APPLICATIONS OF GRAPH LAPLACEANS: GRAPH EMBEDDINGS

Graph embeddings

- We have seen how to build a graph to represent data
- Graph embedding does the opposite: maps a graph to data

Given: a graph that models some data (e.g., a kNN graph)

Data:
$$Y = [y_1, y_2, \cdots, y_n]$$
 in $\mathbb{R}^{d \times n}$
Note: In practice Y is transposed [$Y \in \mathbb{R}^{n \times d}$]

> Trivial use: visualize a graph (d = 2)

> Wish: mapping should preserve *similarities* in graph.

Vertex embedding: map every vertex x_i to a vector $y_i \in \mathbb{R}^d$

Many applications [clustering, finding missing link, semi-supervised learning, community detection, ...]

Graph embedding: Embed a whole graph to a vector $y \in \mathbb{R}^d$ [e.g., graph classification]

▶ Graph captures similarities, closeness, ..., in data
 ▶ Many methods do this
 Objective: Build a mapping of each vertex *i* to a data point y_i ∈ ℝ^d

Next we focus on vertex embedding.

Eigenmaps and LLE are two of the best known classical methods

Eigenmaps uses the graph Laplacean

Recall: Graph Laplacean is a matrix defined by :

L = D - W

$$egin{cases} w_{ij} \geq 0 & ext{if} \ j \in Adj(i) \ w_{ij} = 0 & ext{else} \ \end{cases} \quad D = ext{diag} \left[d_{ii} = \sum_{j
eq i} w_{ij}
ight]$$

with Adj(i) = neighborhood of *i* (excludes *i*)

> Remember that vertex *i* represents data item x_i . We will use *i* or x_i to refer to the vertex.

> We will find the y_i 's by solving an optimization problem.

The Laplacean eigenmaps approach

Laplacean Eigenmaps [Belkin-Niyogi '01] *minimizes*

$$\mathcal{F}(Y) = \sum_{i,j=1}^n w_{ij} \|y_i - y_j\|^2$$
 subject to $YDY^ op = I$

Motivation: if $||x_i - x_j||$ is small (orig. data), we want $||y_i - y_j||$ to be also small (low-Dim. data) • Original data used indirectly through its graph • Objective function can be translated to a trace (see Property 3 in Lecture notes 9) and will yield a sparse eigenvalue problem

Problem translates to:

$$egin{aligned} &\min & \operatorname{Tr}\left[Y(D-W)Y^{ op}
ight] \ Y\in \mathbb{R}^{d imes n} & \ YD\ Y^{ op}=I \end{aligned}$$

Solution (sort eigenvalues increasingly):

$$(D-W)u_i = \lambda_i D u_i \ ; \quad y_i = u_i^ op; \quad i=1,\cdots,d$$

> An $n \times n$ sparse eigenvalue problem [In 'sample' space]

Note: can assume D = I. Amounts to rescaling data. Problem becomes $(I - W)u_i = \lambda_i u_i$; $y_i = u_i^{\top}$; $i = 1, \cdots, d$

Locally Linear Embedding (Roweis-Saul-00)

- LLE is very similar to Eigenmaps. Main differences:
- 1) Graph Laplacean matrix is replaced by an 'affinity' graph
- 2) Objective function is changed: want to preserve graph

1. Graph:Each x_i is written as a convexcombination of its k nearest neighbors: $x_i \approx \Sigma w_{ij} x_j, \quad \sum_{j \in N_i} w_{ij} = 1$ \blacktriangleright Optimal weights computed ('local calculation') by minimizing

$$\|x_i - \Sigma w_{ij} x_j\|$$
 for $i=1,\cdots,n$

UM6P'25 Spring School., Feb. 18-24, 2025

2. Mapping:

The y_i 's should obey the same 'affinity' as x_i 's \rightsquigarrow

$$\sum_i \left\| y_i - \sum_j w_{ij} y_j
ight\|^2$$
 subject to: $Y \ \mathbb{1} = 0, \quad YY^ op = I$

Solution:
$$(I - W^{ op})(I - W)u_i = \lambda_i u_i; \qquad y_i = u_i^{ op}$$
 .

