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Introduction, background, and motivation

Common goal of data mining methods: to extract meaningful

information or patterns from data. Very broad area – includes:

data analysis, machine learning, pattern recognition, information

retrieval, ...

ä Main tools used: linear algebra; graph theory; approximation

theory; optimization; ...

ä In this talk: emphasis on dimension reduction techniques and the

interrelations between techniques
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ä Focus on two main problems

– Information retrieval

– Face recognition

ä and 3 types of dimension reduction methods

– Standard subspace methods [SVD, Lanczos]

– Graph-based methods

– multilevel methods
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The problem

ä Given d � m find a mapping

Φ : x ∈ Rm −→ y ∈ Rd

ä Mapping may be explicit (e.g.,

y = V Tx)

ä Or implicit (nonlinear)

Practically:
Given X ∈ Rm×n, we want to find a low-dim-

ensional representation Y ∈ Rd×n of X

ä Two classes of methods: (1) projection techniques and (2) non-

linear implicit methods.
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Example 1: The ‘Swill-Roll’ (2000 points in 3-D)
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2-D ‘reductions’:
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Example 2: Digit images (a sample of 30)
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2-D ’reductions’:
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Projection-based Dimensionality Reduction

Given: a data set X = [x1, x2, . . . , xn], and d the dimension of the

desired reduced space Y .

Want: a linear transformation from X to Y

v T
d

m

m

d

n

X

Y

n

X ∈ Rm×n

V ∈ Rm×d

Y = V >X

→ Y ∈ Rd×n

ä m-dimens. objects (xi) ‘flattened’ to d-dimens. space (yi)

Constraint: The yi’s must satisfy certain properties

ä Optimization problem
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Linear Dimensionality Reduction: PCA

ä In PCA projected data must have maximum variance, i.e., we

need to maximize over all orthogonal m × d matrices V :∑
i ‖yi − 1

n

∑
j yj‖2

2 = · · · = Tr
[
V >X̄X̄>V

]
Where: X̄ = X(I − 1

n
11T ) == origin-recentered version of X

ä Solution V = { dominant eigenvectors } of the covariance matrix

== Set of left singular vectors of X̄

ä Solution V also minimizes ‘reconstruction error’ ..

∑
i

‖xi − V V Txi‖2 =
∑

i

‖xi − V yi‖2

ä .. and it also maximizes [Korel and Carmel 04]
∑

i,j ‖yi − yj‖2
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Information Retrieval: Vector Space Model

Given: 1) set of docu-

ments (columns of a ma-

trix A); 2) a query vector

q. Entry aij of A = fre-

quency of term i in doc-

ument j + weighting.
Te

rm
s

Documents

ä Queries (‘pseudo-documents’) q represented similarly to columns

Problem: find columns of A that best match q
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Vector Space Model and the Truncated SVD

ä Similarity metric: angle between column Aj,: and query q

Use Cosines:
|qTA:,j|

‖A:,j‖2‖q‖2

ä To rank all documents compute the similarity vector:

s = ATq

ä Not very effective. Problems : polysemy, synonymy, ...

ä LSI: replace matrix A by low rank approximation

A = UΣV T → Ak = UkΣkV
T

k → sk = AT
k q

ä Uk : term space, Vk: document space.

ä Called TSVD – Expensive, hard to update, ..
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New similarity vector:

sk = AT
k q = VkΣkU

T
k

Issues:

ä How to select k?

ä Computational cost (memory + computation)

ä Problem with updates
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ä Alternative: SDD; Less memory but cost still an issue.

ä Alternative: polynomial approximation. sk ≈ φk(A
TA)ATq where

φk = deg. k polynom.

ä Yet another alternative: use Lanczos vectors instead of singular

vectors [Ruhe and Blom, 2005]
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IR: Use of the Lanczos algorithm

* Joint work with Jie Chen

ä Lanczos is good at catching large (and small) eigenvalues: can

compute singular vectors with Lanczos, & use them in LSI

ä Can do better: Use the Lanczos vectors directly for the projec-

tion..

ä First advocated by: K. Blom and A. Ruhe [SIMAX, vol. 26, 2005].

Use Lanczos bidiagonalization.

ä Use a similar approach – But directly with AAT or ATA.
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IR: Use of the Lanczos algorithm (1)

ä Let A ∈ Rm×n. Apply the Lanczos procedure to M = AAT .

