GRAPH LAPLACEANS AND THEIR APPLICATIONS |



Graph Laplaceans - Definition

» “Laplace-type” matrices associated with general undirected graphs —
useful in many applications

» Given a graph G = (V, E) define
A matrix W of weights w,; for each edge
Assume w;; > 0,, w;; = 0, and w;; = wj; (i, J)
The diagonal matrix D = diag(d;) with d; = } _,_,; w;;

» Corresponding graph Laplacean of G is: L=D-W

» (Gershgorin’s theorem — L is positive semidefinite.
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» Simplest case:

wz]:{l If (7/’.7) € E&’L#] D:dlag dz:ZwZ]

|
0 else _ e
Example: ] ]
Consider the graph 1 -1 0 0 O
‘ 2 -1 2 0 0 -1
@
L =10 0 1 0 -1
0 0 0 1 -1
o -1 -1 -1 3
° ° i |
4 5 3
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#1033

Define the graph Laplacean for the

graph associated with the simple mesh shown
next. [use the simple weights of 0 or 1]. What
Is the difference with the discretization of the
Laplace operator for case when mesh is the
same as this graph?

® ® @ ®
9 10 11 12

® @ @ ®
5 6 7 8

@ @ ® J
1 2 3 4
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Proposition:
() L is symmetric semi-positive definite.
(i) L is singular with 1 as a null vector.
(i) If G is connected, then Null(L) = span{ 1}
(

by:

1if i € G,

(7)y. —
(z7)i {0 if not.

iv) If G has k > 1 connected components G, G, - - - , G, then the nullity
of L is k and Null(L) is spanned by the vectors 2\, 5 =1, ... , k defined
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Proof: (i) and (ii) seen earlier and are trivial. (iii) Clearly v = 1 is a null vector
for L. The vector D~'/2q is an eigenvector for the matrix D~Y/2LD~1/? =
I — D~'/2W D~1'/2? associated with the smallest eigenvalue. It is also an
eigenvector for D~/2W D—1/2 associated with the largest eigenvalue. By the
Perron Frobenius theorem this is a simple eigenvalue... (iv) Can be proved
from the fact that L can be written as a direct sum of the Laplacian matrices
for Gy, -+ ,Gy. B
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A few properties of graph Laplaceans

Define: oriented incidence matrix H: (1)First orient the edges i ~ j into
i — j or 5 — i. (2) Rows of H indexed by vertices of G. Columns indexed
by edges. (3) For each (¢,7) in E, define the corresponding column in H

as \/w(i, 3)(e; — e;).

Example: | In previous example (4 11 (1) g 8
p. back) orient: — j sothat 5 > 1 H = 1o 0 1 0
[lower triangular matrix representa- 0 O 0 1
tion]. Then matrix H is: o -1 -1 -1

Property 1 L=HHT

#34| Re-prove part (iv) of previous proposition by using this property.
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A few properties of graph Laplaceans

Strong relation between ' Lz and local dis-
tances between entries of x

» Let L =any matrixs.t. L = D — W, with
D = diag(d;) and

wi; 2> 0, d; = Zwij
J71

Property 2: forany x € R™ :

1
' Ler = — E fwij|a3i —x; 2
2 —
i.J




Property 3: (generalization) for any Y € R*" ;

1
TrYLY '] = §Z’wz’j|lyi — y,I?
sJ

» Note: y; = j-th colunm of Y. Usually d < n. Each column can represent
a data sample.

Property 4: For the particular L=1—111"

XLX'" = XX'" == n x Covariance matrix

Property 5: L is singular and admits the null vector
1 =ones (n, 1)
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Property 6: (Graph partitioning) Consider situation when w;; € {0,1}. If
x IS a vector of signs (£1) then

x' Lx = 4 x (‘number of edge cuts’)

edge-cut = pair (i, ) with x; # x;

» (Consequence: Can be used to partition graphs
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» Would like to minimize (Lz,x) subjectto x € {—1,1}* and efx = 0
[balanced sets]

» WII solve a relaxed form of this problem

#35| What if we replace x by a vector of ones (representing one partition)
and zeros (representing the other)?