 $(I - W^{\top})(I - W)$ replaces the graph Laplacean of eigenmaps

Implicit vs explicit mappings

In Eigenmaps and LLE we only determine a set of $y'_i s$ in \mathbb{R}^d from the data points $\{x_i\}$.

$$\blacktriangleright$$
 The mapping $y_i = \phi(x_i), i = 1, \cdots, n$ is implicit

- > Difficult to compute a y for an x that is not one of the x_i 's
- Inconvenient for classification. Thus is known as the "The out-of-sample extension" problem
- > In Explicit (also known as linear) methods: mapping ϕ is known explicitly (and it is linear.)

Locally Preserving Projections (He-Niyogi-03)

LPP is a linear dimensionality reduction technique

Starts with the same neighborhood graph as Eigenmaps: $L \equiv D - W =$ graph 'Laplacean'; with $D \equiv diag(\{\Sigma_i w_{ij}\})$.

n

Optimization problem is to solve

$$\min_{\substack{Y \in \mathbb{R}^{d imes n}, \; YDY^ op = I}} \quad \Sigma_{i,j} w_{ij} \left\|y_i - y_j
ight\|^2, \; \; Y = V^ op X.$$

> Difference with eigenmaps: Y is an explicit projection of X

Solution (sort eigenvalues increasingly)

$$XLX^ op v_i = \lambda_i XDX^ op v_i \quad y_{i,:} = v_i^ op X$$

Note: essentially same method in [Koren-Carmel'04] called 'weighted PCA' [viewed from the angle of improving PCA]

ONPP (Kokiopoulou and YS '05)

- Orthogonal Neighborhood Preserving Projections
- A linear (orthogonoal) version of LLE obtained by writing Y in the form $Y = V^{\top}X$
- Same graph as LLE. Objective: preserve the affinity graph (as in LLE) *but* with the constraint $Y = V^{\top}X$
- Problem solved to obtain mapping:

$$\min_V \operatorname{Tr} \left[V^ op X (I - W^ op) (I - W) X^ op V
ight]$$

s.t. $V^T V = I$

 $\blacktriangleright In LLE replace V^{\top}X by Y$

Quite a bit of recent work - e.g., methods: node2vec, DeepWalk, GraRep, See the following papers ... among many others :

[1] William L. Hamilton, Rex Ying, and Jure Leskovec Representation Learning on Graphs: Methods and Applications arXiv:1709.05584v3

[2] Shaosheng Cao, Wei Lu, and Qiongkai Xu GraRep: Learning Graph Representations with Global Structural Information, CIKM, ACM Conference on Information and Knowledge Management, 24

[3] Amr Ahmed, Nino Shervashidze, and Shravan Narayanamurthy, Distributed Large-scale Natural Graph Factorization [Proc. WWW 2013, May 13-17, 2013, Rio de Janeiro, Brazil]

Terminology: Encoding

The mapping from node to vector is often called an encoding

> Goal: *encode* should reflect similarity (if u and v are 'similar', their encodings should be 'close')

> Example: measure similarity by $y_v^T y_u$

Example: Graph factorization

- Line of work in Papers [1] and [3] above + others
- \blacktriangleright Instead of minimizing $\sum w_{ij} \|y_i y_j\|_2^2$ as before

... try to minimize

$$\sum_{ij} |w_{ij} - y_i^T y_j|^2$$

In other words solve:

 $\min_Y \|W-Y^TY\|_F^2$

- Referred to as Graph factorization
- Common in knowledge graphs

Method seen so far are termed 'shallow encoders'

DEEP NEURAL NETWORKS (DNNS)

1950: 'Turing test' – can a machine think?

1956: Dartmouth College Artificial Intelligence Conference. Invention of the term 'Artificial Intelligence' [J. McCarthy]

1958: Rosenblatt invented the 'Perceptron' - idea of imitating neurons

1958+: Emphasis on symbolic processing/reasoning. invention of LISP

1964: Eliza (MIT) - a natural language processing program

1974-1980: 1st AI winter (lack of progress). Pb: NLP going nowhere

1980s: Multilayer Perceptron. More numerical/optimization approaches. Departure away from Natural Language Processing.

- 1982: Convolutionan Neural Networks (CNNs)
- *Mid-1980s:* Back-propagation enters in force
- *1987-1993:* 2nd Al winter (lack of progress). Pb: Lack of compute power
- 1997: Deep Blue (IBM) beets G. Gasparov world Chess Champion
- *Mid-1990s:* Research in 'Data Mining' gaining ground
- 2012: Huge breakthrough in CNNs (Alex-net) boost from GPUs
- 2016: AlphaGo (DeepMind) beets Go Champion
- 2017: 'Transformers' ["Attention is all you need"]
- 2018: GPT-1 (OpenAI) ... [Large Language Models]
- *2019:* GPT-2 The rest is history.

