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This tutorial: Topics & Plan

» Tutorial on: Numerical Linear Algebra for Machine Learning with empha-
sis on Graph-based methods
First part: background in linear algebra, sparse matrices, graphs
Second: data-related problems: unsupervised learning, dimension reduc-
tion, embeddings, ..
Third:: Deep learning, graph neural networks,
Hands-on practice and demos [in matlab and Python+pytorch]

Prerequisite: senior level course in numerical linear algebra

All materials posted here:
httos:// www.cs.umn.edu/ ~saad/ talks.html
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https://www.cs.umn.edu/~saad/talks.html

(Rough) Schedule

Feb. 17

General introduction; Background & Examples; Eigenvalue
Pbs; Projection methods; The SVD; Sparse matrices; Data
structures; Review: Graphs; Graphs & sparse matrices.

Feb. 21

Graph centrality; Graph Laplaceans; Clustering; Dimension
reduction; From Data to Graphs; Networks & Centrality;
Graph Laplaceans; Clustering; Segmentation.

Feb. 24

Graph embedding; Deep Neural Networks; Attention;
Transformers; Graph-based methods; Graph Neural
Networks; GCN; GAT; Graph Coarsening [if time permits]
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GENERAL INTRODUCTION AND BACKGROUND I



Example of a classical problem (‘The old’): Fluid flow

Physical Model

l
Nonlinear PDEs

l
Discretization

l
Linearization (Newton)

l
Sparse Linear Systems Ax = b
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Example (‘The old’): Eigenvalue Problems

» Many applications require the computation of a few eigenvalues + asso-
ciated eigenvectors of a matrix A

 Structural Engineering — (Goal: fre-
guency response)

e Electronic structure calculations
[Schrodinger  equation..] —
Quantum chemistry

 Stability analysis [e.g., electrical
networks, mechanical system,..]
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Example (‘The old’): Vibrations

» Vibrations in mechanical systems. See:
www.cs.umn.edu/~saad/eig_book 2ndEd.pdf

T
L % k,
Problem: Determine the vibration modes of the |
mechanical system [to avoid resonance]. See WOE
details in Chapter 10 (sec. 10.2) of above 1 8"
'
reference.

» Problem type: Eigenvalue Problem



www.cs.umn.edu/~saad/eig_book_2ndEd.pdf

Example (‘The new’): Google Rank (pagerank)

If one were to do a random walk
from web page to web page, fol-
lowing each link on a given web
page at random with equal likeli-
hood, which are the pages to be
encountered this way most often?

» Problem type: (homogeneous) Linear system. Eigenvector problem.
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Example (‘The old’): Power networks

» Electrical circuits .. [Kirchhiff’s voltage Law]

40 1Q 1Q

£ 0 D= oL

4 Q 1Q 1Q

Problem: Determine the loop currents in a an electrical circuit - using Kirch-
hoff's Law (V = RI)

» Problem: Sparse Linear Systems [at the origin Sparse Direct Methods]
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Example (‘The new’): Economics/ Marketing/ Social Networks

» Given: an influence graph G: g;; = strength of influence of j over ¢
» (Goal: charge member 7 price p; in

order to maximize profit
» Utility for member z: [xz; = con-
sumption of 7]

—_ 2
u; = ax; — bx; + E 9ijTj — PiTi
jA

e 1: ‘Monopolist’ fixes prices; 2: agent i fixes consumption x;

Result: Optimal pricing proportional to Bonacich centrality:
(I — aG)~' 1 where a = 5 [Candogan et al., 2012 + many refs.]
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» ‘centrality’ defines a measure of importance of a node (or an edge) in a
graph

» Many other ideas of centrality in graphs [degree centrality, betweenness
centrality, closeness centrality,

» Important application: Social Network Analysis
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‘Classical’ Problems in Numerical Linear Algebra

Linear systems: Ax = b. Often: A is large and sparse
Least-squares problems min ||b — Ax||>

Eigenvalue problem Ax = Ax. Several variations -
SVD and Low-rank approximation

Tensors and low-rank tensor approximation

Matrix equations: Sylvester, Lyapunov, Riccati, ..
Nonlinear equations — acceleration methods

Matrix functions and applications

Many many more ...
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‘Modern’ Problems in Numerical Linear Algebra

Many of the new problems are related to datascience. A few examples:

Low-rank approximation;

QR; Rank-revealing QR; Updatding/Downdating QR
Statistical methods: e.g., approximating functions of matrices
Graph methods, Embeddings

Network analysis, centrality

Mixed precision linear algebra

Fast methods based on randomization
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BACKGROUND: SOLUTION OF EIGENVALUE PROBLEMS I



Origins of Eigenvalue Problems

o Structural Engineering [Ku = AMu] (Goal: frequency response)
* Electronic structure calculations [Schrodinger equation..]
o Stability analysis [e.g., electrical networks, mechanical system,..]