#36| Let x be any vector and y = x+a«a 1 and L a graph Laplacean. Compare
(Lx, x) with (Ly, y).
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» Consider any symmetric (real) matrix A with eigenvalues A\; < Ay <
... < A\, and eigenvectors u, -+ ,u,

» Recall that: . (Az,z)

. min = A\
(Min reached for = u;) zeR" (x, )
» In addition: . (Az,z)

. min = Xy
(Min reached for = u,) zlui (z,x)

» For a graph Laplacean u; = 1 = vector of all ones and

» ..vector u, is called the Fiedler vector. It solves a relaxed form of the
problem -
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_>
e =1L 'ﬂTw=0 (:13,:13) ER™; 'ﬂT:c:O (a:,a:)

» Define v = us then lab = sign(v — med(v))
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Recursive Spectral Bisection

1 Form graph Laplacean

2 Partition graph in 2 based on
Fielder vector

3 Partition largest subgraph in
two recursively ...

4 ... Until the desired number of
partitions is reached

105

L O
goas
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Three approaches to graph partitioning:

1. Spectral methods - Just seen + add Recursive Spectral Bisection.

2. Geometric techniques. Coordinates are required. [Houstis & Rice et al.,
Miller, Vavasis, Teng et al.]

3. Graph Theory techniques — multilevel,... [use graph, but no coordinates]

 Currently best known technique is Metis (multi-level algorithm)

« Simplest idea: Recursive Graph Bisection; Nested dissection (George &
Liu, 1980; Liu 1992]

» Advantages: simplicity — no coordinates required

#37| Run testBis_simple and testMeshPart (in /gpartition)
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APPLICATIONS OF GRAPH LAPLACEANS: CLUSTERING I



Clustering

» Problem: we are given n data items: z,xz,,---,xz,. Would like to
‘cluster’ them, i.e., group them so that each group or cluster contains items

that are similar in some sense.

> Example:

Superhard

Superconductors ‘
: Catalytic

Multi-ferroics

» Each group is a ‘cluster’ or a ‘class’

Photovoltaic

Ferromagnetlc

Thermo-electric

materials

» Example: Digits

PCA - digits : 5 —7

o
é

)
od °
o

°° :‘;’

~N o O
wl

» ‘Unsupervised learning’
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A basic method: K-means

» A basic algorithm that uses Euclidean distance

1 Select p initial centers: ¢4, ¢, ..., ¢, fOr classes 1,2,--- ,p
2 For each z; do: determine class of x; as argmin,||x; — ck||
3 Redefine each ¢, to be the centroid of class k

4 Repeat until convergence

C1

o0 4
. ° o » Simple algorithm
° .. » Works well (gives good re-
° ° * 0o sults) but can be slow
Co e ¢ » Performance depends on ini-
o ® o tialization
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Methods based on similarity graphs

» (Class of Methods that perform clustering by exploiting a graph that de-
scribes the similarities between any two items in the data.

» Need to:

1. decide what nodes are in the neighborhood of a given node

2. quantify their similarities - by assigning a weight to any pair of nodes.

Example: | For text data: Can decide that any columns < and j with a
cosine greater than 0.95 are ‘similar’ and assign that cosine value to w;
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First task: build a ‘similarity’ graph

» Goal: to build a similarity
graph, i.e., a graph that captures
similarity between any two items

» Two methods: K-nearest Neighbor graphs or use Gaussian (‘heat’) kernel




K-nearest neighbor graphs |

» (Given: a set of n data points X = {x,...,x,} — vertices

» Given: a proximity measure between two data points x; and xz; — as
measured by a quantity dist(x;, ;)

» Want: For each point x; a list of the ‘nearest neighbors’ of x; (edges
between x; and these nodes).

» Note: graph will usually be directed — need to symmetrize
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Nearest neighbor graphs

Data ° O
®
» For each node, get
a few of the nearest >
neighbors — Graph o
o
Graph O

» Problem: How to build a nearest-neighbor graph from given data

» We will revisit this later.
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Two types of nearest neighbor graph often used:
e-graph: Edges consist of pairs (x;, ;) such that p(z;, z;) <€

kNN graph: Nodes adjacent to x; are those nodes x, with the k£ with
smallest distances p(x;, ;).