Deep Neural Networks (DNNs) - general remarks

Ideas of neural networks goes back to the 1960s - were popularized in early 1990s – then laid dormant until recently.

- Two reasons for the come-back:
 - DNN are remarkably effective in some applications
 - big progress made in hardware [\rightarrow affordable 'training cost']

Multilayer Perceptron (MLP)

Training a neural network can be viewed as a problem of approximating a function ϕ which is defined via sets of parameters:

Problem: find sets of parameters such that $\phi(x_i) \approx y_i$, for $i = 1, \dots, n$

- > The set $\{x_i, y_i\}$ is the training set
- > Notation: Often $\hat{y}_i \equiv \phi(x_i)$ so we want $y_i \approx \hat{y}_i$ for $i = 1, \cdots, n$

Start with one layer: Perceptron

Objective: To separate two given sets (A) and (B) of input data

defined

by:

Example of application: Distinguish SPAM and non-SPAM e-mails

Linear classifiers: Find a hyperplane which best separates the data in classes A and B.

• Use hyperplane $\phi(x) = w^T x + eta$

> Sets (A) , (B) defined by: $\phi(x) = \sigma(w^T x + \beta)$ ($\sigma ==$ sign function)

 $\blacktriangleright \ \phi(x) \geq 0 \rightarrow x \ \in (A) \text{ and } \phi(x) < 0 \rightarrow x \ \in (B)$

Solution Given: training data set (x_i, y_i) with labels (e.g., 'spam'-'non-spam', 'malignant' -'non-malignant',...) where $y_i = \pm 1$

- ► Determine an optimal w for which $\phi(x_i) \approx y_i$ for $i = 1, \cdots, n$
- > 'Inference': Determine class of a new 'test' item x by evaluating $\phi(x)$

Multi-Layer Perceptrons (MLPs)

- Neural Networks (NNs) generalize what was just described
- First: Instead of a single vector w we will use a $d \times k$ matrix W and σ is replaced by a continuous function known as an 'activation function'
- > $\phi(x)$ is a vector.
- Second big change: use several layers of perceptrons instead of one.
- First Layer: transform x to $z_1 = \sigma(W_1^T x + b_1)$ where $W_1 \in \mathbb{R}^{d \times d_1}$ and σ = activation

The activation functions

- > Several choices for the activation function σ used
- Best known Rectified Linear Unit, or ReLU:
 - The Sigmoid: $\sigma(t) = (1 + e^{-t})^{-1}$
- > ... and the hyperbolic tangent

$$\sigma(t) = (1 + e^{-t})^{-t}$$
 $\sigma(t) = anh(t)$

 $\sigma(t) = \max\{0, t\}.$

Note: ReLU ≥ 0 ; sigmoid and tanh lie in (0, 1) and (-1, 1) respectively.

> The sigmoid is related to logistic regression and its derivative satisfies $\sigma' = \sigma(1 - \sigma)$.

Prove the above relation.

1 If $\theta(t) = \tanh(t)$ and σ is the sigmoid, show that $\theta(t) = 1 - 2\sigma(-2t)$

MLP - continued

> 2nd layer transforms output z_1 from 1st layer $z_2 = \sigma(W_2^T z_1 + b_2)$

> Generally, going from layer l - 1 to layer l:

$$z_l = \sigma(W_l^T z_{l-1} + b_l)$$

- \blacktriangleright where $W_l \in \mathbb{R}^{d_{l-1} \times d_l}, b_l \in \mathbb{R}^{d_l}$, and σ
- > Do this for $l = 1, 2, \dots, L + 1$ where L = number of 'hidden' layers
- > $z_{L+1} = \text{output} = \phi(x)$. For example, when L = 3:

$$\phi(x) = \sigma(W_4^T \sigma(W_3^T \sigma(W_2^T \sigma(W_1^T x + b_1) + b_2) + b_3) + b_4).$$

- layer # 0 = input layer
- layer # (L + 1) = output layer
- > A matrix W_l is associated with layers $1, 2, \dots, L+1$ (for L hidden layers)

Example: digit recognition

- > We have a set x_1, \dots, x_n of labeled images of digits.
- **Each** x_i = vectorized picture.
- > y_i = a digit between 0 and 9
- > Often y_i expressed as a *one-hot* vector of length 10.
- For example digit 2 will be $[0,0,1,0,0,0,0,0,0] = e_3$

- > If the images are 10×20 ...
- > ... and we have L = 2 hidden layers with $d_1 = d2 = 100$
- Then input data has size $n \times d_0$ where $d_0 = 400$ and the output will be of size $n \times 10$.