* Bifurcation analysis [e.g., in fluid flow]

» Large eigenvalue problems in quantum chemistry use up biggest portion
of the time in supercomputer centers

» (Common problem: compute a few eigenvalues at one end of spectrum ...

» ... orinagiven region of C
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Background. The Problem (s)

» Standard eigenvalue problem:

Ax = A\x

Often: A is symmetric real (or Hermitian complex)

» (Generalized problem Az = ABx Often: B is symmetric positive
definite, A is symmetric or nonsymmetric

» Quadratic problems: (A+AB + X°C))u =0

» Nonlinear eigenvalue n
problems (NEVP) Ao+ ABo+ Y fi(MAi|u=0

=1
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» General form of NEVP  A(A)xz =0

» Nonlinear eigenvector problems:

[A+ AB + F(uy,uz,+++ ,ug)|u =0

What to compute: |

* A few \; 's with smallest or largest real parts;
 All \;’s in a certain region of C;
A few of the dominant eigenvalues;

« All \;’s (rare).
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Large eigenvalue problems in applications

» Some applications require the computation of a large number of
eigenvalues and vectors of very large matrices.

» Density Functional Theory in electronic structure calculations: ‘ground
states’

» Excited states involve transitions and invariably lead to much more com-
plex computations. — Large matrices, *many* eigen-pairs to compute
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Background: The main tools

Projection process: Rayleigh-Ritz
(a) Build a ‘good’ subspace K = span(V);

(b) get approximate eigenpairs by a Rayleigh-Ritz process:

Find A € C, @ € K suchthat: (A— A4 L K

»  Will revisit this shortly




The main tools: Shift-and-invert:

» |f we want eigenvalues near o, replace A by (A — oI)~".

Example: | power method: v; = Awv;_;/scaling replaced by

v — (A—O'I)_l’vj_l
J scaling

» Works well for computing a few eigenvalues near o/
» Used in commercial package NASTRAN (for decades!)

» Requires factoring (A — oI) (or (A — oB) in generalized case.) But
convergence will be much faster.

» A solve each time - Factorization done once (ideally).
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The main tools: Deflation / Restarting

Deflation: » Once eigenvectors converge remove them from the picture
(e.g., with power method, second largest becomes largest eigenvalue after
deflation).

Restarting Strategies:

» Restart projection process by using information gathered in previous steps

» ALL available methods use some combination of these ingredients.

[e.g. ARPACK: Arnoldi/Lanczos + ‘implicit restarts’ + shift-and-invert (op-
tion).]
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Current state-of-the art in eigensolvers

» Eigenvalues at one end of the spectrum:
» Subspace iteration + filtering [e.g. FEAST, Cheb,...]

» Lanczos+variants (thick restart, implicit restart, Davidson, filtering,..),
e.g., ARPACK code, PRIMME, EVSL.

 Block Algorithms [Block Lanczos, TraceMin, LOBPCG, SlepSc,...]

* + Many others - more or less related to above

» ‘Interior’ eigenvalue problems (middle of spectrum):

« Combine shift-and-invert + Lanczos/block Lanczos. Used in, e.g.,
NASTRAN

 Rational filtering [FEAST, Sakurai et al.,.. ]
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THE SVD I



Background: The SVD

» Machine learning problems often require a (partial) Singular Value De-
composition -

» Somewhat different issues from eigenvalue problems:

 Very large matrices, update the SVD
« Compute dominant singular values/vectors

* Many problems of approximating a matrix (or a tensor) by one of lower
rank (Dimension reduction, ...)