Result:

QT
k AATQk = Tk

with Qk orthogonal, Tk tridiagonal.

ä Define si ≡ orth. projection of Ab on subspace span{Qi}

si := QiQ
T
i Ab.

ä si can be easily updated from si−1:

si = si−1 + qiq
T
i Ab.
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IR: Use of the Lanczos algorithm (2)

ä If n < m it may be more economial to apply Lanczos to M =

ATA which is n × n. Result:

Q̄T
k ATAQ̄k = T̄k

ä Define:

ti := AQ̄iQ̄
T
i b,

ä Project b first before applying A to result.
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Why does this work?

ä First, recall a result on Lanczos algorithm [YS 83]

Let {λj, uj} = j-th eigen-pair of M (label ↓)

‖(I − QkQ
T
k )uj‖

‖QkQ
T
k uj‖

≤
Kj

Tk−j(γj)

‖(I − Q1Q
T
1 )uj‖

‖Q1Q
T
1 uj‖

,

where

γj = 1 + 2
λj − λj+1

λj+1 − λn

, Kj =

1 j = 1∏j−1
i=1

λi−λn

λi−λj
j 6= 1

,

and Tl(x) = Chebyshev polynomial of 1st kind of degree l.

This has the form

‖(I − QkQ
T
k )uj‖ ≤ cj/Tk−j(γj),

where cj = constant independent of k
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ä Result: Distance between unit eigenvector uj and Krylov sub-

space span(Qk) decays fast (for small j)

ä Consider component of difference between Ab − sk along left

singular directions of A. If A = UΣV T , then uj’s (columns of U ) are

eigenvectors of M = AAT . So:

|〈Ab − sk, uj〉| =
∣∣〈(I − QkQ

T
k )Ab, uj

〉∣∣
=

∣∣〈(I − QkQ
T
k )uj, Ab

〉∣∣
≤ ‖(I − QkQ

T
k )uj‖‖Ab‖

≤ cj‖Ab‖T −1
k−j(γj)

ä {si} converges rapidly to Ab in directions of the major left singu-

lar vectors of A.

Kalamata, 09-05-2008 p. 20



ä Similar result for left projection sequence tj

ä Here is a typical distribution of eigenvalues of M : [Matrix of size

1398 × 1398]

x
0

y

λ1λ2

λ3

λ4

λ5

· · ·

ä Convergence toward first few singular vectors very fast –
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Advantages of Lanczos over polynomial filters:

(1) No need for eigenvalue estimates

(2) Mat-vecs performed only in preprocessing

Disadvantages:

(1) Need to store Lanczos vectors;

(2) Preprocessing must be redone when A changes.

(3) Need for reorthogonalization – expensive for large k.

Kalamata, 09-05-2008 p. 22



Tests: IR

Information

retrieval

datasets

# Terms # Docs # queries sparsity

MED 7,014 1,033 30 0.735

CRAN 3,763 1,398 225 1.412
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Average query times

Med dataset
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Average retrieval precision

Med dataset
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In summary:

ä Results comparable to those of SVD ...

ä .. at a much lower cost. [However not for the same dimension k]

Thanks:

ä Helpful tools and datasets widely available. We used TMG [de-

veloped at the U. of Patras (D. Zeimpekis, E. Gallopoulos)]
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Problem 2: Face Recognition – background

Problem: We are given a database of images: [arrays of pixel

values]. And a test (new) image.

ÿ ÿ ÿ ÿ ÿ ÿ

↖ ↑ ↗

Question: Does this new image correspond to one of those in the

database?
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Difficulty

ä Different positions, expressions, lighting, ..., situations :

Common approach: eigenfaces – Principal Component Analysis

technique
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Example: Occlusion. See recent paper by John Wright et al.

Right: 50% pixels randomly changed

−→

ä See also: Recent real-life example – international man-hunt
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Eigenfaces

– Consider each picture as a one-dimensional colum of all pixels

– Put together into an array A of size # pixels × # images.

. . . =⇒ . . .

︸ ︷︷ ︸
A

– Do an SVD of A and perform comparison with any test image in

low-dim. space

– Similar to LSI in spirit – but data is not sparse.

