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Introduction, background, and motivation

Common goal of data mining methods: to extract meaningful
iInformation or patterns from data. Very broad area — includes:

data analysis, machine learning, pattern recognition, information
retrieval, ...

» Main tools used: linear algebra; graph theory; approximation
theory; optimization; ...

» In this talk: emphasis on dimension reduction techniques and the
interrelations between technigques
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» Focus on two main problems
— Information retrieval
— Face recognition

» and 3 types of dimension reduction methods
— Standard subspace methods [SVD, Lanczos]
— Graph-based methods

— multilevel methods
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The problem

» Given d < m find a mapping
P:x2 €cR™ — y € RY ,L
»  Mapping may be explicit (e.g.,
y =V'iz)

» Or implicit (nonlinear)

A

-
—

: Given X € R™*" we want to find a low-dim-
Practically: \ _ _
ensional representation Y € R*" of X

» Two classes of methods: (1) projection techniques and (2) non-

linear implicit methods.
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Example 1

Original Data in 3-D
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2-D ‘reductions’: |
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oit images (a sample of 30)
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2-D ’reductions’:

PCA - digits: 0 — 4

LLE - digits: 0 — 4
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Projection-based Dimensionality Reduction

Given: adataset X = [z, xs,...,x,], and d the dimension of the
desired reduced space Y.
Want: a linear transformation from X to Y

X X E Ran

. V c Rde

dI v?T Y Id Y:VTX
n N Y = Ran

» m-dimens. objects (x;) ‘flattened’ to d-dimens. space (y;)
Constraint: The y;'s must satisfy certain properties
»  QOptimization problem
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Linear Dimensionality Reduction: PCA

» |n PCA projected data must have maximum variance, i.e., we
need to maximize over all orthogonal m x d matrices V':

> i llyi — %Zg ?JJHS = =1r [VTXXTV]

Where: X = X (I — %11T) == origin-recentered version of X

» Solution V. = { dominant eigenvectors } of the covariance matrix
== Set of left singular vectors of X

» Solution V' also minimizes ‘reconstruction error’ ..

D Mz = Vviaz|? =3 |lei — Vil

> .. and it also maximizes [Korel and Carmel 04] ", . |ly; — y;l|?
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Information Retrieval: Vector Space Model

Given: 1) set of docu-

Documents

ments (columns of a ma- oo, ,o0°° . . ollo
trix A); 2) a query vector 2 e o o ® °, o |®
— @ ® ® o @O

q. Entry a;; of A = fre- ke o o o o
quency of term 4 in doc- e o *° % % e cp

@ @
ument j + weighting. ° * e ° °

» Queries (‘pseudo-documents’) q represented similarly to columns
Problem: find columns of A that best match ¢q
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Vector Space Model and the Truncated SVD

» Similarity metric: angle between column A;. and query q

TA. .
Use Cosines: I Iq" A. ;|
| A.;ll2]lqll2

» To rank all documents compute the similarity vector:
s = Alqg
» Not very effective. Problems : polysemy, synonymy, ...
» LSI: replace matrix A by low rank approximation
A=UxV!T — A, =UXV! — sp=Alq
» U, : term space, V;: document space.

» (Called TSVD — Expensive, hard to update, ..
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New similarity vector: |

S = qu = ‘/kku;f

» How to select k£?

Issues: | » Computational cost (memory + computation)
» Problem with updates
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» Alternative: SDD; Less memory but cost still an issue.

» Alternative: polynomial approximation. s, ~ ¢i(AT A)ATqwhere
¢ = deg. k polynom.

» Yet another alternative: use Lanczos vectors instead of singular
vectors [Ruhe and Blom, 2005]
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IR: Use of the Lanczos algorithm

* Joint work with Jie Chen

» Lanczos is good at catching large (and small) eigenvalues: can
compute singular vectors with Lanczos, & use them in LS|

» (Can do better: Use the Lanczos vectors directly for the projec-
tion..

» First advocated by: K. Blom and A. Ruhe [SIMAX, vol. 26, 2005].
Use Lanczos bidiagonalization.