» But: Methods for computing SVD often based on those for standard
eigenvalue problems
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The Singular Value Decomposition (SVD)

For any real n x m matrix A there exists orthogonal matrices U € R™*™

and V.. R™*™ such that
A=UxVvT

where X is a diagonal matrix with nonnegative diagonal entries.
011 > 022 >+« Opp > 0 With p = min(m, n)

» The o;; are called singular values of A. Denoted simply by o;.
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O
O
Case 1: A = U 2
O

Case 2:
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The “thin” SVD

» (Consider Case-1. It can be rewritten as

2

A = [U U] vT — A=U3%, V"

Now U; is n X m (same shape as A), and X; and V are m X m
» referred to as the “thin” SVD. Important in practice.

» Similar definition for Case 2 ['get rid of the zero block’]




Some properties. | Assume that

o,>022>:->0,>0ando,;1=:--=0,=0

Then:

e rank(A) = r = number of nonzero singular values.

e Ran(A) = span{ui,uz,...,u,}

e Null(A) = span{v,11,Vr12y...,Un}

e The matrix A admits the SVD expansion: A= Z oiuv;
i=1
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Properties of the SVD (continued)

e |Al|2 = oy = largest singular value
r 1/2
o |AllFr = (Zz‘:l ‘77:2)

» More generally: Schatten p- 1AL, = [Z? 1?]1/”
norm (p > 1) defined by P i=1 "4

» Note: ||A||«,, = p-norm of vector [o1;02;- -+ ;0]

» |n particular: ||A|l.1 = ) _ o, is called the nuclear norm and is denoted
by || A]|«. (Common in machine learning).




Ekart-Young-Mirsky Theorem: \

Let £ < r and

k
Akz E O'i’u,i’U;-T
=1

then

in ||A—B|:=|A— Az =
rormin |l l2 = || sllz = Tht
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SPARSE MATRICES ; DATA STRUCTURES I



What are sparse matrices?

Vague definition: “..matrices that allow special techniques to take advantage
of the large number of zero elements and the structure.”

A few applications of sparse matrices: Structural Engineering, Reservoir
simulation, Electrical Networks, optimization problems, ...

Goals: | Much less storage and work than dense computations.

Observation: | A~1is usually dense, but L and U in the LU factorization
may be reasonably sparse (if a good technique is used).
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Sample sparsity patterns
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ARC130: Unsymmetric matrix from laser problem. a.r.curtis, oct 1974 SHERMANS: fully implicit black oil simulator 16 by 23 by 3 grid, 3 unk

33 UM6P’25 Spring School., Feb. 18-24, 2025




Sparse matrices in Matlab and Python

#0| Explore the scripts Lap2D, mark (provided in matlab suite) for gener-
ating sparse matrices

#1| Explore the command spy

#2| Explore the command sparse

#3| Run the demos titled demo_sparse0 and demo_sparsel

#4| Load the matrix can_256.mat from the SuiteSparse collection. Show
its pattern




Sparse matrices - continued

» Main goal of Sparse Matrix Techniques: To perform standard matrix com-
putations economically, i.e., without storing the zeros

» Example: To add two square dense matrices of size n requires O(n?)
operations. To add two sparse matrices A and B requires O(nnz(A) +
nnz(B)) where nnz(X) = number of nonzero elements of a matrix X.

» For typical Finite Element /Finite difference matrices, number of nonzero
elements is O(n).

UM6P’25 Spring School., Feb. 18-24, 2025



Data structures: The coordinate format (COO)

(1. 0. 0. 2. 0.\ '16‘;‘ ‘”2 J(;

3. 4. 0. 5. 0. '
A=|6.0. 7. 8 9. | 3 9
7. 3/ 3
0. 0. 10. 11. O. 5 o 4
\O. 0. 0. 0. 12.) 11 1 1
» Also known as ‘triplet format’ 2. 1) 4
» Simple data structure - Often used as ‘entry’ format in 1; g :’
packages 6. 3 1
» Variant used in matlab 4 2| o
» Note: order of entries is arbitrary [in matlab: sortedby 8| 3 4
columns] 10.| 4/ 3
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Compressed Sparse Row (CSR) format