» e-graph is undirected and is geometrically motivated. Issues: 1) may
result in disconnected components 2) what €?

» kNN graphs are directed in general (can be trivially fixed).

» kNN graphs especially useful in practice.
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Similarity graphs: Using ‘heat-kernels’ |

Define weight between ¢ and j as:

)
—ll;—a ;2

fwz-jzfij X (¢ € "X If ”w’b_w.?” <r

0 if not

\

» Note ||z; — x;|| could be any measure of distance...
» fi; = optional = some measure of similarity - other than distance
» Only nearby points kept.

» Sparsity depends on parameters
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Edge cuts, ratio cuts, normalized cuts, ...

» Assume now that we have built a ‘similarity graph’

» Setting is identical with that of graph partitioning.

» Need a Graph Laplacean: L

D — W with w;; = O,wij > 0 and

D = diag(W = ones(n, 1)) [in matlab notation]

» Partition vertex set V in two sets A and B with

AUuUB=V, ANnB=10

> Define cut(A,B) = > w(u,v)

u €A, veEB
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» First (naive) approach: use this measure to partition graph, i.e.,
... Find A and B that minimize cut(A, B).

» Issue: Small sets, isolated nodes, big imbalances,

. % @ @ Min-cut1
®9 ° o ®
.OQQ. ® . ______
0. o0 ® ! Min-cut 2

Better cut
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» Standard Graph Partitioning approach: Find A, B by solving

Minimize cut(A, B), subjectto |A| = |B|

» Condition |A| = | B| not too meaningful in some applications - too restric-
tive in others.

»  Minimum Ratio Cut approach. Find A, B by solving:

cut(A,B)
|Al.| B

Minimize

» Difficult to find solution (original paper [Wei-Cheng '91] proposes several
heuristics)

»  Approximate solution : spectral .
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Theorem [Hagen-Kahng, 91] If X\, is the 2nd smallest eigenvalue of L,
then a lower bound for the cost ¢ of the optimal ratio cut partition, is:
A2

c> —.
n

» |dea is to use eigenvector associated with A, to determine partition, e.g.,
based on sign of entries. Use the ratio-cut measure to actually determine
where to split.
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Normalized cuts [Shi-Malik,2000]

» Recall notation w(X,Y) = > cx.,cy w(®,y) - then define:

ncut(A, B) = 42 4 2D > Goal is to avoid small sets A, B
#38| What is w(A, V) in the case when w;; ==1 7
> Let z be an indicator vector: s =) L reA
0if ic B

» Recallthat: z'Lz =) ;pwij|lz; — x;|° (each edge counted once)

» Using this in ncut + calculations ...
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\/

. y' Ly
Need to solve: vi {0,258} yT Dy
Subjectto y'D1 =0

+ Relax — need to solve Generalized eigenvalue problem

Ly = A\Dy

y1 = 1 is eigenvector associated with eigenvalue A; = 0
y2 associated with second eigenvalue solves problem.

Method quite popular for segmentation
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DIMENSION REDUCTION - A.K.A. EMBEDDING I



Recall: Unsupervised learning

“Unsupervised learning” : methods do not
exploit labeled data
» Example of digits: perform a 2-D projec-
tion
» Images of same digit tend to cluster
(more or less)
» Such 2-D representations are popular
for visualization
» Can also try to find natural clusters in
data, e.g., in materials
» Basic clusterning technique: K-means

PCA - digits : 5 —7

(]
é
o

o .
od 5
o * 6

° & o
°°°‘ ‘ ‘ ‘07‘

Photovoltaic

Superhard
Superconductors
.e Q
08 Ferromagnetic
Q . Catalytic
Multi-ferroics Thermo-electric
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20
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20

10

20

[N
o

N
o

Example: Digit images (a random sample of 30)

[y
o

N
o

(=Y
o

N
o

[y
o

N
o

N

[y
o

N
o

(@)