Idea: replace SVD by Lanczos vectors (same as for IR)
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Tests: Face Recognition

Tests with 2 well-known data sets:

ORL 40 subjects, 10 sample images each – example:

# of pixels : 112 × 92 TOT. # images : 400

AR set 126 subjects – 4 facial expressions selected for each [nat-

ural, smiling, angry, screaming] – example:

# of pixels : 112 × 92 # TOT. # images : 504
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Tests: Face Recognition

Recognition accuracy of Lanczos approximation vs SVD

ORL dataset

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ORL

iterations

av
er

ag
e 

er
ro

r 
ra

te

 

 

lanczos
tsvd

AR dataset

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
AR

iterations

av
er

ag
e 

er
ro

r 
ra

te
 

 

lanczos
tsvd

Vertical axis shows average error rate. Horizontal = Subspace di-

mension
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GRAPH-BASED TECHNIQUES



Laplacean Eigenmaps (Belkin-Niyogi-02)

ä Not a linear (projection) method but a Nonlinear method

ä Starts with k-nearest-neighors graph

ä Defines the graph Laplacean L = D −

W . Simplest:

D = diag(deg(i)); wij =

 1 if j ∈ Ni

0 else

x

x
j

i

with Ni = neighborhood of i (excl. i); deg(i) = |Ni|

Kalamata, 09-05-2008 p. 34



A few properties of graph Laplacean matrices

ä Let L = any matrix s.t. L = D − W , with D = diag(di) and

wij ≥ 0, di =
∑
j 6=i

wij

Property 1: for any x ∈ Rn :

x>Lx =
1

2

∑
i,j

wij|xi − xj|2

Property 2: (generalization) for any Y ∈ Rd×n :

Tr [Y LY >] =
1

2

∑
i,j

wij‖yi − yj‖2
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Property 3: For the particular L = I − 1
n
11>

XLX> = X̄X̄> == n × Covariance matrix

[Proof: 1) L is a projector: L>L = L2 = L, and 2) XL = X̄]

ä Consequence-1: PCA equivalent to maximizing
∑

ij ‖yi − yj‖2

ä Consequence-2: what about replacing trivial L with something

else? [viewpoint in Koren-Carmel’04]
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Property 4: (Graph partitioning) If x is a vector of signs (±1) then

x>Lx = 4 × (’number of edge cuts’)

edge-cut = pair (i, j) with xi 6= xj

ä Consequence: Can be used for partitioning graphs, or ‘clustering’

[take p = sign(u2), where u2 = 2nd smallest eigenvector..]
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Return to Laplacean eigenmaps approach

Laplacean Eigenmaps *minimizes*

FEM(Y ) =
n∑

i,j=1

wij‖yi − yj‖2 subject to Y DY > = I .

Notes:

1. Motivation: if ‖xi − xj‖ is small (orig. data), we want ‖yi − yj‖ to

be also small (low-D data)

2. Note Min instead of Max as in PCA [counter-intuitive]

3. Above problem uses original data indirectly through its graph
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ä Problem translates to:

min
Y ∈ Rd×n

Y D Y > = I

Tr
[
Y (D − W )Y >]

.

ä Solution (sort eigenvalues increasingly):

(D − W )ui = λiDui ; yi = u>
i ; i = 1, · · · , d

ä Note: an n × n sparse eigenvalue problem [In ‘sample’ space]

ä Note: can assume D = I. Amounts to rescaling data. Problem

becomes

(I − W )ui = λiui ; yi = u>
i ; i = 1, · · · , d
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Why smallest eigenvalues vs largest for PCA?

Intuition:

Graph Laplacean and ‘unit’ Laplacean are very different: one in-

volves a sparse graph (More like a discr. differential operator). The

other involves a dense graph. (More like a discr. integral operator).

They should be treated as the inverses of each other.

ä Viewpoint confirmed by what we learn from Kernel approach
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Locally Linear Embedding (Roweis-Saul-00)

ä LLE is very similar to Eigenmaps. Main differences:

1) Graph Laplacean matrix is replaced by an ‘affinity’ graph

2) Objective function is changed: want to preserve graph

1. Graph: Each xi is written as a convex

combination of its k nearest neighbors:

xi ≈ Σwijxj,
∑

j∈Ni
wij = 1

ä Optimal weights computed (’local cal-

culation’) by minimizing

‖xi − Σwijxj‖ for i = 1, · · · , n

x

x
j

i
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2. Mapping:

The yi’s should obey the same ’affinity’ as xi’s 

Minimize:∑
i

∥∥∥∥∥∥yi −
∑

j

wijyj

∥∥∥∥∥∥
2

subject to: Y 1 = 0, Y Y > = I

Solution:

(I − W >)(I − W )ui = λiui; yi = u>
i .