Loss function and training

- > To train the model we need a set of data points $x_i, y_i, i = 1 : n$.
- lnput == a matrix X of size $n \times d_0$, each row == a sample
- Output == matrix Y of length n × C whose rows are 'one-hot' vectors [C = # classes]
- > Each of the internal variables z_l becomes a matrix $Z_l \in \mathbb{R}^{n \times d_l}$ Now:

$$Z_l = \sigma(Z_{l-1} imes W_l + b_l)$$

where $W_l \mathbb{R}^{d_{l-1} \times d_l}, b_l \in \mathbb{R}^{1 \times d_l}$, and σ are the same as before.

> Note change of notation: samples x_i and internal variables z_i are now row vectors

- > They occupy the rows of the matrix X and Z_l respectively.
- Above equation explots 'broadcasting' [feature of Pyhon]
- ► Define $W = \{W_1, b_1, W_2, b_2, \cdots, W_L, b_L\}$ the set of parameters
- $\blacktriangleright \phi(x)$ is written as $\phi_W(x)$
- > Problem: Find function ϕ_W s.t. $\phi_W(x_i) \approx y_i$ for i = 1 : n
- ▶ In matrix form $\phi_W(X) \approx Y$.
- Possible formulation:

$$\min_{W} \mathcal{L}(W) \equiv \|Y - \phi_{W}(X)\|_{F}^{2} = \sum_{i=1}^{n} \|y_{i} - \phi_{W}(x_{i})\|_{2}^{2}$$

UM6P'25 Spring School., Feb. 18-24, 2025

▶ Recall: $Y, \phi_W(X) \in \mathbb{R}^{n \times d_{L+1}}$ where $d_{L+1} \equiv C ==$ number of classes.

Above formulation is seldom employed. Preferred approach: exploit cross-entropy distance - a notion based on information theory.

► if y_i, \hat{y}_i are scalars minimize cross-entropy loss: $\mathcal{L}(W) = -\frac{1}{n} \sum_i y_i \log(\hat{y}_i)$

> Otherwise - apply softwax operation to each row y_i : $\hat{y}_i = softmax(y_i)$

Softmax of a row/col. vector z is: Exp. Operation done componentwise

$$ext{softmax}(z) = rac{\exp(z)}{ ext{sum}[\exp(z)]}$$

- > Product $y_i \log(\hat{y}_i)$ in scalar case, replaced by inner product.
- > Thus, the cross-entropy loss function which we want to minimize is

$$\mathcal{L}(W) = -rac{1}{n}\sum_{i=1}^n (y_i, \log \hat{y}_i)$$
 .

Training a DNN

- > Basic idea: use Gradient Descent $w_{j+1} = w_j \eta_j \nabla \phi(w_j)$, scalar η_j = termed the *step-size* or *learning rate* in ML
- > Well understood algorithm when ϕ is convex not too useful as is in ML
- ln deep learning, $\phi(w)$ is often the mean of other cost functions:

$$\phi(w) = rac{1}{n} \sum_{i=1}^n \phi_i(w) \qquad \longrightarrow \qquad
abla \phi(w) = rac{1}{n} \sum_{i=1}^n
abla \phi_i(w)$$

- > Recall 'Mean Squared Error' (MSE) caseL $\phi(w) = \frac{1}{n} \sum_{i=1}^{n} \|y_i \phi_w(x_i)\|_2^2$
- Similarly for the cross-entropy cost.

Expensive to compute 'full' gradient $\nabla \phi$ but not $\nabla \phi_i(w)$, for some *i*

► Idea of Stochastic Gradient Descent (SGD): replace $\nabla \phi(w_j)$ by $\nabla \phi_k(w_j)$ where *k* is an index between 1 and *n* drawn at random.

► Result is an iteration of the type: $w_{j+1} = w_j - \eta_j \nabla \phi_k(w_j)$ - - where ϕ_k drawn at random among $\{\phi_1, \phi_2, \cdots, \phi_n\}$

Mini-batching Using a single function ϕ_k at a time not efficient.