AA JA 1A
[12. 0. 0. 11. 0.) 2] 1 <1
10. 9. 0. 8. 0. 4
0] 1<+ 3
A= 7. 0. 6. 5. 4. 9| 2
0. 0. 3. 2. o. 814 6
\ 0. 0. 0. 0. 1./ s
o . . . 6 3 10
» 1A(j) points to beginning or row j in arrays AA, JA 2 g 19
oV
» Related: Compressed Sparse Column format, g 2 13
Modified Sparse Row format (MSR). T—5V<’J

» Used predominantly in Fortran & portable codes [e.g. Metis] — what about
C?
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CSR (CSC) format - C-style |

* CSR: Collection of pointers of rows & array of row lengths

| C—-style CSR format - used 1internally
| for all matrices 1in CSR/CSC format

e e */
int n; /* size of matrix */
int *nzcount; /* length of each row * /
int xxJja; /* to store column indices */
double *x+ma; /* to store nonzero entries *x/

} SparMat;

aal[i] [*] == entries of i-th row (col.);

Jal[i] [*] == col. (row) indices,

nzcount [1] == number of nonzero elmts in row (col.) i
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Data structure used in Csparse | [T. Davis’ SuiteSparse code]

typedef struct cs_sparse
{/* matrix in compressed-column or triplet form =/
int nzmax ; /* maximum number of entries =*/

int m ; /* number of rows x/

int n ; /* number of columns x/

int *p ; /* column pointers (size n+l) or
col indices (size nzmax) x*/

int *1i ; /* row indices, size nzmax */

double *x ; /+ numerical values, size nzmax =*/

int nz ; /+ # of entries in triplet matrix,

-1 for compressed-col =*/
} cs ;

» (Can be used for CSR, CSC, and COO (iriplet) storage

» Easy to use from Fortran
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Computing y = Ax; row and column storage

X AX
* |1 [
Row-form: *  x
Dot product of A(z,:) and x x  x  * B
giVGS Yi * *
* *
* * ] i
X AXx
Column-form: * *
Linear combination  of x|k
columns A(:,79) with " * : *
coefficients z; yields y * *
* *
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Matvec — row version

vold matvec ( csptr mata, double *xx, double *xy )

{

int 1, k, =*ki;

double xkr;

for (1=0; 1<mata->n; 1++) {
y[1] = 0.0;
kr = mata->mal[i];
ki = mata->jal1i];
for (k=0; k<mata->nzcount[i]; k++)

y[i] += krl[k] =~ x[ki[k]];

}

» Uses sparse dot products (sparse SDOTS)

#s| Operation count

41 UM6P’25 Spring School., Feb. 18-24, 2025




Matvec — Column version

volid matvecC ( csptr mata, double *xx, double *xy )
{
int n = mata->n, i, k, =*ki;
double xkr;
for (1=0; 1<n; 1i++)
yli] = 0.0;
for (1=0; i<n; 1i++) {
kr mata->mal[i];
ki mata->Jjali];
for (k=0; k<mata->nzcount[i1]; k++)
yikilk]] += kr[k] * x[i];

» Uses sparse vector combinations (sparse SAXPY)

#e| Operation count

42
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» Using the CS data structure from Suite-Sparse:

int cs_gaxpy (cs *xA, double xx, double xy) {
int Py j/ n, *Apr *Aj—;
n = A->n; Ap = A-> p; Al = A->1i; Ax = A->X;
for (3=0; J<n; J++) |
for (p=Ap[J]; p<Ap[J+l];p++)
} y[Ai[p]] += Ax[pl*x[]J];

return (1)

}
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Sparse matrices in matlab

#7| Generate a tridiagonal matrix T

#g| Gonvert T to sparse format

#9| See how you can generate this sparse matrix directly using sparse
#10| See how you can use spconvert to achieve the same result

#11| What can you observe about the way the triplets of a sparse matrix are

ordered?

#12| Important for performance: spalloc. See the difference between
A = sparse(m,n) and A = spalloc(m,n,nzmax)

#13| Look at SparsePy for Python examples.
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BACKGROUND ON GRAPHS I



Graphs — definitions & representations

» Graph theory is a fundamental tool in many areas

Definition. A graph G is defined as a pairofsets G = (V, E)withE C V xV.
So G represents a binary relation. The graph is undirected if the binary
relation is symmetric. It is directed otherwise.

