APPLICATIONS OF GRAPH LAPLACEANS: GRAPH EMBEDDINGS I

Graph embeddings

» We have seen how to build a graph to represent data
» @Graph embedding does the opposite: maps a graph to data
Given: a graph that models some data (e.g., a kNN graph)

Data Y = [y17 Yoy * o yn] in Ran
Note: In practice Y is transposed [Y € R™*9]

» Trivial use: visualize a graph (d = 2)
» Wish: mapping should preserve similarities in graph.

UM6P’25 Spring School., Feb. 18-24, 2025

Vertex embedding: map every vertex =; to a vector y; € R¢

» Many applications [clustering, finding missing link, semi-supervised learn-
Ing, community detection, ...]

Graph embedding: Embed a whole graph to a vector y € R¢ [e.g., graph
classification]

» Graph captures similarities, closeness, ..., in data
» Many methods do this

Objective: Build a mapping of each vertex 7 to a
data point y; € R<

» Next we focus on vertex embedding.

» Eigenmaps and LLE are two of the best known classical methods

UM6P’25 Spring School., Feb. 18-24, 2025

» Eigenmaps uses the graph Laplacean

» Recall: Graph Laplacean is a matrix defined by :

L=D-W

JF#1

Wi; = 0 else

with Adj(¢) = neighborhood of i (excludes 4)

» Remember that vertex i represents data item x;. We will use i or x; to
refer to the vertex.

» We will find the y;’s by solving an optimization problem.

UM6P’25 Spring School., Feb. 18-24, 2025

The Laplacean eigenmaps approach

Laplacean Eigenmaps [Belkin-Niyogi '01] *minimizes*

F(Y)=) wijllyi—y;l* subjectto YDY' =1

1,7=1

Motivation: if ||x; — x;|| is small (orig. data), we
want ||y; — y;|| to be also small (low-Dim. data)
» Original data used indirectly through its graph
» QObijective function can be translated to a trace
(see Property 3 in Lecture notes 9) and will yield
a sparse eigenvalue problem

UM6P’25 Spring School., Feb. 18-24, 2025

» Problem translates to:
min Tr |[Y(D-W)Y'] .
Y € Ran
YDY' =1
» Solution (sort eigenvalues increasingly):

(D — W)u; = X\;Du; ; yz:u;ra 1=1,---,d

» Ann x n sparse eigenvalue problem [In ‘sample’ space]

» Note: can assume D = I. Amounts to rescaling data. Problem becomes
(I — W)u; = Au; ; yz:u;ra t1=1,---,d

UM6P’25 Spring School., Feb. 18-24, 2025

Locally Linear Embedding (Roweis-Saul-00)

» LLE is very similar to Eigenmaps. Main differences:
1) Graph Laplacean matrix is replaced by an ‘affinity’ graph

2) Objective function is changed: want to preserve graph

1. Graph: Each x; is written as a convex
combination of its k nearest neighbors:
xr; X Yw;x;, ZjGNi w;; =1
» Optimal weights computed (‘local calcula-
tion’) by minimizing

||w, — szJmJH for 1=1,.--,n

UM6P’25 Spring School., Feb. 18-24, 2025

2. Mapping:

The y;’s should obey the same “affinity’ as x;'s ~~

Minimize:

1

Z Yi — Zwijyj subjectto: Y{=0, YY' =1
j

Solution: (I — WT)(I — W)'U,z = A\jUu;; Y, = w! .

1

» (I — W) (I — W) replaces the graph Laplacean of eigenmaps

UM6P’25 Spring School., Feb. 18-24, 2025

Implicit vs explicit mappings

» In Eigenmaps and LLE we only determine a set of y/s in R* from the data
points {x;}.

» The mapping Yi = ¢(xi),t = 1,--- ,n jsimplicit

» Difficult to compute a y for an = that is not one of the z;’s

» Inconvenient for classification. Thus is known as the “The out-of-sample
extension” problem

» In Explicit (also known as linear) methods: mapping ¢ is known explicitly
(and it is linear.)

UM6P’25 Spring School., Feb. 18-24, 2025

Locally Preserving Projections (He-Niyogi-03)

» LPP is a linear dimensionality reduction technique

» Recall the setting:
WantV e Rmx4: Yy = VTX

d

» Starts with the same neighborhood graph as Eigenmaps: L = D — W =

m

VT

Y

Yi I/

graph ‘Laplacean’; with D = diag({3;w;;}).

