
Numerical Linear Algebra for Machine Learning
Yousef Saad

University of Minnesota

UM6P Spring School 2025
Benguerir, Morocco

Feb. 17-25, 2025

This tutorial: Topics & Plan

ä Tutorial on: Numerical Linear Algebra for Machine Learning with empha-
sis on Graph-based methods

First part: background in linear algebra, sparse matrices, graphs

Second: data-related problems: unsupervised learning, dimension reduc-
tion, embeddings, ..

Third:: Deep learning, graph neural networks,

Hands-on practice and demos [in matlab and Python+pytorch]

Prerequisite: senior level course in numerical linear algebra

All materials posted here:
https:// www.cs.umn.edu/ ~saad/ talks.html

2 UM6P’25 Spring School., Feb. 18-24, 2025

https://www.cs.umn.edu/~saad/talks.html

(Rough) Schedule

Feb. 17 General introduction; Background & Examples; Eigenvalue
Pbs; Projection methods; The SVD; Sparse matrices; Data
structures; Review: Graphs; Graphs & sparse matrices.

Feb. 21 Graph centrality; Graph Laplaceans; Clustering; Dimension
reduction; From Data to Graphs; Networks & Centrality;
Graph Laplaceans; Clustering; Segmentation.

Feb. 24 Graph embedding; Deep Neural Networks; Attention;
Transformers; Graph-based methods; Graph Neural
Networks; GCN; GAT; Graph Coarsening [if time permits]

3 UM6P’25 Spring School., Feb. 18-24, 2025

GENERAL INTRODUCTION AND BACKGROUND

Example of a classical problem (‘The old’): Fluid flow

Physical Model
↓

Nonlinear PDEs
↓

Discretization
↓

Linearization (Newton)
↓

Sparse Linear Systems Ax = b
-1 -0.5 0 0.5 1 1.5 2 2.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

5 UM6P’25 Spring School., Feb. 18-24, 2025

Example (‘The old’): Eigenvalue Problems

ä Many applications require the computation of a few eigenvalues + asso-
ciated eigenvectors of a matrix A

• Structural Engineering – (Goal: fre-
quency response)

• Electronic structure calculations
[Schrödinger equation..] –
Quantum chemistry

• Stability analysis [e.g., electrical
networks, mechanical system,..]

• ...

6 UM6P’25 Spring School., Feb. 18-24, 2025

Example (‘The old’): Vibrations

ä Vibrations in mechanical systems. See:
www.cs.umn.edu/~saad/eig_book_2ndEd.pdf

Problem: Determine the vibration modes of the
mechanical system [to avoid resonance]. See
details in Chapter 10 (sec. 10.2) of above
reference.

ä Problem type: Eigenvalue Problem

7 UM6P’25 Spring School., Feb. 18-24, 2025

www.cs.umn.edu/~saad/eig_book_2ndEd.pdf

Example (‘The new’): Google Rank (pagerank)

If one were to do a random walk
from web page to web page, fol-
lowing each link on a given web
page at random with equal likeli-
hood, which are the pages to be
encountered this way most often?

ä Problem type: (homogeneous) Linear system. Eigenvector problem.

8 UM6P’25 Spring School., Feb. 18-24, 2025

Example (‘The old’): Power networks

ä Electrical circuits .. [Kirchhiff’s voltage Law]

1 Ω 1 Ω

1 Ω1 Ω

1 Ω

4 Ω

30 v 20v

5v

3 Ω

Ω4

Problem: Determine the loop currents in a an electrical circuit - using Kirch-
hoff’s Law (V = RI)

ä Problem: Sparse Linear Systems [at the origin Sparse Direct Methods]
9 UM6P’25 Spring School., Feb. 18-24, 2025

Example (‘The new’): Economics/ Marketing/ Social Networks

ä Given: an influence graph G: gij = strength of influence of j over i
ä Goal: charge member i price pi in
order to maximize profit
ä Utility for member i: [xi = con-
sumption of i]

ui = axi − bx2
i +

∑
j 6=i

gijxj − pixi

• 1: ‘Monopolist’ fixes prices; 2: agent i fixes consumption xi

Result : Optimal pricing proportional to Bonacich centrality:
(I − αG)−1 1 where α = 1

2b
[Candogan et al., 2012 + many refs.]

10 UM6P’25 Spring School., Feb. 18-24, 2025

ä ’centrality’ defines a measure of importance of a node (or an edge) in a
graph

ä Many other ideas of centrality in graphs [degree centrality, betweenness
centrality, closeness centrality,

ä Important application: Social Network Analysis

11 UM6P’25 Spring School., Feb. 18-24, 2025

‘Classical’ Problems in Numerical Linear Algebra

Linear systems: Ax = b. Often: A is large and sparse

Least-squares problems min ‖b−Ax‖2

Eigenvalue problem Ax = λx. Several variations -

SVD and Low-rank approximation

Tensors and low-rank tensor approximation

Matrix equations: Sylvester, Lyapunov, Riccati, ..

Nonlinear equations – acceleration methods

Matrix functions and applications

Many many more ...