» Use a similar approach — But directly with AAT or AT A.
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IR: Use of the Lanczos algorithm (1)

» Let A € R™*". Apply the Lanczos procedure to M = AAT.
Result:

QLAATQ, =T,
with Q,, orthogonal, T}, tridiagonal.

» Define s; = orth. projection of Ab on subspace span{Q;}

» s, can be easily updated from s;_1:

si = 8i—1 + qiq] Ab.
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IR: Use of the Lanczos algorithm (2)

» |f n < m it may be more economial to apply Lanczos to M =
AT A which is n x n. Result:

QT ATAQy = Ty
» Define:

t; = AQfoba

» Project b first before applying A to result.
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Why does this work? |

» First, recall a result on Lanczos algorithm [YS 83]
Let {\;, u;} = j-th eigen-pair of M (label |)
(I — Q@ )u;ll < K - Q1Q7)u;l|

—_ 9
| QrQiu;l| Ti—ji(v)  ||Q1Q7 u;]
where
)
N 1 j=1
7‘7‘:1—'—2)\3- —J)\’ B = T 5 VR ’
J+1 n \ngl ﬁ 7 75 1

and T;(x) = Chebyshev polynomial of 1st kind of degree I.
This has the form

(I — QrQy)usll < ¢/Th—j(7;),

where ¢; = constant independent of k
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» Result: Distance between unit eigenvector »; and Krylov sub-
space span(Q;) decays fast (for small 3)

» (Consider component of difference between Ab — s, along left
singular directions of A. If A = UX VT, then wu,’s (columns of U) are
eigenvectors of M = AAT. So:

[(Ab — s, uj)] ((I — QrQy,)Ab, uj)
(I — QwQy)uj, Ab)
(I — QrQy,)u;|||Ab

c; [l Ab|| T, (v;)

IA

IA

» {s;} converges rapidly to Ab in directions of the major left singu-
lar vectors of A.

Kalamata, 09-05-2008



» Similar result for left projection sequence t;

» Here is a typical distribution of eigenvalues of M: [Matrix of size
1398 x 1398]

A5 A3

T L
1 .

)\4 )\2 )\1

» (Convergence toward first few singular vectors very fast —
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Advantages of Lanczos over polynomial filters:
(1) No need for eigenvalue estimates
(2) Mat-vecs performed only in preprocessing

Disadvantages:

(1) Need to store Lanczos vectors;

(2) Preprocessing must be redone when A changes.

(3) Need for reorthogonalization — expensive for large k.
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Information # Terms # Docs # queries sparsity
retrieval MED 7,014 1,033 30 0.735
datasets CRAN 3,763 1,398 225 1.412
Med dataset. Cran dataset.
Med Cran
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Average query times

Med dataset Cran dataset.
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Average retrieval precision

Med dataset Cran dataset
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In summary:
» Results comparable to those of SVD ...
» .. at a much lower cost. [However not for the same dimension k]
Thanks:
» Helpful tools and datasets widely available. We used TMG [de-
veloped at the U. of Patras (D. Zeimpekis, E. Gallopoulos)]
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Problem 2: Face Recognition — background

Problem: We are given a database of images: [arrays of pixel
values]. And a test (new) image.

(.2 (.. (.. (.. (.. (..
§ & § & 4§ d
~N T/

Question: Does this new image correspond to one of those in the
database?
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Difficulty |

» Different positions, expressions, lighting, ..., situations :

Common approach: eigenfaces — Principal Component Analysis
technique
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Example: Occlusion. See recent paper by John Wright et al.

Right: 50% pixels randomly changed

) fit _I_ i i
» See also: Recent real-life example — international man-hunt
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— Consider each picture as a one-dimensional colum of all pixels
— Put together into an array A of size # pixzels X #_images.

HEEEE B -

W—/
A

— Do an SVD of A and perform comparison with any in
low-dim. space
— Similar to LSI in spirit — but data is not sparse.