160

n

d

UMG6P’25 Spring School., Feb. 18-24, 2025

» Optimization problem is to solve

i oy g — 21112 T
Y ERdxg,u;lDYT:I Yijwijllyi —yill”, Y=V X.

» Difference with eigenmaps: Y is an explicit projection of X

» Solution (sort eigenvalues increasingly)

XLX'"v;=XNXDX"v, y;.=vX

» Note: essentially same method in [Koren-Carmel’'04] called ‘weighted
PCA’ [viewed from the angle of improving PCA]

UM6P’25 Spring School., Feb. 18-24, 2025

ONPP (Kokiopoulou and YS ’05)

» Orthogonal Neighborhood Preserving Projections

» A linear (orthogonoal) version of LLE obtained by writing Y in the form
Y =V'X

» Same graph as LLE. Objective: preserve the affinity graph (as in LLE)
but with the constraintY = V'X

» Problem solved to obtain mapping:
min Tr VIXI-WwWHI -wW)X'V]
st VIV =1

» InLLE replace V!X by Y

UM6P’25 Spring School., Feb. 18-24, 2025

More recent methods

» Quite a bit of recent work - e.g., methods: node2vec, DeepWalk, GraRep,
.... oee the following papers ... among many others :

[1] William L. Hamilton, Rex Ying, and Jure Leskovec Representation Learn-
ing on Graphs: Methods and Applications arXiv:1709.05584v3

[2] Shaosheng Cao, Wei Lu, and Qiongkai Xu GraRep: Learning Graph
Representations with Global Structural Information, CIKM, ACM Conference
on Information and Knowledge Management, 24

[3] Amr Ahmed, Nino Shervashidze, and Shravan Narayanamurthy, Distributed
Large-scale Natural Graph Factorization [Proc. WWW 2013, May 13-17,
2013, Rio de Janeiro, Brazil]

UM6P’25 Spring School., Feb. 18-24, 2025

Terminology: Encoding

» The mapping from node to vector is often called an encoding
Enc(u)

— oy
— —

—
—"

E}nc(v)

d-dim

Graph space

» Goal: encode should reflect similarity (if w and v are ‘similar’, their encod-
iIngs should be ‘close’)

» Example: measure similarity by yTy,

Example: Graph factorization

» Line of work in Papers [1] and [3] above + others

» Instead of minimizing > w;;|ly; — v,||3 as before

... try to minimize Z wij — y3 vyl
ij

» In other words solve: = miny ||W — Y'Y ||%

» Referred to as Graph factorization

» Common in |knowledge graphs

» Method seen so far are termed ‘shallow encoders’

DEEP NEURAL NETWORKS (DNNS) I

A (very) brief history of AI and DNNs

1950: ’Turing test’ — can a machine think?

1956: Dartmouth College Artificial Intelligence Conference. Invention of
the term ‘Artificial Intelligence’ [J. McCarthy]

1958: Rosenblatt invented the ‘Perceptron’ - idea of imitating neurons
1958+: Emphasis on symbolic processing/reasoning. invention of LISP
1964: Eliza (MIT) - a natural language processing program

1974-1980: 1st Al winter (lack of progress). Pb: NLP going nowhere

1980s: Multilayer Perceptron. More numerical/optimization approaches.
Departure away from Natural Language Processing.

UM6P’25 Spring School., Feb. 18-24, 2025

1982: Convolutionan Neural Networks (CNNSs)

Mid-1980s: Back-propagation enters in force

1987-1993: 2nd Al winter (lack of progress). Pb: Lack of compute power
1997: Deep Blue (IBM) beets G. Gasparov - world Chess Champion
Mid-1990s: Research in ‘Data Mining’ gaining ground

2012: Huge breakthrough in CNNs (Alex-net) - boost from GPUs

2016: AlphaGo (DeepMind) beets Go Champion

2017: ’Transformers’ [“Attention is all you need’]

2018: GPT-1 (OpenAl) ... [Large Language Models]

2019: GPT-2 — The rest is history.

UM6P’25 Spring School., Feb. 18-24, 2025

Deep Neural Networks (DNNs) - general remarks

» |deas of neural networks goes back to the 1960s - were popularized in
early 1990s — then laid dormant until recently.