12 UM6P’25 Spring School., Feb. 18-24, 2025

‘Modern’ Problems in Numerical Linear Algebra

Many of the new problems are related to datascience. A few examples:

Low-rank approximation;

QR; Rank-revealing QR; Updatding/Downdating QR

Statistical methods: e.g., approximating functions of matrices

Graph methods, Embeddings

Network analysis, centrality

Mixed precision linear algebra

Fast methods based on randomization

...

13 UM6P’25 Spring School., Feb. 18-24, 2025

BACKGROUND: SOLUTION OF EIGENVALUE PROBLEMS

Origins of Eigenvalue Problems

• Structural Engineering [Ku = λMu] (Goal: frequency response)

• Electronic structure calculations [Schrödinger equation..]

• Stability analysis [e.g., electrical networks, mechanical system,..]

• Bifurcation analysis [e.g., in fluid flow]

ä Large eigenvalue problems in quantum chemistry use up biggest portion
of the time in supercomputer centers

ä Common problem: compute a few eigenvalues at one end of spectrum ...

ä ... or in a given region of C

15 UM6P’25 Spring School., Feb. 18-24, 2025

Background. The Problem (s)

ä Standard eigenvalue problem:

Ax = λx

Often: A is symmetric real (or Hermitian complex)

ä Generalized problem Ax = λBx Often: B is symmetric positive
definite, A is symmetric or nonsymmetric

ä Quadratic problems: (A+ λB + λ2C)u = 0

ä Nonlinear eigenvalue
problems (NEVP)

[
A0 + λB0 +

n∑
i=1

fi(λ)Ai

]
u = 0

16 UM6P’25 Spring School., Feb. 18-24, 2025

ä General form of NEVP A(λ)x = 0

ä Nonlinear eigenvector problems:

[A+ λB + F (u1, u2, · · · , uk)]u = 0

What to compute:

• A few λi ’s with smallest or largest real parts;

• All λi’s in a certain region of C;

• A few of the dominant eigenvalues;

• All λi’s (rare).
17 UM6P’25 Spring School., Feb. 18-24, 2025

Large eigenvalue problems in applications

ä Some applications require the computation of a large number of
eigenvalues and vectors of very large matrices.

ä Density Functional Theory in electronic structure calculations: ‘ground
states’

ä Excited states involve transitions and invariably lead to much more com-
plex computations. → Large matrices, *many* eigen-pairs to compute

18 UM6P’25 Spring School., Feb. 18-24, 2025

Background: The main tools

Projection process: Rayleigh-Ritz

(a) Build a ‘good’ subspace K = span(V);

(b) get approximate eigenpairs by a Rayleigh-Ritz process:

Find λ̃ ∈ C, ũ ∈ K such that: (A− λ̃I)ũ ⊥ K

ä Will revisit this shortly

19 UM6P’25 Spring School., Feb. 18-24, 2025

The main tools: Shift-and-invert:

ä If we want eigenvalues near σ, replace A by (A− σI)−1.

Example: power method: vj = Avj−1/scaling replaced by

vj =
(A−σI)−1vj−1

scaling

ä Works well for computing a few eigenvalues near σ/

ä Used in commercial package NASTRAN (for decades!)

ä Requires factoring (A − σI) (or (A − σB) in generalized case.) But
convergence will be much faster.

ä A solve each time - Factorization done once (ideally).
20 UM6P’25 Spring School., Feb. 18-24, 2025

The main tools: Deflation / Restarting

Deflation: ä Once eigenvectors converge remove them from the picture
(e.g., with power method, second largest becomes largest eigenvalue after
deflation).

Restarting Strategies:

ä Restart projection process by using information gathered in previous steps

ä ALL available methods use some combination of these ingredients.

[e.g. ARPACK: Arnoldi/Lanczos + ‘implicit restarts’ + shift-and-invert (op-
tion).]

21 UM6P’25 Spring School., Feb. 18-24, 2025

Current state-of-the art in eigensolvers

ä Eigenvalues at one end of the spectrum:

• Subspace iteration + filtering [e.g. FEAST, Cheb,...]

• Lanczos+variants (thick restart, implicit restart, Davidson, filtering,..),
e.g., ARPACK code, PRIMME, EVSL.

• Block Algorithms [Block Lanczos, TraceMin, LOBPCG, SlepSc,...]

• + Many others - more or less related to above

ä ‘Interior’ eigenvalue problems (middle of spectrum):

• Combine shift-and-invert + Lanczos/block Lanczos. Used in, e.g.,
NASTRAN

• Rational filtering [FEAST, Sakurai et al.,..]

22 UM6P’25 Spring School., Feb. 18-24, 2025

THE SVD

Background: The SVD

ä Machine learning problems often require a (partial) Singular Value De-
composition -

ä Somewhat different issues from eigenvalue problems:

• Very large matrices, update the SVD

• Compute dominant singular values/vectors

• Many problems of approximating a matrix (or a tensor) by one of lower
rank (Dimension reduction, ...)