Idea: replace SVD by Lanczos vectors (same as for IR)
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Tests: Face Recognition

Tests with 2 well-known data sets:
ORL 40 subjects, 10 sample images each — example:

REE

# of pixels : 112 x 92 TOT. # images : 400

AR set 126 subjects — 4 facial expressions selected for each [nat-
ural, smiling, angry, screaming] — example:

AL

# of pixels : 112 x 92 # TOT. # images : 504
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Tests: Face Recognition

Recognition accuracy of Lanczos approximation vs SVD

average error rate

Vertical axis shows average error rate.
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Laplacean Eigenmaps (Belkin-Niyogi-02)

» Not a linear (projection) method but a Nonlinear method

» Starts with k-nearest-neighors graph

» Defines the graph Laplacean L = D —
W. Simplest:

1if j € N;

D = diag(deg(i)); wi; =
0 else

with IV; = neighborhood of i (excl. i); deg (i) = |IN]
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A few properties of graph Laplacean matrices

» Let L = any matrix s.t. L = D — W, with D = diag(d;) and
w;; > 0, d; = Zwij
j#i
Property 1: forany € R"™ :
1
' Lx = 5 Zwiﬂa)i — x;|?
irj
Property 2: (generalization) for any Y € R4x" :

1
Tr[YLY '] = Ezwij”yi — ylI*

2,J
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Property 3: For the particular L =1 — 111"

n

XLX'" = XX'" == n x Covariance matrix
[Proof: 1) L is a projector: L'L = L? = L,and 2) XL = X]
» Consequence-1: PCA equivalent to maximizing >, [ly: — y;lI?

» (Consequence-2: what about replacing trivial L with something
else? [viewpoint in Koren-Carmel’04]
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Property 4: (Graph partitioning) If « is a vector of signs (£1) then
x' Lx = 4 x (‘number of edge cuts’)

edge-cut = pair (¢, 5) with x; # «;
» (Consequence: Can be used for partitioning graphs, or ‘clustering’
[take p = sign(uz), where u, = 2nd smallest eigenvecior..]
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Return to Laplacean eigenmaps approach

Laplacean Eigenmaps "minimizes*
n

Fem(Y) = Z wij||ly: — yj||2 subjectto YDY' =1.

i,j=1
Notes: I

1. Motivation: if ||x; — ;|| is small (orig. data), we want ||y; — y,|| tO

be also small (low-D data)
2. Note Min instead of Max as in PCA [counter-intuitive]
3. Above problem uses original data indirectly through its graph
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» Problem translates to:

min Tr [Y(D-W)Y'] .
Y ¢ Ran
YDYT =1

» Solution (sort eigenvalues increasingly):
(D — W)u; = X\jDu; ; yz:u;ra 1=1,---,d
» Note: an n x n sparse eigenvalue problem [In ‘sample’ space]

» Note: can assume D = I. Amounts to rescaling data. Problem
becomes

(I — W)u; = A, ; yz:u;ra 1=1,---,d
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Why smallest eigenvalues vs largest for PCA?

Intuition:
Graph Laplacean and ‘unit’ Laplacean are very different: one in-

volves a sparse graph (More like a discr. differential operator). The
other involves a dense graph. (More like a discr. integral operator).
They should be treated as the inverses of each other.

» Viewpoint confirmed by what we learn from Kernel approach
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Locally Linear Embedding (Roweis-Saul-00)

» LLE is very similar to Eigenmaps. Main differences:
1) Graph Laplacean matrix is replaced by an ‘affinity’ graph
2) Objective function is changed: want to preserve graph

1. Graph: Each x; is written as a convex
combination of its k nearest neighbors:
T & Xw;;T;, ZjeNi w;; =1
»  Optimal weights computed ('local cal-
culation’) by minimizing

||33z — Ewmw]H for 1=1,.--,n
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2. Mapping:
The y;’s should obey the same "affinity’ as x;'s ~~

Minimize:

S llyi = wijy;|  subjectto: Y1=0, YYT =1I
j

)

Solution:

(I — WT)(I — VV)’UJz = )\zuz, Y; — u,LT .