0111 o o o
[ [ [ [ [
o‘ o o ) o
[ [ [ = [
a1 o o a o

e fLE V]
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2-D ’reductions’:

PCA - digits: 0 — 4

LLE - digits: 0 — 4

6r 0.15¢
X + 0
4+ x 1] 017
O 2505} %X, ré‘
2 A 3 X :
L % X
ol 4l 0 "
-0.05} e x
-2t X
-01p £
4l X
-0.15 ¥
-6 : ' -0.2 : - - -
-10 -5 0 5 10 20.2 -0.1 0 0.1 0.2
K-PCA - digits : 0 — 4 ONPP - digits : 0 —— 4
027 0.1f
X X + O
0151 R « 1005
« XX x
0.0} XX XREE o 2| ol
)R A 3
0.05} 4 |-0.05}
Or Y -0.1}
-0.05} -0.15}
-0.1t -0.2f x
X %
-0.15 ' ' ' ' -0.25 ' ' ' >
0.07 0071 0072 0073  0.074 -5.4341 -5.4341 -5.4341 -5.4341 -5.4341
-3
x 10

125
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Major tool of Data Mining: Dimension reduction

» Given: X = [xy,--- ,x,] € R™*" find a low-dimens. representation
Y = [y, ,yn] € R>?of X

» Achieved by amapping ®:2 € R™ — y € R

A %.0'0.; dI Y Yi I/
Wor S, g

n
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» dmaybelinear: y;=W'z;, Vj,onY = W'X
» ... or nonlinear (implicit).

» Mapping ® required to: Preserve proximity? Maximize variance? Pre-
serve a certain graph?

» We say that the data (x;’s) is embedded into R (the y;’s)
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Basics: Principal Component Analysis (PCA)

In ' Principal Component Analysis W is computed to:

Maximize vari- n o 2

ance of pro- max Z Yi — — Z Y, , Y = WTa}'i.
: _ WeRmXAWTW=] 4 n 4

jected data: i=1 =il |,

» Leads to

e TrWH(X —pe ) (X —pe)TW]|, p=137
maximizing

» Solution W = { dominant eigenvectors } of the covariance matrix = Set
of left singular vectors of X = X — pe’
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SVD:

X=UxV', UTU=1, V'V =1, ¥ =Diag

» Optimal W = U, = matrix of first d columns of U

» Solution W also minimizes ‘reconstruction error’ ..

D Mz = WW | = " [lai — Wy

» In some methods recentering to zero is not done, i.e., X replaced by X.
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SUPERVISED LEARNING I



Supervised learning

» We now have data that is ‘labeled’

Examples: Health Sciences (‘malignant’- 'non malignant’) ; Materials (‘pho-
tovoltaic’, ’hard’, ‘conductor’, ...) ; Digit Recognition ('0’, ’1’, ....,’9)




Supervised learning

» We now have data that is ‘labeled’

Examples: Health Sciences (‘malignant’- 'non malignant’) ; Materials (‘pho-
tovoltaic’, ’hard’, ‘conductor’, ...) ; Digit Recognition ('0’, ’1’, ....,’9)

e

P
e
G
s
)
RE

o® o®
®%. o OOO ®% o OOO
@ ®) O @ o O
o9 O o9 O
g\o o b g\o o
a a




Digfit 1
Digit 2
Digit 9
Digit ??

» Best illustration: written

Supervised learning: classification
digits recognition example HH HHHHHHHHH TR HHHH H
Given: set of labeled sam-

les (training set), and an | L
P g set), and 4 Training data Test data
(unlabeled) test image «.

Problem: label of & =7?