ä But: Methods for computing SVD often based on those for standard
eigenvalue problems

24 UM6P’25 Spring School., Feb. 18-24, 2025

The Singular Value Decomposition (SVD)

For any real n × m matrix A there exists orthogonal matrices U ∈ Rn×n

and V ∈ Rm×m such that
A = UΣV T

where Σ is a diagonal matrix with nonnegative diagonal entries.

σ11 ≥ σ22 ≥ · · ·σpp ≥ 0 with p = min(m,n)

ä The σii are called singular values of A. Denoted simply by σi.

25 UM6P’25 Spring School., Feb. 18-24, 2025

Case 1: =

V

UA

T

Σ

Case 2:
A U Σ

V

=

T

26 UM6P’25 Spring School., Feb. 18-24, 2025

The “thin” SVD

ä Consider Case-1. It can be rewritten as

A = [U1U2]

[
Σ1

0

]
V T −→ A = U1Σ1 V

T

Now U1 is n×m (same shape as A), and Σ1 and V are m×m

ä referred to as the “thin” SVD. Important in practice.

ä Similar definition for Case 2 [’get rid of the zero block’]

27 UM6P’25 Spring School., Feb. 18-24, 2025

Some properties. Assume that

σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and σr+1 = · · · = σp = 0

Then:

• rank(A) = r = number of nonzero singular values.

• Ran(A) = span{u1, u2, . . . , ur}

• Null(A) = span{vr+1, vr+2, . . . , vm}

• The matrix A admits the SVD expansion: A =

r∑
i=1

σiuiv
T
i

28 UM6P’25 Spring School., Feb. 18-24, 2025

Properties of the SVD (continued)

• ‖A‖2 = σ1 = largest singular value

• ‖A‖F =
(∑r

i=1 σ
2
i

)1/2

ä More generally: Schatten p-
norm (p ≥ 1) defined by

‖A‖∗,p =
[∑r

i=1 σ
p
i

]1/p
ä Note: ‖A‖∗,p = p-norm of vector [σ1;σ2; · · · ;σr]

ä In particular: ‖A‖∗,1 =
∑
σi is called the nuclear norm and is denoted

by ‖A‖∗. (Common in machine learning).

29 UM6P’25 Spring School., Feb. 18-24, 2025

Ekart-Young-Mirsky Theorem:

Let k ≤ r and

Ak =

k∑
i=1

σiuiv
T
i

then
min

rank(B)=k
‖A−B‖2 = ‖A−Ak‖2 = σk+1

30 UM6P’25 Spring School., Feb. 18-24, 2025

SPARSE MATRICES ; DATA STRUCTURES

What are sparse matrices?

Vague definition: “..matrices that allow special techniques to take advantage
of the large number of zero elements and the structure.”

A few applications of sparse matrices: Structural Engineering, Reservoir
simulation, Electrical Networks, optimization problems, ...

Goals: Much less storage and work than dense computations.

Observation: A−1 is usually dense, but L and U in the LU factorization
may be reasonably sparse (if a good technique is used).

32 UM6P’25 Spring School., Feb. 18-24, 2025

Sample sparsity patterns

ARC130: Unsymmetric matrix from laser problem. a.r.curtis, oct 1974 SHERMAN5: fully implicit black oil simulator 16 by 23 by 3 grid, 3 unk

33 UM6P’25 Spring School., Feb. 18-24, 2025

Sparse matrices in Matlab and Python

-0 Explore the scripts Lap2D, mark (provided in matlab suite) for gener-
ating sparse matrices

-1 Explore the command spy

-2 Explore the command sparse

-3 Run the demos titled demo_sparse0 and demo_sparse1

-4 Load the matrix can_256.mat from the SuiteSparse collection. Show
its pattern

34 UM6P’25 Spring School., Feb. 18-24, 2025

Sparse matrices - continued

ä Main goal of Sparse Matrix Techniques: To perform standard matrix com-
putations economically, i.e., without storing the zeros

ä Example: To add two square dense matrices of size n requires O(n2)

operations. To add two sparse matrices A and B requires O(nnz(A) +

nnz(B)) where nnz(X) = number of nonzero elements of a matrix X.

ä For typical Finite Element /Finite difference matrices, number of nonzero
elements is O(n).

35 UM6P’25 Spring School., Feb. 18-24, 2025

Data structures: The coordinate format (COO)

A =

1. 0. 0. 2. 0.

3. 4. 0. 5. 0.

6. 0. 7. 8. 9.

0. 0. 10. 11. 0.

0. 0. 0. 0. 12.

ä Also known as ‘triplet format’
ä Simple data structure - Often used as ’entry’ format in
packages
ä Variant used in matlab
ä Note: order of entries is arbitrary [in matlab: sorted by
columns]

AA JR JC
12. 5 5

9. 3 5
7. 3 3
5. 2 4
1. 1 1
2. 1 4

11. 4 4
3. 2 1
6. 3 1
4. 2 2
8. 3 4

10. 4 3

36 UM6P’25 Spring School., Feb. 18-24, 2025

Compressed Sparse Row (CSR) format

A =

12. 0. 0. 11. 0.

10. 9. 0. 8. 0.

7. 0. 6. 5. 4.

0. 0. 3. 2. 0.

0. 0. 0. 0. 1.