» V is the vertex set and E is the edge set
» A binary relation R in V' can be represente by graph G = (V, E) where:

(u,v) E E< uRv

Undirected graph <+ symmetric relation
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| @

(4)—= @
E;Ej));(‘m @R 3ER 2N 1R 2: 2R 3): @R 4): 4R 1)

» |E| < |V|% Forundirected graphs: |E| < |V|(|V]| +1)/2.

» A sparse graph is one for which |E| <« |V|2.
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Basic Terminology & notation:

» If (u,v) € E, then vis adjacent to u. The edge (u,v) is incident to w
and v.

» |f the graph is directed, then (u,v) is an outgoing edge from » and
Incoming edge to v

» Adj(i) = {j|7 adjacentto ¢}

» The degree of a vertex v is the number of edges incident to v. Can also
define the indegree and outdegree. (Sometimes self-edge ¢ — i omitted)

» | S| is the cardinality of set S [so |Adj(i)| == deg( ) ]
» A subgraph G’ = (V’, E’) of G is a graph with V/ C V and E' C E.
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Representations of Graphs

» A graph is nothing but a collection of vertices (indices from 1 to n), each
with a set of its adjacent vertices [in effect a 'sparse matrix without values’]

» For sparse graphs: use any of the sparse matrix storage formats - omit
the real values arrays.

Adjacency matrix Assume V =

{1,2,--- ,n}. Then the adjacency matrix 1if(z2,7) € E
of G = (V,E) is the n x n matrix, with “ 71 0 Otherwise
entries:
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Representations of Graphs (cont.)

) > (2)

- _
1
1 1 v
1 @‘ 3
Example: ] ]
1 1 @ @
1 1
1 1
_1 1 -

@ €)




More terminology & notation

» Given' Y C X, the section graph of Y is the subgraph Gy = (Y, E(Y))
where E(Y) = {(xz,y) € Elx € Y, y inY}

» A section graph is a clique if all the nodes in the subgraph are pairwise
adjacent (— dense block in matrix)

» A path is a sequence of vertices wy, w1, ..., w, such that (w;, w;11) € E
fort =0,...,k — 1.

» The length of the path wq, w1, ..., w is k (# of edges in the path)
» A cycle is a closed path, i.e., a path with w;, = wsy.

» A graph is acyclic if it has no cycles.
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#14| Find cycles in this graph: A path in an indirected grap

\ o

» A path wy, ..., wy is simple if the vertices wy, ..., w; are distinct (except
that we may have wy = w, for cycles).

» An undirected graph is connected if there is path from every vertex to
every other vertex.

» A digraph with the same property is said to be strongly connected
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» The undirected (or symmetrized) form of a digraph = undirected graph
obtained by removing the directions of all edges

» A directed graph whose undirected form is connected is said to be weakly
connected or connected.

» Tree = a graph whose undirected form, i.e., symmetrized form, is acyclic
& connected — Forest = a collection of trees
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Topological Sorting

The Problem: Given a Directed Acyclic Graph (DAG), order the vertices
from 1 to n such that, if (u,v) is an edge, then u appears before v in the
ordering.

» Equivalently, label vertices from 1 to n so that in any (directed) path from
a node labelled k, all vertices in the path have labels >k.

» Prerequisite requirements in a program
» Scheduling of tasks for any project

» Parallel algorithms;

)

Many Applications:
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Topological Sorting: A first algorithm

Property exploited: An acyclic Digraph must have at least one vertex with
indegree = 0. |[#15| Prove this

Algorithm: |

» First label vertices with indegree 0 as as 1, 2, ..., k;

» Remove these vertices and all edges incident from them

» Resulting graph is again acyclic ... 3 nodes with indegree = 0. Label
these nodesas k + 1,k + 2,...,

» Repeat...
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#16| Explore implementation aspects.

» In practice: another algorithm is preferred: one based on Depth-First
traversals of graphs.

» ... Detalls skipped
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GRAPH MODELS FOR SPARSE MATRICES I



Graph Representations of Sparse Matrices. Recall:

Adjacency Graph G = (V, E) of an n X n matrix A :

vV ={1,2,.

iy N}

E = {(i,)lai; # 0}

» G == undirected if A has a symmetric pattern

Example:

58

|

—-

(2

)

x| x| @ @
*| | %

*| |
RN @ ©)
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#17| Show the matrix pattern for the graph
on the right. The set {v,, v3,v4} IS @ ?
Related submatrix in adj. matrix is ?