ä (I − W >)(I − W ) replaces the graph Laplacean of eigenmaps
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Locally Preserving Projections (He-Niyogi-03)

ä LPP is a linear dimensionality reduction technique

ä Recall the setting:

Want V ∈ Rm×d; Y = V >X
v T

d

m

m

d

n

X

Y

n

ä Starts with the same neighborhood graph as Eigenmaps: L ≡

D − W = graph ‘Laplacean’; with D ≡ diag({Σiwij}).
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ä Optimization problem is to solve

min
Y ∈Rd×n, Y DY >=I

Σi,jwij ‖yi − yj‖2 , Y = V >X.

ä Difference with eigenmaps: Y is a projection of X data

ä Solution (sort eigenvalues increasingly)

XLX>vi = λiXDX>vi yi,: = v>
i X

ä Note: essentially same method in [Koren-Carmel’04] called ‘weighted

PCA’ [viewed from the angle of improving PCA]
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ONPP (Kokiopoulou and YS ’05)

ä Orthogonal Neighborhood Preserving Projections

ä Can be viewed as a linear version of LLE

ä Uses the same graph as LLE. Objective: preserve the affinity

graph (as in LEE) *but* by means of an orthogonal projection

ä Objective function

Φ(Y ) = Σi ‖yi − Σjwijyj‖2 Constraint: Y = V >X, V >V = I

ä Notice that

Φ(Y ) = ‖Y − Y W >‖2
F = · · · = Tr

[
V >X(I − W >)(I − W )X>V

]
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Resulting problem:

min
V ∈ Rm×d;

V >V =I

Tr

 V > X(I − W >)(I − W )X>︸ ︷︷ ︸
M

V



Solution: Columns of V = eigenvectors of M associated with small-

est d eigenvalues

ä Can be computed as d lowest left singular vectors of

X(I − W >)
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A unified view

Method Object. (min) Constraint

PCA/MDS Tr [V >X(−I + ee>)X>V ] V >V = I

LLE Tr [Y (I − W >)(I − W )Y >] Y Y > = I

Eigenmaps Tr [Y (I − W )Y >] Y Y > = I

LPP Tr [V >X(I − W )X>V ] V >XX>V = I

ONPP Tr [V >X(I − W >)(I − W )X>V ] V >V = I

LDA Tr [V >X(I − H)X>V ] V >XX>V = I
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ä Let M = I − W = a Laplacean matrix (−I + ee> for PCA/MDS);

or the LLE matrix (I − W )(I − W >), or geodesic distance matrix

(ISOMAP).

ä All techniques lead to one of two types of problems

ä First type is:
min

Y ∈ Rd×n

Y Y > = I

Tr
[
Y MY >]

ä Y obtained from solving an eigenvalue problem

ä LLE, Eigenmaps (normalized), ..
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ä And the second

type is:

min
V ∈ Rm×d

V > G V = I

Tr
[
V >XMX>V

]
.

ä G is either the identity matrix or XDX> or XX>.

ä Low-Dim. data : Y = V >X

Important observation: 2nd is just a projected version of the 1st,

i.e., approximate eigenvectors are sought in Span {X} [Rayleigh-

Ritz procedure]

ä Problem is of dim. m (dim. of data) not n (# of samples).

ä This difference can be mitigated by resorting to Kernels..
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Graph-based methods in a supervised setting

ä Subjects of training set are known (labeled). Q: given a test

image (say) find its label.
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↖ ↑ ↗

Question: Find label (best match) for test image.
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Methods can be adapted to supervised mode by building the graph

to take into account class labels. Idea is simple: Build G so that

nodes in the same class are neighbors. If c = # classes, G will

consist of c cliques.

ä Matrix W will be block-diagonal

W = diag(W1, W2, · · · , Wc)

ä Easy to see that rank(W ) = n − c.

ä Can be used for LPP, ONPP, etc..
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TIME FOR A MATLAB DEMO



Supervised learning experiments: digit recognition

ä Set of 390 images of digits (39

of each digit)

ä Each picture has 20×16 = 320

pixels.

ä Select any one of the digits

and try to recognize it among the

389 remaining images
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ä Methods: KNN, PCA, LPP, ONPP
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One word about KNN-classifiers

ä Simple idea of ’vote’ – get k nearest neighbors.