ä IA(j) points to beginning or row j in arrays AA, JA

ä Related: Compressed Sparse Column format,
Modified Sparse Row format (MSR).

1

4

1

2

4

1

3

4

5

3

4

5

10

12

13

 3

 1

 6

AA JA IA

12

10

 8

 7

 2

 3

 4

 6

 5

 9

 1

11

ä Used predominantly in Fortran & portable codes [e.g. Metis] – what about
C?
37 UM6P’25 Spring School., Feb. 18-24, 2025

CSR (CSC) format - C-style

* CSR: Collection of pointers of rows & array of row lengths

typedef struct SpaFmt {
/*---
| C-style CSR format - used internally
| for all matrices in CSR/CSC format
|---*/

int n; /* size of matrix */
int *nzcount; /* length of each row */
int **ja; /* to store column indices */
double **ma; /* to store nonzero entries */

} SparMat;

aa[i][*] == entries of i-th row (col.);
ja[i][*] == col. (row) indices,
nzcount[i] == number of nonzero elmts in row (col.) i

38 UM6P’25 Spring School., Feb. 18-24, 2025

Data structure used in Csparse [T. Davis’ SuiteSparse code]

typedef struct cs_sparse
{/* matrix in compressed-column or triplet form */
int nzmax ; /* maximum number of entries */
int m ; /* number of rows */
int n ; /* number of columns */
int *p ; /* column pointers (size n+1) or

col indices (size nzmax) */
int *i ; /* row indices, size nzmax */
double *x ; /* numerical values, size nzmax */
int nz ; /* # of entries in triplet matrix,

-1 for compressed-col */
} cs ;

ä Can be used for CSR, CSC, and COO (triplet) storage

ä Easy to use from Fortran
39 UM6P’25 Spring School., Feb. 18-24, 2025

Computing y = Ax; row and column storage

Row-form:
Dot product of A(i, :) and x
gives yi

★ ★

★ ★

★

★

★ ★

★ ★

★

★ ★

x Ax

Column-form:
Linear combination of
columns A(:, j) with
coefficients xj yields y

★ ★

★ ★

★

★

★ ★

★ ★

★

★ ★

x Ax

40 UM6P’25 Spring School., Feb. 18-24, 2025

Matvec – row version

void matvec(csptr mata, double *x, double *y)
{

int i, k, *ki;
double *kr;
for (i=0; i<mata->n; i++) {

y[i] = 0.0;
kr = mata->ma[i];
ki = mata->ja[i];
for (k=0; k<mata->nzcount[i]; k++)

y[i] += kr[k] * x[ki[k]];
}

}

ä Uses sparse dot products (sparse SDOTS)

-5 Operation count

41 UM6P’25 Spring School., Feb. 18-24, 2025

Matvec – Column version

void matvecC(csptr mata, double *x, double *y)
{

int n = mata->n, i, k, *ki;
double *kr;
for (i=0; i<n; i++)

y[i] = 0.0;
for (i=0; i<n; i++) {

kr = mata->ma[i];
ki = mata->ja[i];
for (k=0; k<mata->nzcount[i]; k++)

y[ki[k]] += kr[k] * x[i];
}

}

ä Uses sparse vector combinations (sparse SAXPY)

-6 Operation count
42 UM6P’25 Spring School., Feb. 18-24, 2025

ä Using the CS data structure from Suite-Sparse:

int cs_gaxpy (cs *A, double *x, double *y) {
int p, j, n, *Ap, *Ai;
n = A->n; Ap = A-> p; Ai = A->i; Ax = A->x;
for (j=0; j<n; j++) {

for (p=Ap[j]; p<Ap[j+1];p++)
y[Ai[p]] += Ax[p]*x[j];

}
return(1)
}

43 UM6P’25 Spring School., Feb. 18-24, 2025

Sparse matrices in matlab

-7 Generate a tridiagonal matrix T

-8 Convert T to sparse format

-9 See how you can generate this sparse matrix directly using sparse

-10 See how you can use spconvert to achieve the same result

-11 What can you observe about the way the triplets of a sparse matrix are
ordered?

-12 Important for performance: spalloc. See the difference between
A = sparse(m,n) and A = spalloc(m,n,nzmax)

-13 Look at SparsePy for Python examples.

44 UM6P’25 Spring School., Feb. 18-24, 2025

BACKGROUND ON GRAPHS

Graphs – definitions & representations

ä Graph theory is a fundamental tool in many areas

Definition. A graphG is defined as a pair of setsG = (V,E) withE ⊂ V ×V .
So G represents a binary relation. The graph is undirected if the binary
relation is symmetric. It is directed otherwise.

ä V is the vertex set and E is the edge set

ä A binary relation R in V can be represente by graph G = (V,E) where:

(u, v) ∈ E ↔ u R v

Undirected graph↔ symmetric relation

46 UM6P’25 Spring School., Feb. 18-24, 2025

1 2

34

1

3

2

4

(1 R 2); (4 R 1); (2 R 3); (3 R 2);
(3 R 4)

(1 R 2); (2 R 3); (3 R 4); (4 R 1)

ä |E| ≤ |V |2. For undirected graphs: |E| ≤ |V |(|V |+ 1)/2.