» A separator is a set Y of vertices such that the graph Gx_y is discon-
nected.

Example: |Y = {v3,v4, v5} iS @ separator in the above figure

UM6P’25 Spring School., Feb. 18-24, 2025



# 18| Adjacency graph of:

#119| For any adjacency matrix A, what is the graph of A2? [interpret in terms
of paths in the graph of A]
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» Two graphs are isomorphic is there is a mapping between the vertices of
the two graphs that preserves adjacency.

#20| Are the following 3 graphs isomorphic? If yes find the mappings be-
tween them.

: ®

)

» @Graphs are identical — labels are different

» Determinig graph isomorphism is a hard problem
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Bipartite graph representation

» Rows and columns are (both) represented by vertices;

» Relations only between rows and columns: Row < is connected to column
j If Qg ;é 0

* @) O

* @ O

Example: * * O
*x =

i * *_ O———O

» Bipartite models used only for specific cases [e.g. rectangular matrices,
...] - By default we use the standard definition of graphs.




Interpretation of graphs of matrices

#21| What is the graph of A + B (for two n x n matrices)?

#22| What is the graph of AT ?

#23| What is the graph of A.B?




Paths in graphs

#24| What is the graph of A*?

Theorem Let A be the adjacency matrix of a graph G = (V, E). Then for
k > 0 and vertices u and v of G, the number of paths of length k starting at

u and ending at v is equal to (A*),, ..

Proof: Proof is by induction.lli



If C = BA then ¢;; = 7 b;a;,. Take B = ARl
and use induction. Any path of length %
is formed as a path of length £ —1 to some
node [ completed by an edge from [ to j.
Because q;; is one for that last edge, ¢;; 1s
just the sum of all possible paths of length

k from 2 to j
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» Recall (definition): A matrix is reducible if it can be permuted into a block
upper triangular matrix.

» Note: A matrix is reducible iff its adjacency graph is not (strongly) con-
nected, i.e., iff it has more than one connected component.
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» No edges from C to
A or B. No edges from
B to A.

Theorem: Perron-Frobenius An irreducible, nonnegative n x n matrix A
has a real, positive eigenvalue \; such that:
() A1 Is a simple eigenvalue of A;
(i) A1 admits a positive eigenvector u, ; and
(i) |X;] < Ap for all other eigenvalues A\; where 7 > 1.

» The spectral radius is equal to the eigenvalue A,
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» Definition : a graph is d regular if each vertex has the same degree d.

Proposition: The spectral radius of a d regular graph is equal to d.

Proof: The vector e of all ones is an eigenvector of A associated with the
eigenvalue A = d. In addition this eigenvalue is the largest possible (consider
the infinity norm of A). Therefore e is the Perron-Frobenius vector u,. Il
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Application: Markov Chains

» Read about Markov Chains in Sect. 10.9 of:
https://www-users.cs.umn.edu/~saad/eig_book 2ndEd.pdf

» Let w = row vector of stationary probabilities

e _ P =
» Then = satisfies the equation —

» P is the probabilty transition matrix and it is ‘stochastic’:

A matrix P is said to be stochastic if :
() pi; > 0foralli,j

(ll) Z?:lpij =1 forz = 1,:--,n

(i) No column of P is a zero column.
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» Spectral radiusis < 1

#25| Why?

» Assume P is irreducible. Then:

» Perron Frobenius — p(P) = 1 is an eigenvalue and associated eigen-
vector has positive entries.

» Probabilities are obtained by scaling = by its sum.

» Example: One of the 2 models used for page rank.

Example:

A college Fraternity has 50 students at various stages of college

(Freshman, Sophomore, Junior, Senior). There are 6 potential stages for the
following year: Freshman, Sophomore, Junior, Senior, graduated, or left-without
degree. Following table gives probability of transitions from one stage to next
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To From | Fr | So. |Ju.| Sr. | Grad | lwd
Fr. 2 000 O 0
So. 6 .10 0 O 0
JU. o .7 10 0 0
Sr. 0| 0 | .8].1 0 0
Grad O/l 0 0 |.75 1 0
lwd 2/ 21115 0 1

#26| Whatis P? Assume initial population is xy = [10,16,12,12, 0, 0] and do
a follow the population for a few years. What is the probability that a student
will graduate? What is the probability that s/he leaves without a degree?