ä Assigned label = ‘most common label among these neibhbors’

?
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MULTILEVEL METHODS



Multilevel techniques

ä Divide and conquer paradigms as well as multilevel methods in

the sense of ‘domain decomposition’

ä Main principle: very costly to do an SVD [or Lanczos] on the

whole set. Why not find a smaller set on which to do the analysis –

without too much loss?

ä Tools used: graph coarsening, divide and conquer –
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Multilevel techniques: Hypergraphs to the rescue

General idea: Given X = [x1, · · · , xn] ∈ Rm×n find another set

(‘coarsened set’) X̂ = [x̂1, · · · , x̂k] ∈ Rm×k

ä X̂ should be a good representative of X –

ä then find projector from Rm to Rd based on this subset

ä Main tool used: graph coarsening.

ä We will describe hypergraph-based techniques
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Hypergraphs

A hypergraph H = (V, E) is a generalizaition of a graph

ä V = set of vertices V

ä E = set of hyperedges. Each e ∈ E is a nonempty subset of V

ä Standard undirected graphs: each e consists of two vertices.

ä degree of e = |e|

ä degree of a vertex v = number of hyperedges e s.t. x ∈ e.

ä Two vertices are neighbors if there is a hyperedge connecting

them

Kalamata, 09-05-2008 p. 58



Example of a hypergraph
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Boolean matrix representation
1 2 3 4 5 6 7 8 9

1 1 1 1 a

1 1 1 1 b

A = 1 1 1 1 c

1 1 1 d

1 1 e

ä Canonical hypergraph representation for sparse data (e.g. text)
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Hypergraph Coarsening

ä Coarsening a hypergraph H = (V, E) means finding a ‘coarse’

approximation Ĥ = (V̂ , Ê) to H with |V̂ | < |V |, which tries to retain

as much as possible of the structure of the original hypergraph

ä Idea: repeat coarsening recursively.

ä Result: succession of smaller hypergraphs which approximate

the original graph.

ä Several methods exist. We use ‘matching’, which successively

merges pairs of vertices

ä Used in most graph partitioning methods: hMETIS, Patoh, zoltan,

..

ä Algorithm successively selects pairs of vertices to merge – based

on measure of similarity of the vertices.
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Application: Multilevel Dimension Reduction

Main Idea: coarsen

to a certain level. Then

use the resulting data

set X̂ to find projector

from Rm to Rd. This pro-

jector can be used to

project the original data

or any new data.
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ä Main gain: Dimension reduction is done with a much smaller set.

Hope: not much loss compared to using whole data

Kalamata, 09-05-2008 p. 61



Application to text mining

ä Recall common approach:

1. Scale data [e.g. TF-IDF scaling: ]

2. Perform a (partial) SVD on resulting matrix X ≈ UdΣdV
T

d

3. Process query by same scaling (e.g. TF-IDF)

4. Compute similarities in d-dimensional space: si = 〈q̂, x̂i〉/‖q̂‖‖x̂i‖

where [x̂1, x̂2, . . . , x̂n] = V T
d ∈ Rd×n ; q̂ = Σ−1

d UT
d q̄ ∈ Rd

ä Multilevel approach: replace SVD (or any other dim. reduction)

by dimension reduction on coarse set. Only difference: TF-IDF done

on the coarse set not original set.
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Tests

Three public data sets used for experiments: Medline, Cran and

NPL (cs.cornell.edu)

ä Coarsening to a max. of 4 levels.

Data set Medline Cran NPL

# documents 1033 1398 11429

# terms 7014 3763 7491

sparsity (%) 0.74% 1.41% 0.27%

# queries 30 225 93

avg. # rel./query 23.2 8.2 22.4
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Results with NPL

Statistics

Level
coarsen. # optimal optimal avg.

time doc. # dim. precision

#1 N/A 11429 736 23.5%

#2 3.68 5717 592 23.8%

#3 2.19 2861 516 23.9%

#4 1.50 1434 533 23.3%
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Precision-Recall curves
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CPU times for preprocessing (Dim. reduction part)
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Conclusion

ä So how is this related to intitial title of “efficient algorithms in data

mining”?

ä Answer: All these eigenvalue problems are not cheap to solve..

ä .. and cost issue does not seem to bother practitioners too much

for now..

ä Ingredients that will become mandatory:

1 Avoid the SVD

2 Fast algorithms that do not sacrifice quality.

3 In particullar: Multilevel approaches

4 Multilinear algebra [tensors]
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