ä A sparse graph is one for which |E| � |V |2.

47 UM6P’25 Spring School., Feb. 18-24, 2025

Basic Terminology & notation:

ä If (u, v) ∈ E, then v is adjacent to u. The edge (u, v) is incident to u
and v.

ä If the graph is directed, then (u, v) is an outgoing edge from u and
incoming edge to v

ä Adj(i) = {j|j adjacent to i}

ä The degree of a vertex v is the number of edges incident to v. Can also
define the indegree and outdegree. (Sometimes self-edge i→ i omitted)

ä |S| is the cardinality of set S [so |Adj(i)| == deg(i)]

ä A subgraph G′ = (V ′, E′) of G is a graph with V ′ ⊂ V and E′ ⊂ E.

48 UM6P’25 Spring School., Feb. 18-24, 2025

Representations of Graphs

ä A graph is nothing but a collection of vertices (indices from 1 to n), each
with a set of its adjacent vertices [in effect a ’sparse matrix without values’]

ä For sparse graphs: use any of the sparse matrix storage formats - omit
the real values arrays.

Adjacency matrix Assume V =

{1, 2, · · · , n}. Then the adjacency matrix
of G = (V,E) is the n × n matrix, with
entries:

ai,j =

{
1 if (i, j) ∈ E
0 Otherwise

49 UM6P’25 Spring School., Feb. 18-24, 2025

Representations of Graphs (cont.)

Example:

1

1

1 1

1

1 1

1 1

1 1

1 1

1 2

34

1

3

2

4

50 UM6P’25 Spring School., Feb. 18-24, 2025

More terminology & notation

ä Given Y ⊂ X, the section graph of Y is the subgraph GY = (Y,E(Y))

where E(Y) = {(x, y) ∈ E|x ∈ Y, y in Y }

ä A section graph is a clique if all the nodes in the subgraph are pairwise
adjacent (→ dense block in matrix)

ä A path is a sequence of vertices w0, w1, . . . , wk such that (wi, wi+1) ∈ E
for i = 0, . . . , k − 1.

ä The length of the path w0, w1, . . . , wk is k (# of edges in the path)

ä A cycle is a closed path, i.e., a path with wk = w0.

ä A graph is acyclic if it has no cycles.

51 UM6P’25 Spring School., Feb. 18-24, 2025

-14 Find cycles in this graph:
1

2

3

5

4

7 6

A path in an indirected graph
1

2

3

5

4

7 6

ä A path w0, . . . , wk is simple if the vertices w0, . . . , wk are distinct (except
that we may have w0 = wk for cycles).

ä An undirected graph is connected if there is path from every vertex to
every other vertex.

ä A digraph with the same property is said to be strongly connected

52 UM6P’25 Spring School., Feb. 18-24, 2025

ä The undirected (or symmetrized) form of a digraph = undirected graph
obtained by removing the directions of all edges

ä A directed graph whose undirected form is connected is said to be weakly
connected or connected.

ä Tree = a graph whose undirected form, i.e., symmetrized form, is acyclic
& connected – Forest = a collection of trees

53 UM6P’25 Spring School., Feb. 18-24, 2025

Topological Sorting

The Problem: Given a Directed Acyclic Graph (DAG), order the vertices
from 1 to n such that, if (u, v) is an edge, then u appears before v in the
ordering.

ä Equivalently, label vertices from 1 to n so that in any (directed) path from
a node labelled k, all vertices in the path have labels >k.

Many Applications:

ä Prerequisite requirements in a program
ä Scheduling of tasks for any project
ä Parallel algorithms;
ä ...

54 UM6P’25 Spring School., Feb. 18-24, 2025

Topological Sorting: A first algorithm

Property exploited: An acyclic Digraph must have at least one vertex with
indegree = 0. -15 Prove this

Algorithm:

ä First label vertices with indegree 0 as as 1, 2, . . . , k;

ä Remove these vertices and all edges incident from them

ä Resulting graph is again acyclic ... ∃ nodes with indegree = 0. Label
these nodes as k + 1, k + 2, . . . ,

ä Repeat...

55 UM6P’25 Spring School., Feb. 18-24, 2025

-16 Explore implementation aspects.

ä In practice: another algorithm is preferred: one based on Depth-First
traversals of graphs.

ä ... Details skipped

56 UM6P’25 Spring School., Feb. 18-24, 2025

GRAPH MODELS FOR SPARSE MATRICES

Graph Representations of Sparse Matrices. Recall:

Adjacency Graph G = (V,E) of an n× n matrix A :

V = {1, 2,, N} E = {(i, j)|aij 6= 0}

ä G == undirected if A has a symmetric pattern

Example:
?

?

? ?

?

1 2

34

? ?

? ?

? ?

? ?

1

3

2

4

58 UM6P’25 Spring School., Feb. 18-24, 2025

-17 Show the matrix pattern for the graph
on the right. The set {v2, v3, v4} is a ____?
Related submatrix in adj. matrix is ____?

1

2

3

5

4

7 6

ä A separator is a set Y of vertices such that the graph GX−Y is discon-
nected.