» (I — WT)(I — W) replaces the graph Laplacean of eigenmaps

Kalamata, 09-05-2008



Locally Preserving Projections (He-Niyogi-03)

» LPP is a linear dimensionality reduction technique

» Recall the setting: M X

WantV e R™*x4: Yy =V 'IX m
al| vT Y d

» Starts with the same neighborhood graph as Eignenmaps: L =
D — W = graph ‘Laplacean’; with D = diag({Z;w;;}).

Kalamata, 09-05-2008



»  Optimization problem is to solve

i anss s — 2112 T
L emin o Sw v -l Y = VX

» Difference with eigenmaps: Y is a projection of X data
» Solution (sort eigenvalues increasingly)

XLXT’UZ' = )\ZXDXT’UZ Yi,: = ’U;FX

» Note: essentially same method in [Koren-Carmel’04] called ‘weighted
PCA'’ [viewed from the angle of improving PCA]
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ONPP (Kokiopoulou and YS ’05)

» Orthogonal Neighborhood Preserving Projections
» (Can be viewed as a linear version of LLE
» Uses the same graph as LLE. Objective: preserve the affinity

graph (as in LEE) *but* by means of an orthogonal projection
» Objective function

B(Y) =3, |lys — S;wizy;)|?> Constraint: Y = VIX, VTV = I
» Notice that

V) =Y - YW |Z=--.=TT [V XT-WHIT -W)X'V]
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Resulting problem:

min  Tr [ VI XT-WHIT-W)X'V

V € Rmxd;

viv=r M

Solution: Columns of V' = eigenvectors of M associated with small-
est d eigenvalues
» (Can be computed as d lowest left singular vectors of

X(I—-wT)
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Method Object. (min) Constraint
PCA/MDS Tr[V'X(—I+ee")X V] VvV =1
LLE TrY(I —-W")(I—-W)Y'] YY' =1
Eigenmaps Tr[Y(I —W)YT] YY' =1
LPP Tr[VI'X(I —-—W)X'V] VIXX'V=1I
ONPP TTV'XIT-WHI-W)X'V]| VVv=I
LDA TTV'X(I—-H)X"TV] VIXXTV =1
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» Let M =T — W =a Laplacean matrix (—I +ee' for PCA/MDS);

or the LLE matrix (I — W)(I — W), or geodesic distance matrix
(ISOMAP).
» All techniques lead to one of two types of problems

min  Tr [YMY']
» First type is: Y € Réxn

YY' =1

» Y obtained from solving an eigenvalue problem
» LLE, Eigenmaps (normalized), ..
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» And the second min Tr [V XMX'V]
t . V E Rde

eis:
yP VIGV =1

» G is either the identity matrixor XDX " or XX .
» Low-Dim.data: Y =V'X

Important observation: 2nd is just a projected version of the 1st,
l.e., approximate eigenvectors are sought in Span {X} [Rayleigh-
Ritz procedure]
» Problem is of dim. m (dim. of data) not n (# of samples).
» This difference can be mitigated by resorting to Kernels..
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Graph-based methods in a supervised setting

» Subjects of training set are known (labeled). Q: given a test
image (say) find its label.

Question: Find label (best match) for test image.
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Methods can be adapted to supervised mode by building the graph
to take into account class labels. Idea is simple: Build G so that
nodes in the same class are neighbors. If ¢ = # classes, G will

consist of ¢ cliques.
» Matrix W will be block-diagonal

W = dia’g(Wla Wayeer Wc)

» Easy to see that rank(W) = n — c.
» (Can be used for LPP, ONPP, etc..

Kalamata, 09-05-2008






Supervised learning experiments: digit recognition

» Set of 390 images of digits (39 F’ E l; q 'i
of each digit) e R B
» Each picture has 20x16 = 320 E 0 3 2
pixels.
» Select any one of the digits = E E 3 j
and try to recognize it among the - m g : ﬂ E

389 remaining images e . et T
» Methods: KNN, PCA, LPP, ONPP
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One word about KNN-classifiers

» Simple idea of 'vote’ — get k nearest neighbors.
» Assigned label = ‘most common label among these neibhbors’
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Multilevel techniques

» Divide and conquer paradigms as well as multilevel methods in
the sense of ‘domain decomposition’

» Main principle: very costly to do an SVD [or Lanczos] on the
whole set. Why not find a smaller set on which to do the analysis —
without too much loss?