» Two reasons for the come-back:

 DNN are remarkably effective in some applications

* big progress made in hardware [— affordable ‘training cost’]

Multilayer Perceptron (MLP)

» Training a neural network can be
viewed as a problem of approximating
a function ¢ which is defined via sets
of parameters:

Problem: Ifind sets of parameters such that ¢(x;) = y;, fori =1,.-- ,n

» The set {x;,y;} Is the training set

» Notation: Often ¢; = ¢(x;) sowewanty;, =~ g;fori =1,.-- ,n

UM6P’25 Spring School., Feb. 18-24, 2025

Start with one layer: Perceptron

» Objective: To separate two given sets (A) and (B) of input data

» Example of application: Distinguish SPAM and non-SPAM e-mails

Linear classifiers: Find a hyperplane which
best separates the data in classes A and B.

o Use hyperplane defined by:
o(z) = w'z + B ®

Linear
classifier

UM6P’25 Spring School., Feb. 18-24, 2025

> Sets (A), (B) definedby: @(x) = a(w'z + B) (o == sign function)
» ¢p(x) >0—->x € (A) and ¢p(x) < 0 - = € (B)

» QGiven: training data set («x;,y;) with labels (e.g., 'spam’-'non-spam’,
‘malignant’ —'non-malignant’,...) where y; = +1

» Determine an optimal w for which ¢(x;) = y; fori =1,--- ,n

» ‘Inference’: Determine class of a new ‘test’ item x by evaluating ¢(x)

UM6P’25 Spring School., Feb. 18-24, 2025

Multi-Layer Perceptrons (MLPs)

» Neural Networks (NNs) generalize what was just described

» First: Instead of a single vector w we will use a d x k matrix W and o is
replaced by a continuous function known as an ’activation function’

» ¢(x) IS a vector.
» Second big change: use several layers of perceptrons instead of one.

» First Layer: transform z to z; = o(W'z + b;) where W; € R%*% gnd
o = activation

UM6P’25 Spring School., Feb. 18-24, 2025

The activation functions

» Several choices for the activation function o used

» Best known Rectified Linear Unit, or ReLU: o(t) = max{0,t}.

» The Sigmoid: o(t) = (1+e)1

» ... and the hyperbolic tangent o(t) = tanh(t)

» Note: ReLU > 0; sigmoid and tanh lie in (0,1) and (—1, 1) respectively.
» The sigmoid is related to logistic regression and its derivative satisfies
o' =o(1 — o).

#41| Prove the above relation.

“42| If O(t) = tanh(t) and o is the sigmoid, show that 8(t) = 1 — 20 (—2t)

UM6P’25 Spring School., Feb. 18-24, 2025

MLP - continued

» 2nd layer transforms output z; from 1st layer z; = o(W3 2, + bs)

» Generally, going from layer I — 1 to layer :

z1=0(Wlzi_1 + b))

» where W, € R4%1*xd p, ¢ R% and o
» Dothisforl =1,2,-.-,L+ 1-where L = number of ‘hidden’ layers

» zr.1 = output = ¢(x). For example, when L = 3:

o(z) = o(Wio(W;'o(W;o(Wiz + b1) + b2) + bs) + ba).

UM6P’25 Spring School., Feb. 18-24, 2025

MLP

Input: =, Output: y
Set: zp ==
Forl=1:1+1 Do:

&
S

2N

W
SSET N
KA
z1=0c(Wrz,_1+0b e
End s b o §%21»,zgo<~: i
Set: ¢(x) := zp11 }"‘“\‘}‘z‘"/f""\\
Za

e layer # 0 = input layer
e layer # (L + 1) = output layer

Input Hidden Output
Q Layer ‘ Layer Q Layer

» A matrix W, is associated with layers 1,2,--. , L + 1 (for L hidden layers)

MLP

>

Problem: Find ¢ (i.e., params. W, b;) s.t. ¢(x;) = y;fori =1:n

Example: digit recognition

>

>
>
>
>

177

We have a set x4, - - , x,, Of labeled images of digits.
Each x; = vectorized picture.
y; = a digit between 0 and 9
Often y; expressed as a one-hot vector of length 10.