Example: Y = {v3, v4, v5} is a separator in the above figure

59 UM6P’25 Spring School., Feb. 18-24, 2025

-18 Adjacency graph of:

A =

? ?

? ?

? ? ? ?

? ?

? ?

? ?

.

-19 For any adjacency matrixA, what is the graph ofA2? [interpret in terms
of paths in the graph of A]

60 UM6P’25 Spring School., Feb. 18-24, 2025

ä Two graphs are isomorphic is there is a mapping between the vertices of
the two graphs that preserves adjacency.

-20 Are the following 3 graphs isomorphic? If yes find the mappings be-
tween them.

1

23

4

5
6 36

4 5

1 2
1

2 3

4 5

6

ä Graphs are identical – labels are different

ä Determinig graph isomorphism is a hard problem

61 UM6P’25 Spring School., Feb. 18-24, 2025

Bipartite graph representation

ä Rows and columns are (both) represented by vertices;

ä Relations only between rows and columns: Row i is connected to column
j if aij 6= 0

Example:

?

?

? ?

? ?

? ?

ä Bipartite models used only for specific cases [e.g. rectangular matrices,
...] - By default we use the standard definition of graphs.

62 UM6P’25 Spring School., Feb. 18-24, 2025

Interpretation of graphs of matrices

-21 What is the graph of A+B (for two n× n matrices)?

-22 What is the graph of AT ?

-23 What is the graph of A.B?

63 UM6P’25 Spring School., Feb. 18-24, 2025

Paths in graphs

-24 What is the graph of Ak?

Theorem Let A be the adjacency matrix of a graph G = (V,E). Then for
k ≥ 0 and vertices u and v of G, the number of paths of length k starting at
u and ending at v is equal to (Ak)u,v.

Proof: Proof is by induction.

65 UM6P’25 Spring School., Feb. 18-24, 2025

ä Recall (definition): A matrix is reducible if it can be permuted into a block
upper triangular matrix.

ä Note: A matrix is reducible iff its adjacency graph is not (strongly) con-
nected, i.e., iff it has more than one connected component.

66 UM6P’25 Spring School., Feb. 18-24, 2025

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

BC

A

A B C

ä No edges from C to
A orB. No edges from
B to A.

Theorem: Perron-Frobenius An irreducible, nonnegative n × n matrix A
has a real, positive eigenvalue λ1 such that:
(i) λ1 is a simple eigenvalue of A;
(ii) λ1 admits a positive eigenvector u1 ; and
(iii)|λi| ≤ λ1 for all other eigenvalues λi where i > 1.

ä The spectral radius is equal to the eigenvalue λ1

67 UM6P’25 Spring School., Feb. 18-24, 2025

ä Definition : a graph is d regular if each vertex has the same degree d.

Proposition: The spectral radius of a d regular graph is equal to d.

Proof: The vector e of all ones is an eigenvector of A associated with the
eigenvalue λ = d. In addition this eigenvalue is the largest possible (consider
the infinity norm of A). Therefore e is the Perron-Frobenius vector u1.

68 UM6P’25 Spring School., Feb. 18-24, 2025

Application: Markov Chains

ä Read about Markov Chains in Sect. 10.9 of:
https://www-users.cs.umn.edu/~saad/eig_book_2ndEd.pdf

ä Let π ≡ row vector of stationary probabilities
ä Then π satisfies the equation →

πP = π

ä P is the probabilty transition matrix and it is ‘stochastic’:

A matrix P is said to be stochastic if :
(i) pij ≥ 0 for all i, j
(ii)

∑n
j=1 pij = 1 for i = 1, · · · , n

(iii) No column of P is a zero column.

69 UM6P’25 Spring School., Feb. 18-24, 2025

https://www-users.cs.umn.edu/~saad/eig_book_2ndEd.pdf

ä Spectral radius is ≤ 1

-25 Why?

ä Assume P is irreducible. Then:

ä Perron Frobenius → ρ(P) = 1 is an eigenvalue and associated eigen-
vector has positive entries.

ä Probabilities are obtained by scaling π by its sum.

ä Example: One of the 2 models used for page rank.

Example: A college Fraternity has 50 students at various stages of college
(Freshman, Sophomore, Junior, Senior). There are 6 potential stages for the
following year: Freshman, Sophomore, Junior, Senior, graduated, or left-without
degree. Following table gives probability of transitions from one stage to next

70 UM6P’25 Spring School., Feb. 18-24, 2025

To From Fr So. Ju. Sr. Grad lwd
Fr. .2 0 0 0 0 0
So. .6 .1 0 0 0 0
Ju. 0 .7 .1 0 0 0
Sr. 0 0 .8 .1 0 0
Grad 0 0 0 .75 1 0
lwd .2 .2 .1 .15 0 1

-26 What is P? Assume initial population is x0 = [10, 16, 12, 12, 0, 0] and do
a follow the population for a few years. What is the probability that a student
will graduate? What is the probability that s/he leaves without a degree?