» Tools used: graph coarsening, divide and conquer —

Kalamata, 09-05-2008



Multilevel techniques: Hypergraphs to the rescue

General idea: Given X = [xy,--- ,x,] € R™ " find another set
(‘coarsened set’) X = [&1,:+ , &, € R™*k

» X should be a good representative of X —

» then find projector from R™ to R4 based on this subset

» Main tool used: graph coarsening.

»  We will describe hypergraph-based techniques

Kalamata, 09-05-2008



Hypergraphs

A hypergraph H = (V, E) is a generalizaition of a graph

» V =setof vertices V

» FE = set of hyperedges. Each e € FE is a nonempty subset of V
» Standard undirected graphs: each e consists of two vertices.

» degree of e = |e|

» degree of a vertex v = number of hyperedges e s.t. = € e.

» Two vertices are neighbors if there is a hyperedge connecting
them
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Example of a hypergraph Boolean matrix representation

. 123456789
>/D\)/D 111 1
2

7\6 1 111
Zj A= 1 111
\/\[/ net d 111

net e 1 1

® QO o T 9

» (Canonical hypergraph representation for sparse data (e.g. text)
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Hypergraph Coarsening

» (Coarsening a hypergraph H = (V, E) means finding a ‘coarse’
approximation H = (V, E) to H with |V'| < |V, which tries to retain
as much as possible of the structure of the original hypergraph

» |dea: repeat coarsening recursively.

» Result: succession of smaller hypergraphs which approximate
the original graph.

» Several methods exist. We use ‘matching’, which successively
merges pairs of vertices

» Used in most graph partitioning methods: hMETIS, Patoh, zoltan,

» Algorithm successively selects pairs of vertices to merge — based
on measure of similarity of the vertices.
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Application: Multilevel Dimension Reduction

Main ldea: | coarsen

to a certain level. Then

use the resulting data
set X to find projector
from R™ to R<. This pro-
jector can be used to

project the original data

Project
lq Yr ¢ d

or any new data.

» Main gain: Dimension reduction is done with a much smaller set.
Hope: not much loss compared to using whole data
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Application to text mining

» Recall common approach:

1. Scale data [e.g. TF-IDF scaling: ]

2. Perform a (partial) SVD on resulting matrix X =~ UgX,V}

3. Process query by same scaling (e.g. TF-IDF)

4. Compute similarities in d-dimensional space: s; = (g, ;) /||q||||&:]|
where [#1, £2,..., %8, = VI € R¥>*";  §=37'UTq € R?

» Multilevel approach: replace SVD (or any other dim. reduction)
by dimension reduction on coarse set. Only difference: TF-IDF done
on the coarse set not original set.
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Three public data sets used for experiments: Medline, Cran and
NPL (cs.cornell.edu)
» (Coarsening to a max. of 4 levels.

Data set Medline Cran NPL
# documents 1033 1398 11429
# terms /014 3763 7491
sparsity (%) 0.74% 1.41% 0.27%
# queries 30 225 93
avg. # rel./query 23.2 8.2 224
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Results with NPL
Statistics I
coarsen. #  optimal optimal avg.

Level

time doc. #dim. precision
#1 N/A 11429 736 23.5%
#2 3.68 5717 592 23.8%
#3 219 2861 516 23.9%
HL 1.50 1434 538 23.3%
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CPU times I for preprocessing (Dim.
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Conclusion

» So how is this related to intitial title of “efficient algorithms in data
mining”?
» Answer: All these eigenvalue problems are not cheap to solve..

» .. and cost issue does not seem to bother practitioners too much
for now..

» Ingredients that will become mandatory:

1 Avoid the SVD

2 Fast algorithms that do not sacrifice quality.
3 In particullar: Multilevel approaches

4 Muliilinear algebra [tensors]
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