For example digit 2 will be [0,0,1,0,0,0,0,0,0,0] = e3

UMG6P’25 Spring School., Feb. 18-24, 2025

» |f the images are 10 x 20 ...
» ... and we have L = 2 hidden layers with d; = d2 = 100

» Then input data has size n x dy where dy = 400 and the output will be of
size n X 10.

UM6P’25 Spring School., Feb. 18-24, 2025

Loss function and training

» To train the model we need a set of data points x;, y;,2 = 1 : n.
» Input == a matrix X of size n x dy, — each row == a sample

» QOutput == matrix Y of length n x C whose rows are ‘one-hot’ vectors [C
= # classes]

» Each of the internal variables z; becomes a matrix Z; € R™*% Now:

Zy=0(Zi—1 X Wi + by)

where W; R%-1xdi b, c R4 and o are the same as before.

UM6P’25 Spring School., Feb. 18-24, 2025

>

Note change of notation: samples x; and internal variables z; are now

row vectors

>

Y Y Y Y Y'Y

They occupy the rows of the matrix X and Z; respectively.
Above equation explots ‘broadcasting’ [feature of Pyhon]

Define W = {Wy, by, Wy, by, --- , W, br} the set of parameters
¢(x) IS written as ¢w (x)

Problem: Find function ¢w s.t. ow(x;) = y;fori =1:n

In matrix form ¢w (X) = Y.

Possible formulation:

min £(W) = [[Y — ow(X) |} = ; lyi — pw ()2

UM6P’25 Spring School., Feb. 18-24, 2025

» Recall: Y, pw(X) € R™*di+1 where d;; = C == number of classes.

» Above formulation is seldom employed. Preferred approach: exploit
cross-entropy distance - a notion based on information theory.

> if y;, §; are scalars minimize cross-entropy loss: L(W) = —~ 3" y; log(¥;)

» Otherwise - apply softwax operation to each row y;: 4; = softmax(y;)

» Softmax of a row/col. vector z is:
Exp. Operation done componentwise

exp(z)
sumexp(z)]

softmax(z) =

» Product y; log(y;) in scalar case, replaced by inner product.

» Thus, the cross-entropy loss function which we want to minimize is
LW) = —3 >, (yis log §i) -

UM6P’25 Spring School., Feb. 18-24, 2025

Training a DNN

» Basic idea: use Gradient Descent w;.; = w; — n;Vo(w;),
scalar n; = termed the step-size or learning rate in ML

» Well understood algorithm when ¢ is convex - not too useful as is in ML

» In deep learning, ¢(w) is often the mean of other cost functions:
d(w) = 3371, di(w) — Vo(w) =531, Véi(w)

» Recall ‘Mean Squared Error’ (MSE) casel ¢(w) = 237 | |lyi — ¢ ()|

» Similarly for the cross-entropy cost.

UM6P’25 Spring School., Feb. 18-24, 2025

» Expensive to compute ‘full’ gradient V¢ but not V¢;(w), for some 4

» |dea of Stochastic Gradient Descent (SGD): replace V¢ (w,) by V ¢ (w;)
where k is an index between 1 and n drawn at random.

» Result is an iteration of the type: w; 1 = w; — n;Vor(w;) --where ¢
drawn at random among {1, ¢2, -+ , Pn}

Mini-batching | Using a single function ¢, at a time not efficient.

» Compromise: replace function ¢y, by av- 1
erage of m functions drawn randomly from full | #8;(w) = 5 2_ken; Px(w)-
set. Let B, the sample at step j - define:

Batch-SGD: wj1 = wj —1; Vo (w;) j=1,2,--- ,np.

UM6P’25 Spring School., Feb. 18-24, 2025

» ‘epoch’ == a cycle through all mini-batches B;
» Simplest among a few ‘optimizers’

» Best known technique to train a neural network is know as the Adaptive
Moment Estimation (Adam) algorithm.

» Adam exploit two ideas: variance reduction and momentum.

» Variance reduction is a form of diagonal preconditioning - scales variables
adaptively, adjusting the learning rate for each parameter individually

» Momentum == add a multiple of the previous increment w; — w;_;:

» GD +Momemtum: Wil = W — nqub(wj) -+ I/(’UJj — ’wj_l)

» Adam has two momentum terms: for gradient and for variance.