71 UM6P’25 Spring School., Feb. 18-24, 2025

A few words on hypergraphs

ä Hypergraphs are very general.. Ideas borrowed from VLSI work

ä Main motivation: to better represent communication volumes when parti-
tioning a graph. Standard models face many limitations

ä Hypergraphs can better express complex graph partitioning problems and
provide better solutions.

ä Example: completely nonsymmetric patterns ...

ä .. Even rectangular matrices. Best illustration: Hypergraphs are ideal for
text data

72 UM6P’25 Spring School., Feb. 18-24, 2025

Example: V = {1, . . . , 9} and E = {a, . . . , e} with
a = {1, 2, 3, 4}, b = {3, 5, 6, 7}, c = {4, 7, 8, 9},
d = {6, 7, 8}, and e = {2, 9}

✖ ✖

●

✖ ✖

●

●●

✖

✖✖

✖✖

●

1

2

3

4

5

67

8
9

a b

c
d

e

net e

net d

Boolean matrix:
1 2 3 4 5 6 7 8 9
1 1 1 1 a

1 1 1 1 b
A = 1 1 1 1 c

1 1 1 d
1 1 e

73 UM6P’25 Spring School., Feb. 18-24, 2025

A few words on computational graphs

ä Computational graphs: graphs where
nodes represent computations whose evalu-
ation depend on other (incoming) nodes.

a(x,y,z) b(x,y,z)

f(x,y,z)

f(x,y,z) = g(a(x,y,z), b(x,y,z))

ä Consider the following expression: g(x, y) = (x+ y − 2) ∗ (y + 1)

ä Can be decomposed as:

z = x+ y

v = y + 1

g = (z − 2) ∗ v

74 UM6P’25 Spring School., Feb. 18-24, 2025

ä Computational graph→
ä Given x, y we want:
(a) Evaluate the nodes and
(b) derivatives w.r.t x, y

x y

v = y+1
z = x+y

g = (z−2)*v

(a) is trivial - just follow the graph up - starting from the leaves (that contain x
and y)

(b): Use the chain rule – here shown for x only
using previous setting

∂g
∂x

= ∂g
∂a
da
dx

+ ∂g
∂b
db
dx

-27 For the above example compute values and derivatives at all nodes
when x = −1, y = 2.

75 UM6P’25 Spring School., Feb. 18-24, 2025

Back-Propagation

ä Often we want to compute the gradient of the function at the root, once
the nodes have been evaluated

ä The derivatives can be calculated by going backward (or down the tree)

ä Here is a very simple example from Neural Networks
L = 1

2
(y − t)2

y = σ(z)

z = wx+ b

x

w

b

z y
L

t

ä Note that t (desired output) and x (input) are constant.

76 UM6P’25 Spring School., Feb. 18-24, 2025

Back-Propagation: General computational graphs

Representation: a DAG

ä Last node (vn) is the target function. Let us rename it f .

ä Nodes vi, i = 1, · · · , e with indegree 0 are the variables

ä Want to compute ∂f/∂v1, ∂f/∂v2, · · · , ∂f/∂ve

ä Use the chain rule.
−→

∂f

∂vk
=
∂f

∂vj

∂vj

∂vk
+
∂f

∂vl

∂vl

∂vk
+
∂f

∂vm

∂vm

∂vk

77 UM6P’25 Spring School., Feb. 18-24, 2025

ä Let δk = ∂f
∂vk

(called ‘errors’). Then

δk = δj
∂vj

∂vk
+ δl

∂vl

∂vk
+ δm

∂vm

∂vk

ä To compute the δk’s once the vj’s have
been computed (in a ‘forward’ propagation) –
proceed backward.
ä δj, δl, δm available and ∂vi/∂vk com-
putable. Nore δn ≡ 1.

ä However: cannot just do this in any order. Must follow a topological order
in order to obey dependencies.

ä W’ll revisit back-propagation later.
78 UM6P’25 Spring School., Feb. 18-24, 2025

GRAPH CENTRALITY

Centrality in graphs

ä Goal: measure importance of a node, edge, subgraph, .. in a graph

ä Many measures introduced over the years

ä Early Work: Freeman ’77 [introduced 3 measures] – based on ‘paths in
graph’

ä Many different ways of defininf centrality! We will just see a few

80 UM6P’25 Spring School., Feb. 18-24, 2025

Degree centrality: (simplest) ‘Nodes
with high degree are important’

CD(v) = deg(v)
n−1

(note: scaling n− 1 is unimportant)

Closeness centrality: ‘Nodes that are
close to many other nodes are important’

CC(v) = n−1∑
w 6=v d(v,w)

Betweenness centrality:
(Freeman ’77)

CB(v) =
∑

u 6=v,w 6=v
σuw(v)
σuw

• σuw = total # shortest paths from u to w

• σuw(v) = total # shortest paths from u to w passing through v
ä ’Nodes that are on many shortest paths are important’

-28 Explores matlab and python codes in centrality folder
81 UM6P’25 Spring School., Feb. 18-24, 2025

Example: Find CD(v); CC(v); CB(v) when v = C

A B

E F C

D

(u,w) σuw(v) σuw / (u,w) σuw(v) σuw /
(A,B) 0 1 0 (B,E) 0 1 0
(A,D) 0 1 0 (B,F) 1 1 1
(A,E) 0 1 0 (D,E) 1 2 .5
(A,F) 0 1 0 (D,F) 1 1 1
(B,D) 0 1 0 (E,F) 0 1 0