UM6P’25 Spring School., Feb. 18-24, 2025



A few words on hypergraphs

» Hypergraphs are very general.. Ideas borrowed from VLS| work

»  Main motivation: to better represent communication volumes when parti-
tioning a graph. Standard models face many limitations

» Hypergraphs can better express complex graph partitioning problems and
provide better solutions.

» Example: completely nonsymmetric patterns ...

» .. Even rectangular matrices. Best illustration: Hypergraphs are ideal for
text data
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Example: |V ={1,...,9}and E = {a,...,e} with
a={1,2,3,4}, b= {3,5,6,7}, c = {4,7,8,9},
d={6,7,8}, ande={2,9}

1
a/D\a/D Boolean matrix:
23456789
2 1 1

123
SN SVAVE 11 1 a
/ 1 111 b
e. : A= 1 111c
d
g 111 d
/\ net d 1 1le
D9
net e 8
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A few words on computational graphs

f(x,y,2) = g(a(x,y,2), b(x,y,2))

»  Computational graphs: graphs where

nodes represent computations whose evalu-

ation depend on other (incoming) nodes. \

» Consider the following expression: g(z,y) = (. +y — 2) * (y + 1)

i

zZ r—+ vy
» (Can be decomposed as: T v=1y+1

g = (z—2)%xv
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» Computational graph — e
» Given x, y we want: @
(a) Evaluate the nodes and m

(b) derivatives w.r.t z, y
(a) is trivial - just follow the graph up - starting from the leaves (that contain «
and y)

(b): Use the chain rule — here shown for « only 99 _ dgda |, Ogdb
. : : Or  Oadx + obdzx
using previous setting

#27| For the above example compute values and derivatives at all nodes
whenxz = —1,y = 2.
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Back-Propagation

» Often we want to compute the gradient of the function at the root, once
the nodes have been evaluated

» The derivatives can be calculated by going backward (or down the tree)

» Here is a very simple example from Neural Networks

2

L =3(y—t) ' ’
)y = o(2) T~ T,
2 wx + b b/

» Note that ¢ (desired output) and x (input) are constant.
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Back-Propagation: General computational graphs

" o Un=3 Representation: a DAG

» Last node (v,,) is the target function. Let us rename it f.
» Nodes v;,i = 1,--- ,e with indegree 0 are the variables

» Want to compute df/0v,,0f/Ova,--- ,0f /v,

» Use the chain rule. Of _0f0v; Of0v  9f dvn,
— = +———+
— 8’Uk 8’Uj 8’Uk 8’01 aka 8’Um 8’Uk
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> Let 6, = 5L (called ‘errors’). Then

5 = 8,00 4 5,00 4 5,00
]ka, B’Uk; ma’Uk;
» To compute the é,'s once the v;’s have Ujo‘__”
been computed (in a ‘forward’ propagation) — (2 /Ul :,."
proceed backward. e
»  §;,0;,9, available and 9Ov;/0v;, com- \ T~

putable. Nore §,, = 1.
» However: cannot just do this in any order. Must follow a topological order
In order to obey dependencies.

» Wl revisit back-propagation later.
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GRAPH CENTRALITY I



Centrality in graphs

» Goal: measure importance of a node, edge, subgraph, .. in a graph
» Many measures introduced over the years

» Early Work: Freeman 77 [introduced 3 measures] — based on ‘paths in
graph’

» Many different ways of defininf centrality! We will just see a few




Degree centrality:  (simplest) ‘Nodes Cp(v) = deg(v)
with high degree are important’ nol
(note: scaling n — 1 is unimportant)

Closeness centrality: ‘Nodes that are _ n—1

: , CC(,U) Y d(v,w)
close to many other nodes are important e TR

Betweenness centrality: Cp(v) = Zu#,w#v a;tiv)

(Freeman '77)

e o, = total # shortest paths from u to w

e o.,(v) = total # shortest paths from u to w passing through v
» 'Nodes that are on many shortest paths are important’

#n28

Explores matlab and python codes in centrality folder
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Example: | Find Cp(v); Cc(v); Cg(v) whenv = C