► Compromise: replace function ϕ_k , by average of m functions drawn randomly from full set. Let \mathcal{B}_j the sample at step j - define:

$$\phi_{\mathcal{B}_j}(w) \equiv rac{1}{|\mathcal{B}_j|} \sum_{k \in \mathcal{B}_j} \phi_k(w).$$

Batch-SGD:

$$w_{j+1}=w_j-\eta_j
abla\phi_{\mathcal{B}_j}(w_j) \hspace{1em} j=1,2,\cdots,n_B.$$

> 'epoch' == a cycle through all mini-batches \mathcal{B}_j

Simplest among a few 'optimizers'

Best known technique to train a neural network is know as the Adaptive Moment Estimation (Adam) algorithm.

Adam exploit two ideas: variance reduction and momentum.

Variance reduction is a form of diagonal preconditioning - scales variables adaptively, adjusting the learning rate for each parameter individually

- Momentum == add a multiple of the previous increment $w_j w_{j-1}$:
- ► GD +Momemtum:

$$w_{j+1} = w_j - \eta_j
abla \phi(w_j) + oldsymbol{
u}(w_j - w_{j-1})$$

Adam has two momentum terms: for gradient and for variance.

$$egin{aligned} m_t &= eta_1 m_{t-1} + (1-eta_1) g_t \ , \ v_t &= eta_2 v_{t-1} + (1-eta_2) (g_t)^2 \ , \ w_t &= w_{t-1} - rac{\eta \hat{m}_t}{\sqrt{\hat{v}_t + \epsilon}}. \end{aligned}$$

$$\hat{m}_t = m_t/(1-eta_1^t) \ \hat{v}_t = v_t/(1-eta_2^t)$$

- > g_t is the gradient at step t, and β_1 and β_2 , are decay rates.
- Divisions, squaring, square roots, of vectors done componentwise.
- > Recommended parameters: $\beta_1 = 0.9, \ \beta_2 = 0.999, \ \epsilon = 10^{-8}$.

Issues with 'optimization'

- Problem is not convex, highly parameterized, ...,
- We may have a huge number of local minima.
- Hard to analyze mathematically why it all works.
- > Over-parameterization plays a central role

Notion of generalization: How does the model perform on unseen data (not in training set)? Defines accuracy of model

Important: Lower cost function does not mean better accuracy

Back to Back-propagation

Graph of **forward** phase for calculation $z_l = \sigma(W_l^T z_{l-1} + b_l)$ > Nodes of comput. graph: circles (the z_k 's) and squares (the parameters, W_k, b_k).

- > Call f the original objective function $\mathcal{L}(W)$
- > Want: the gradient of f with respect to all parameters w_l, b_l
- Assume a forward propagation step was done. All nodes evaluated
- In back-propagation arrows in Figure are reversed.

▶ Evaluate: \$\frac{\partial f}{\partial z_l}\$ = \$\frac{\partial f}{\partial z_{l+1}}\$ × \$\frac{\partial z_{l+1}}{\partial z_l}\$
 ▶ Note: \$\frac{\partial f}{\partial z_{l+1}}\$ was evaluated at a prior traversal step in graph

> Also: $\frac{\partial z_{l+1}}{\partial z_l}$ is readily computable from $z_{l+1} = \sigma(W_{l+1}^T z_l + b_{l+1})$

Next follow the (reversed) arrows, and compute

$$rac{\partial f}{\partial W_l} = rac{\partial f}{\partial z_l} imes rac{\partial z_l}{\partial W_l} \quad ext{and} \quad rac{\partial f}{\partial b_l} = rac{\partial f}{\partial z_l} imes rac{\partial z_l}{\partial b_l}.$$

> Above calculations take place in the 'leaves' of back-propagation graph. They yield desired partial derivaties wrt W_l, b_l

> Similar situation when the z_i 's are matrices [general case]

Back-propagation ampounts to a sequence of matrix products.

AI thinking vs. numerical analysis thinking: "Attention"

Trivial example: Given very noisy 'training points' x_i, y_i to an unknown function f, 'recover' f

NA : Interpolate in Least-Squares sense

Need to select interpolant type, e.g., cubic

ML : use data points + some form of averaging with 'attention'.