ä CD(v) = 3/5 = 0.6 ;

ä CC(v) = 5/[dCA + dCB + dCD + dCE + dCF]

= 5/[2 + 1 + 1 + 2 + 1] = 5/7

ä CB(v) = 2.5 (add all ratios in table)

-29 Redo this for v = B

82 UM6P’25 Spring School., Feb. 18-24, 2025

Eigenvector centrality:

ä Supppose we have n nodes vj, j = 1, · · · , n– each with a measure of
importance (’prestige’) pj

ä Principle: prestige of i depends on that of its neighbors.

ä Prestige xi = multiple of sum of pres-
tiges of neighbors pointing to it λxi =

∑
j ∈ N (i)

xj =

n∑
j=1

ajixj

ä xi = component of eigenvector associated with λ.

ä Perron Frobenius theorem at play again: take largest eigenvalue→ xi’s
nonnegative

83 UM6P’25 Spring School., Feb. 18-24, 2025

Page-rank

ä Can be viewed as a variant of Eigenvector centrality

Main point: A page is important if it is pointed to by other important pages.

ä Importance of your page (its PageRank) is determined by summing the
page ranks of all pages which point to it. [→ same as EV centrality]

ä Weighting: If a page points to several other pages, then the weighting
should be distributed proportionally.

ä Imagine many tokens doing a random walk on this graph:
• (δ/n) chance to follow one of the n links on a page,
• (1− δ) chance to jump to a random page.
•What’s the chance a token will land on each page?

84 UM6P’25 Spring School., Feb. 18-24, 2025

Page-Rank - definitions

If T1, ..., Tn point to page Ti then

ρ(Ti) = 1− δ + δ

[
ρ(T1)

|T1|
+
ρ(T2)

|T2|
+ · · ·

ρ(Tn)

|Tn|

]
ä |Tj| = count of links going out of Page Ti. So the ’vote’ ρ(Tj) is spread
evenly among |Tj| links.

ä Sum of all PageRanks == 1: ΣTρ(T) = 1

ä δ is a ’damping’ parameter close to 1 – e.g. 0.85

ä Defines a (possibly huge) Hy-
perlink matrix H

hij =

{
1
|Ti|

if i points to j
0 otherwise

85 UM6P’25 Spring School., Feb. 18-24, 2025

-30 4 Nodes

A points to B and D

B points to A, C, and D

C points to A and B

D points to C

1) What is the H matrix?

2) the graph?

86 UM6P’25 Spring School., Feb. 18-24, 2025

A
B

C

D

A B C D

A 1/2 1/2

B 1/3 1/3 1/3

C 1/2 1/2

D 1

ä Row- sums of H are = 1.

ä Sum of all PageRanks will be
one:

∑
All-PagesA

ρ(A) = 1.

ä H is a stochastic matrix [actually it is forced to be by changing zero rows]

87 UM6P’25 Spring School., Feb. 18-24, 2025

Algorithm (PageRank)

1. Select initial row vector v (v ≥ 0)
2. For i=1:maxitr
3 v := (1− δ)eT + δvH

4. end

-31 Do a few steps of this algorithm for previous example with δ = 0.85.

ä This is a row iteration..

v = (1− δ)eT + v . δH

88 UM6P’25 Spring School., Feb. 18-24, 2025

A few properties:

ä v will remain ≥ 0. [combines non-negative vectors]

More general iteration: v := v[(1− δ)E + δH︸ ︷︷ ︸
G

] with E = ezT

where z is a probability vector eTz = 1 [Ex. z = 1
n
e]

ä A variant of the power method.

ä e is a right-eigenvector of G associated with λ = 1. We are interested in
the left eigenvector.

-32 Run test_pr + other drivers in /centrality

89 UM6P’25 Spring School., Feb. 18-24, 2025

Kleinberg’s Hubs and Authorities

ä Idea is to put order into the web by ranking pages by their degree of
Authority or "Hubness".

ä An Authority is a page pointed to by many important pages.
• Authority Weight = sum of Hub Weights from In-Links.

ä A Hub is a page that points to many important pages:
• Hub Weight = sum of Authority Weights from Out-Links.

ä Source:

http://www.cs.cornell.edu/home/kleinber/auth.pdf

90 UM6P’25 Spring School., Feb. 18-24, 2025

http://www.cs.cornell.edu/home/kleinber/auth.pdf

Computation of Hubs and Authorities

ä Simplify computation by forcing sum of squares of weights
to be 1.

ä Authj = xj =
∑

i:(i,j)∈Edges Hubi.

ä Hubi = yi =
∑

j:(i,j)∈Edges Authj.

ä Let A = Adjacency matrix: aij = 1 if (i, j) ∈ Edges.

ä y = Ax, x = ATy.

ä Iterate . . . to leading eigenvectors of ATA & AAT .

ä Answer: Leading Singular Vectors!

91 UM6P’25 Spring School., Feb. 18-24, 2025