(UW) ouw(v) ouw |/ | (UW) Ouw(v) ouw | /
(a) (8) (o) (AB) 0 1 0®BE 0 1 0
AD) 0 1 0 @®BF 1 1 f1
AE) 0 1 0®E 1 2 5
AF) 0 1 0DOF 1 1 f1
O O O BD) 0 1 0((EF 0 1 0

» Cp(v) =3/5=0.6;

» Cc(v) =5/|dca+ des + dep + dee + der]
—5/[24+14+14+2+1]=5/7

» Cp(v) = 2.5 (add all ratios in table)

#n29| Redo this forv = B
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Eigenvector centrality:

» Supppose we have n nodes v;, j = 1,--- ,n— each with a measure of
importance (‘prestige’) p,

» Principle: prestige of « depends on that of its neighbors.

» Prestige x; = multiple of sum of pres-

tiges of neighbors pointing to it AT; = | Z | Tj = Z @i j
j € N(2) j=1

» x; = component of eigenvector associated with .

» Perron Frobenius theorem at play again: take largest eigenvalue — x;’s
nonnegative
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» (Can be viewed as a variant of Eigenvector centrality

Main point: |A page is important if it is pointed to by other important pages.

» Importance of your page (its PageRank) is determined by summing the
page ranks of all pages which point to it. [+ same as EV centrality]

» Weighting: If a page points to several other pages, then the weighting
should be distributed proportionally.

» |magine many tokens doing a random walk on this graph:
e (6/n) chance to follow one of the n links on a page,
e (1 — J) chance to jump to a random page.
e What's the chance a token will land on each page?
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Page-Rank - definitions

It Ty, ..., T,, point to page T; then

p(T1) p(T3) . P(Tn)]

_I_
|| | T | T

p(T;) = 1—5+5[

» |T;| = count of links going out of Page T;. So the 'vote’ p(T;) is spread
evenly among |T}| links.

» Sum of all PageRanks == 1: 37p(T) = 1
» ¢ is a 'damping’ parameter close to 1 —e.g. 0.85

» Defines a (possibly huge) Hy-
perlink matrix H

e . .
B = T if 4 pc?mts to j
0 otherwise
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#30| 4 Nodes

A points to Band D

B points to A, C, and D
C points to A and B

D points to C

1) What is the H matrix?
2) the graph?
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A B C D
A 1/2 1/2
/ @/ B 1/3 1/3 1/3
@/ C 1/2 1/2
D 1
» Row- sums of H are = 1.
» Sum of all PageRanks will be Z p(A) = 1.
one: All-Pagesa

» H is a stochastic matrix [actually it is forced to be by changing zero rows]
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Algorithm | (PageRank)

1. Select initial row vector v (v > 0)
2. For i=1:maxitr

3 v:=(1—-906)el + 6vH

4. end

#31| Do a few steps of this algorithm for previous example with § = 0.85.

» This is a row iteration..

v =] (1 —-94)el [+ v . OH
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A few properties: |

» o will remain > 0. [combines non-negative vectors]

More general iteration: v:=v[(1—0)E+JH] With E=ez"

~

G

where z is a probability vector e’z = 1 [Ex. z = Z€]
» A variant of the power method.

» e is a right-eigenvector of G associated with A = 1. We are interested in
the left eigenvector.

#n32| Run test_pr + other drivers in /centrality
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Kleinberg’s Hubs and Authorities

» lIdea is to put order into the web by ranking pages by their degree of
Authority or "Hubness".

» An Authority is a page pointed to by many important pages.
e Authority Weight = sum of Hub Weights from In-Links.

» A Hub is a page that points to many important pages:
e Hub Weight = sum of Authority Weights from Out-Links.

» Source:

http://www.cs.cornell.edu/home/kleinber/auth.pdf
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Computation of Hubs and Authorities

»  Simplify computation by forcing sum of squares of weights
to be 1.

Auth; = x; = Zi:(i,j)EEdges Hub;.

Hub; = y; = Zj:(i,j)eEdgeS Auth;.

Let A = Adjacency matrix: a;; = 1 if (¢,5) € Edges.
y = Ax, x = ATly.

lterate . .. to leading eigenvectors of ATA & AAT.

Y Y Y VY Y'Y

Answer: Leading Singular Vectors!




