡ number of eigenvalues of A in [a, b].

Standard method: Sylvester inertia theorem→ expensive!

First alternative: integrate the Spectral Density in [a, b].

µ[a,b] ≈ n
(∫ b

a

φ̃(t)dt

)
= n

m∑
k=0

µk

(∫ b

a

Tk(t)√
1− t2

dt

)
= ...

Second method: Estimate trace of the
related spectral projector P
(→ ui’s = eigenvectors↔ λi’s)

P =
∑

λi ∈ [a b]

uiu
T
i .

ä It turns out that the 2 methods are identical.
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Application 2: “Spectrum Slicing”

ä Situation: very large number of eigenvalues to be computed

ä Goal: compute spectrum by slices by applying filtering

ä Apply Lanczos or Subspace iteration to
problem:

φ(A)u = µu

φ(t) ≡ polynomial or rational filter
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How do I slice my spectrum?

Answer: Use the DOS.
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Application 3: Estimating the rank

ä Very important problem in signal processing applications, machine learn-
ing, etc.

ä Often: a certain rank is selected ad-hoc. Dimension reduction is applica-
tion with this “guessed” rank.

ä Can be viewed as a particular case of the eigenvalue count problem - but
need a cutoff value..
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Approximate rank, Numerical rank

ä Notion defined in various ways. A common one:

rε = min{rank(B) : B ∈ Rm×n, ‖A−B‖2 ≤ ε},

rε = Number of sing. values ≥ ε

ä Two distinct problems:

1. Get a good ε 2. Estimate number of sing. values ≥ ε

ä We will need a cut-off value (’threshold’) ε.

ä Could use ‘noise level’ for ε, but not always available
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Threshold selection

ä How to select a good threshold?

ä Answer: Obtain it from the DOS function
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ä To find: point immediatly following the initial sharp drop observed.

ä Simple idea: use derivative of DOS function φ

ä For an n× n matrix with eigenvalues λn ≤ λn−1 ≤ · · · ≤ λ1:

ε = min{t : λn ≤ t ≤ λ1, φ
′(t) = 0}.

ä In practice replace by

ε = min{t : λn ≤ t ≤ λ1, |φ′(t)| ≥ tol}

33 ILAS’23, Madrid, 06-16-23



Experiments
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Tests with Matérn covariance matrices for grids

ä Important in statistical applications

Approximate Rank Estimation of Matérn covariance matrices

Type of Grid (dimension) Matrix # λi’s rε

Size ≥ ε KPM Lanczos
1D regular Grid (2048× 1) 2048 16 16.75 15.80

1D no structure Grid (2048× 1) 2048 20 20.10 20.46

2D regular Grid (64× 64) 4096 72 72.71 72.90

2D no structure Grid (64× 64) 4096 70 69.20 71.23

2D deformed Grid (64× 64) 4096 69 68.11 69.45

ä For all test M(deg) = 50, nv=30
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A few other applications

4. Evaluate the Log-determinant of A: ( A is SPD)

log det(A) = Trace(log(A)) =
∑n

i=1 log(λi).

ä Equivalent to estimating the trace of f(A) = log(A)

5: Log-likelihood. Used to optimize Gaussian processes

ä Objective: maximize the log-likelihood w.r.t. parameter ξ

log p(z | ξ) = −1
2

[
z>S(ξ)−1z + log detS(ξ) + cst

]
where z = data vector and S(ξ) == covariance matrix
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6: Calculating nuclear norm

ä ‖X‖∗ =
∑
σi(X) =

∑√
λi(XTX)

ä Generalization: Schatten p-norms

‖X‖∗,p = [
∑
σi(X)p]

1/p

ä For details on these last 3 applications, see:

S. Ubaru, J. Chen, YS, “Fast estimation of tr(f(A)) via stochastic Lanczos
quadrature”, SIMAX (2017).
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Conclusion

ä Estimating traces & Spectral densities are key ingredients in many algo-
rithms

ä Physics, machine learning, matrix algorithms, ..

ä .. many new problems related to ‘data analysis’ and ’statistics’, and in
signal processing,

ä A good instance of a method from physics finding its way in numerical
linear algebra

Q: Can we do better than standard random sampling?
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