——————— Digit0

uolonpal uoisuswiq

1 Digit 22

» Roughly speaking: we seek dimension reduction so that recognition is
‘more effective’ in low-dim. space
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Basic method: K-nearest neighbors (KNN) classification

» |ldea of a voting system: get
distances between test sample and
training samples

» Get the k nearest neighbors (here

k = 8)

» Predominant class among these k
items is assigned to the test sample
(“*” here)

134

| [ |
] v
N 4 (]
@" iy
* ;o ®
% /%
Pt ® o
v % e
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Supervised learning: Linear classification

Linear classifiers: Find a hy-
perplane which best separates
the data in classes A and B.
»  Example of application:
Distinguish between SPAM PY
and non-SPAM e-mails

Linear
classifier

» Note: The world in non-linear. Often this is combined with Kernels —
amounts to changing the inner product
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A harder case

Spectral Bisection (PDDP)

40
P S
o, BT o
H e vt e TR 1<
UL L ++H
-
+ g M+ Tt e
++ + T+ ++ T
4 + 1 B T
i + 4 P
f %T‘T 1 *+ ++ —4 o™
#y < +EH
+ T 1 + +
+ 3 o
A ! s
+# + 1 +H++ #
4o
ﬂ#iﬂ‘ﬁ ! + +
T 1 iﬁ#ﬁ
4 o) 10 O
A B By Bo® g
- e} 2 Bt
e 0B%0 e o8 &
+F 90?2 ! O
o) o 9
L AR
o mmu Og 0O ) —4 0
082 BB 0 00
S g 8
Q0 QP @By O o
& , o @
On%% O 1
090 & @m%v
@0 O 0 o OO0
1 1 1 1 1 1 1 o~
[s2} N - o - N o™ |

-4

» Use kernels to transform
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Projection with Kernels —— 0% = 2.7463

01r
0.08F
0.06} ., R
+
. T
H f
0.04} o® H "
E
0.02F i
e
ofF A
+
-0.02} T
+*
3 s
-0.04f © i &
i
+ jﬁ:; ﬁ'ﬁ
-0.06 - R
-0.08} %@ﬁ
_0.1 1 1 1 1 1 1 ]
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06

Transformed data with a Gaussian Kernel
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Simple linear classifiers

» Let X = [x4,---,x,] De the data matrix.

» and L = [ly,---,l,]==labels. I; = £+1
» 1st Solution: Find a vector v such that
uTx; close to I;, Vi

» Common solution: SVD to reduce
dimension of data [e.g. 2-D] then do com-
parison in this space. e.qg.

A: ’UJTCI}i >0, B:’U,TiL‘i <0

[For clarity: principal axis « drawn below where it should be]
UM6P’25 Spring School., Feb. 18-24, 2025



Fisher’s Linear Discriminant Analysis (LDA)

Principle: Use label information to build a good projector, i.e., one that can
‘discriminate’ well between classes

» Define “between scatter”: a measure of how well separated two distinct
classes are.

» Define “within scatter”: a measure of how well clustered items of the same
class are.

» Objective: make “between scatter” measure large and “within scatter”
small.

Idea: Find projector that maximizes the ratio of the “between scatter”
measure over “within scatter” measure
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e 1 = Mean (X)
Sp = > m(p® — p)(u® — )7, o u® = mean (Xy)
=l where:
Sw =Y Y (x;—p®)(x;—p®)T o X = k-th class
k=1 x; €X;
o n; = | Xl

B CLUSTER CENTROIDS
% GLOBAL CENTROID

X3
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a"Spa = Y ny " (u®) — p))?,

» Consider 2nd mo- i1
ments for a vector a: c
al'Swa = S: S: |aT(:1:i — y,("’))|2
k=1 x; € X,

» a''Spa = weighted variance of projected u;’s

» a’'Swa = w. sum of variances of projected classes X’s

» LDA projects the data so as to maximize the o a’Spa

ratio of these two numbers: a al'Swa

» Optimal a = eigenvector asso-

- - - Spu; = AiSwu; .
ciated with top eigenvalue of:
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LDA - Extension to arbitrary dimensions

» Criterion: maximize the ratio of two Tr [uTsgU]
traces: Trwrsyu

» Constraint: UTU = I (orthogonal projector).
» Reduced dimensiondata: ¥ = UTX.

Common viewpoint: hard to maximize, therefore ...