Given {k_i, v_i} keys, values (NA: x^{train}_i, y^{train}_i})
 ... a query q (NA: The x where we want f(x))

> ... and a Kernel a(q, k). Approximation at q:

- Attention" mechanism averages by giving more importance to points near q
- Nadaraya-Watson attention [Kernel Regression]

$$A(q) = \sum_i a(q,k_i) v_i$$

Transformers

- > Up-to \approx 2015: MLP, CNN, RNN+LSTM, + Focus on images. Then:
- "Attention is all you need" paper [Vaswani al, '17] a major breakthrough
- Before: LLMs needed to account for sequentiality.. order in words. Difficulties: stability, ...,
- Now: use (1) attention + (2) adding 'positional encoding' scheme to embedding.

Very first step of LLMs: transform sequences of strings (words, chars) into tokens

- > ... and then into vectors via embedding
- > Result: matrix X_0 of size $n \times d$;
- > n = number of tokens, d = embedding dimension
- X₀ transformed through L passes

$$X_L = \mathcal{T}(X_0) = (\mathcal{T}_L \circ \mathcal{T}_{L-1} \circ \cdots \circ \mathcal{T}_1)(X_0).$$

> \mathcal{T}_{ℓ} termed ℓ -th 'transformer block'

► ℓ -th block == parameterized function $\mathcal{T}_{\ell}(\cdot; \Theta_{\ell}) : \mathbb{R}^{n \times d} \to \mathbb{R}^{n \times d}$.

(a)	$A_\ell(X_{\ell-1})=$ MHA(LN $(X_{\ell-1})$),
(b)	$M_\ell =$ MLP(LN($X_{\ell-1} + A_\ell(X_{\ell-1})$)),
(<i>c</i>)	$X_\ell = X_{\ell-1} + A_\ell(X_{\ell-1}) + M_\ell \equiv \mathcal{T}_\ell(X_{\ell-1})$

- MHA = Multi-headed attention block
- LN = Layer-Normalization
- MLP = Multilayer Perceptron block
- 'Residual Attention' $X_{\ell-1} + A_{\ell}(X_{\ell-1})$ in (b) and (c) helps capture incremental changes
- Additional LN step added at last layer:

$$X_L := \operatorname{LN}(X_L)$$

Final output is passed to a bias-free linear layer to obtain loss function

UM6P'25 Spring School., Feb. 18-24, 2025

MLP stage - written in (row) vector form

UM6P'25 Spring School., Feb. 18-24, 2025

GPT3: counting the 175B parameters

- Embedding dimension in GPT3 = $d_{embed} = 12,288$
- MLP:Dimension used for $W_{up}, W_{dwn} = 4d_{embed} \times d_{embed} = 4 \times (12, 288)^2 \approx 4 \times 1.5 \times 10^8 = 6 \times 10^8$ Each. i.e., $\approx 12 \times 10^8$ >Multiply by the number of blocks (=96 in GPT3) $\rightarrow \approx 120B$
- MHA:4 matrices of size $d_{embed} \times 120$ times 96 heads times 96 blocks, \rightarrow $\approx 54B+$
- > Total 174B + add initial params for embeddings $\approx 175B$
- ► For Llama3: 450B params.

Q: Where is the Linear Algebra?

- More precisely: Which Linear Algebra tools/methods can help here?
- Really need to look deep inside the various boxes to find answers
- Some recent advances were deeply rooted in NLA -
- Next: 2 examples

Example: A pure LA idea that is very successful

"Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention", A. Katharopoulos, A. Vyas, N. Pappas, F. Fleuret ('21)

- Scaled Dot-product Attention :
- Softmax applied row-wise
- $\blacktriangleright \ Q: n \times d, \ K: n \times d, \ V: n \times v$

$$A_l = ext{softmax}\left(rac{QK^T}{\sqrt{d}}
ight)V$$

- Cost: $O(n^2)$ But without the softmax term:
- ► Do $K^T V$ first then $Q \times$ result: $\rightarrow O(n)$ cost
 - Idea: replace softmax(QK^T) by $\phi(Q)\phi(K^T)$

(Judicious func. ϕ applied rowwise to Q, K)

Very simple idea. Very impactful paper [Huge gain in training time]

Example: Low-rank structure in DNN

"LoRa: Low-Rank Adaptation of Large Language Models" E. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen ('21)

- LoRa able to reduce number of parameters in Chat-GPT3 from 175B to 17M (i.e., / by 10,000)
- ▶ Observed: Depth of DNN → low-dimensional paramater-spaces
 Over-parameterization → *Low-Dim*.
 ▶ Idea: Low-rank modifs to some W₀
- Many follow-up papers, (e.g., analysis)