> 2 alternative: Solve instead the max Tt [UTSpU]
(‘easier’) problem: UTSwU=I

» Solution: largest eigenvectors of Spu; = \;Swu; .
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In Brief: Support Vector Machines (SVM)

» Similar in spirit to LDA. Formally, SVM finds a hyperplane that best
separates two training sets belonging to two classes.

» |f the hyperplane is: wlz +b=0

» Then the classifier is  f(x) = sign(w’z + b) : assigns y = +1 to one
class and y = —1 to other

» Normalize parameters w, b by looking for hyperplanes of the form wlx +
b > 1 to include one set and w'z 4+ b < —1 to include the other.

» With y; = +1 for one class and y; = —1 for the other, we can write the
constraints as y;(w!x; + b) > 1.
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® y
» The margin is the maximum O A
. /
distance between two such ®o o © - om
lanes: goal find w, b to maximiz T
p . g d w, tO a e ° ° /.,/ // - |
margin. ° , ,’
® Y J .
/ / |
. . . . /
» Maximize margin subject to the X . u
/
constraint y;(wlz; + b) > 1. AN )t "
- , [ ] —
7 s
/ 7/ [
’ |

» As it turns out the margin is equal to: ~

#0139 Prove it.
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» Need to solve the con-
strained quadratic program-
ming problem:

1
. 2
min )

st yi(wlx; +b) > 1, Va,.

Modification 1: Soft margin. Consider hinge loss: max{0, 1 — y;[w’z; + b]}

» Zero if constraint satisfied for pair x;, y;. Otherwise proportional to dis-
tance from corresponding hyperplane. Hence we can minimize

1 n
AMwl* + = max{0,1 — yi[w"z; + b]}
n 1=1

between z; and hyperplane |wlz; + b = +1

“40| Suppose y; = +1 and let d; = 1 — y;[wlx; + b]. Show that the distance

IS d;/||w]]|.

Modification 2 : Use in combination with a Kernel to improve separability
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Building a nearest neighbor graph

» Question: How to build a nearest-neighbor graph from given data?
o ) P )

o
Data ()

Graph [

» Will demonstrate the power of a divide a conquer approach combined
with the Lanczos algorithm.
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Recall: Two common types of nearest neighbor graphs
e-graph: Edges consist of pairs (x;, ;) such that p(z;, z;) <€

kNN graph: Nodes adjacent to x; are those nodes x, with the k£ with
smallest distances p(x;, ;).

» e-graph is undirected and is geometrically motivated. Issues: 1) may
result in disconnected components 2) what €?

» kNN graphs are directed in general (can be trivially fixed).

» kNN graphs especially useful in practice.
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Divide and conquer KNN: key ingredient

» Key ingredient is Spectral bisection
» Let the data matrix X = [zq,...,x,] € R¥*"
» Each column == a data point.

» Centerthe data: X = [&1,...,%n] = X — ce®
where ¢ == centroid; e = ones(d, 1) (matlab)

Goal: Split X into halves using a hyperplane.

Method: Principal Direction Divisive Partitioning D. Boley, ’98.

ldea: Use the (o, u,v) = largest singular triplet of X with: uTX = ov”,
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Hyperplane (’u,., x) = 0 X, ={z; | uTa; > 0}
splits data points in 2 T

X_ ={z; | u &; < 0}
subsets:

—

+ SIDE

Hyperplane

» Note that uT#; = uT Xe; = ovTle; —

X_|_:{$1;|’UZ'ZO} and X_:{mz-|’vi<0},

where v; Is the i-th entry of v.
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» |n practice: replace above criterion by

Xy ={z;| vi >med(v)} & X_ = {x; | vi < med(v)}| where med(v) ==
median of the entries of v.

» For largest singular triplet (o, u,v) of X : use Golub-Kahan-Lanczos
algorithm or Lanczos applied to X XT or XTX

» (Cost (assuming s Lanczos steps) : O(n x d x s) ; Usually: d very small
Reference:

Jie Chen, Haw-Ren Fang and YS, “Fast Approximate kNN Graph Construc-
tion for High Dimensional Data via Recursive Lanczos Bisection” JMLR, vol.
10, pp. 1989-2012 (2009).
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