GRAPH NEURAL NETWORKS

Graph Neural Networks

- Idea: exploit graphs in neural networks Replace CNN with Aggregation
- > A GNN is not a specific model but rather a framework
- Goal == to produce an embedding for nodes of a graph

Given: A graph G = (V, E) (*n* nodes) + feature matrix $X^{(0)} \in \mathbb{R}^{n \times d_0}$

- > Row *i* of $X^{(0)} ==$ 'feature' of node *i*
- > At layer l we will create/modify features in \mathbb{R}^{d_l} for each node
- Fundamental operation used for this: the message-passing mechanism

$$x_i^{(\ell+1)} = ext{UPDATE}\Big(x_i^{(\ell)}, ext{ AGGREGATE}(\ \{x_j^{(\ell)} \colon j \in \mathcal{N}(v_i)\}\)\Big),$$

Node features created/modified from layer to layer - At layer *l*: x_i^(l).
 Message-passing: aggregate features from neighbors N(v_i):

- In addition, the features are linearly modified by weights to be optimized.
- See the GCN example.

Aggregate operation simple to describe.

► Let A = adjacency matrix and \tilde{D} = diag of row-sums of $\tilde{A} = A + I$. Define:

$$\hat{A}:= ilde{D}^{-1/2} ilde{A} ilde{D}^{-1/2}$$

GCN - Layer l to l + 1 update

$$X^{(\ell+1)} = \sigma\left(\hat{A} X^{(\ell)} W^{(\ell)}
ight)$$

 \blacktriangleright $W^{(l)}$ is a parameter determined by training

> Each row of $X^{(l)}$ is a feature

> At last layer this becomes the desired embedding [a row for each node.]

Layer l to l + 1 in GCN

See Pytorch codes for the ENZYME dataset [graph classification]

See Pytorch codes for the Cora dataset [Node classification]

Mhat is the difference between Node and Graph Classification?

- Idea: exploit 'Attention' in GCN
- In very simple terms: we now add weights to adjacency matrix
- Weights based on attention mechanism and they are learned

Given: A graph G = (V, E) (*n* nodes) + feature matrix $X^{(0)} \in \mathbb{R}^{n \times d_0}$

Goal same as before == produce an embedding for nodes of a graph

> Attention-based message-passing: compute weighted average of transformed features in $\mathcal{N}(v_i)$:

$$X^{(\ell+1)} = \sigma \Big(A_lpha X^{(\ell)} W^{(\ell)} \Big)$$
 .

Entry α_{ij} of $A_{\alpha} ==$ attention weight between nodes *i* and *j*:

$$lpha_{ij} = rac{\exp(e_{ij})}{\sum_{k \, \in \, \mathcal{N}(i)} \exp(e_{ik})}$$

 $\blacktriangleright \equiv softmax$ of neighoring e_{ij} 's – What is e_{ij} ?

 \blacktriangleright $e_{ij} ==$ Attention score between node i and neighbors $j \in \mathcal{N}(i)$

$$e_{ij} = ext{LeakyReLU} \Big(a^T \cdot \Big[W^{(\ell),T} x_i \parallel W^{(\ell),T} x_j \Big] \Big)$$

|| == concatenation

Note: Bias often added before applying LeakyReLu

- ▶ $a \in \mathbb{R}^{2d}$ is a learnable attention vector
- $\blacktriangleright \quad LeakyReLU(t) = \max\{t, \alpha t\} \quad (\text{where } 0 \le \alpha \ll 1)$
- > Aggregation similar to GCN. Main differences:
 - Scaled Adjacency matrix \hat{A} replaced by A_{α}
 - A_{α} is now learned
 - Additional parameter: $a \in \mathbb{R}^{2d}$
- See Pytorch codes for GAT

Many interesting new matrix problems in areas that involve the effective exploitation of data

- Change happens fast in part because we are better connected
- In particular: many many resources available online.
- Huge potential for making a good impact by looking at a topic from new perspective
- ► To a researcher in computational linear algebra : Tsunami of change on types or problems, algorithms, frameworks, culture,...

► My favorite quote. Alexander Graham Bell (1847-1922) said:

When one door closes, another opens; but we often look so long and so regretfully upon the closed door that we do not see the one which has opened for us.

Visit my web-site at www.cs.umn.edu/~saad

More complete version of this material will available in course csci-8314
 notes (and more) are open to all.

Thank you !