UM6P’25 Spring School., Feb. 18-24, 2025

Adam: I

my = Bimy—1 + (1 — B1)g: iy = my /(1 — BY)
vy = Bavg_1 + (1 — B2)(g1)? by = vy /(1 — /33)
Ny

Wiy — Wi—1 —

\/’ﬁt —|— 6.

» g, is the gradient at step t,and 3; and 3., are decay rates.
» Divisions, squaring, square roots, of vectors done componentwise.

» Recommended parameters: 8; = 0.9, B> = 0.999, € = 1078,

UM6P’25 Spring School., Feb. 18-24, 2025

Issues with ‘optimization’

Problem is not convex, highly parameterized, ...,
We may have a huge number of local minima.
Hard to analyze mathematically why it all works.

Over-parameterization plays a central role

Y Y Y VY Y

Notion of generalization: How does the model perform on unseen data
(not in training set)? Defines accuracy of model

» Important: Lower cost function does not mean better accuracy

Back to Back-propagation

Graph of forward phase for calcu-

lation z;, = (W' 211 + b))

» Nodes of comput. graph: cir- —
cles (the z,'s) and squares (the

parameters, Wy, by).

» Call f the original objective function - L(W)
» Want: the gradient of f with respect to all parameters wy, b,
» Assume a forward propagation step was done. All nodes evaluated

» In back-propagation arrows in Figure are reversed.

UM6P’25 Spring School., Feb. 18-24, 2025

of _ _of dz111
» FEvaluate: 92 = B X s

» Note: 221 was evaluated at a

8 _|_1
prior traversal step in graph

» Also: 8zl+1 is readily computable from z, 1, = o(W/ 2 + bi11)

» Next follow the (reversed) arrows, and compute
of of 0z of Of 0z
= —— X and = X —.
BW} le 8VV[abl 8zl 8bl
» Above calculations take place in the ‘leaves’ of back-propagation graph.

They yield desired partial derivaties wrt W7, b,

» Similar situation when the z;’s are matrices [general case]

» Back-propagation ampounts to a sequence of matrix products.
UM6P’25 Spring School., Feb. 18-24, 2025

Al thinking vs. numerical analysis thinking: “Attention”

Trivial example: Given very noisy ‘training points’
x;, y; 10 an unknown function f, ‘recover’ f
NA : Interpolate in Least-Squares sense

train dat.

» Need to select interpolant type, e.g., cubic A5 — g e

ML : use data points + some form of averaging with "attention’.

189 UMG6P’25 Spring School., Feb. 18-24, 2025

» Given {k;, v;} keys, values (NA: girain q4trainl)

» ... aquery q (NA: The = where we want f(x))

» ... and a Kernel a(q, k). Approximation at q:

» “Attention” mechanism aver-
ages by giving more importance to
points near q

» Nadaraya-Watson attention
[Kernel Regression]

average with a(q,kj)

i

A(q) =) alg, ki)v;

el &
: 1 L 1 ! : l : >
k, Ky q K,
UM6P’25 Spring School., Feb. 18-24, 2025

Transformers

» Up-to = 2015: MLP, CNN, RNN+LSTM, + Focus on images. Then:

» “Attention is all you need” paper [Vaswani al, '17] —a major breakthrough

Before: LLMs needed to account for sequentiality.. order in words. Diffi-
culties: stabillity, ...,

Now: use (1) attention + (2) adding ‘positional encoding’ scheme to em-
bedding.

UM6P’25 Spring School., Feb. 18-24, 2025

Tokenization + Embedding

» \Very first step of LLMs: transform sequences of strings (words, chars)
Into tokens

» ... and then into vectors via embedding
» Result: matrix X, of size n x d;

» n = number of tokens, d = embedding dimension

» X, transformed

Xp=T(Xo) =(TeoTr-10---07T1)(Xo)-
through L passes

» T, termed £-th ‘transformer block’

UM6P’25 Spring School., Feb. 18-24, 2025

» (-th block == parameterized function 7;(- ; ©,): R**4 — R"x4,

(a) Ay(Xyp_1) = MHA(LN(X¢—1)),
(b) M, = MLP(TN(Xo1 + Ad(Xe1))),
(c) X = Xp14+ Ap(Xp—1) + My = To(Xi-1)

MHA = Multi-headed attention block
LN = Layer-Normalization
MLP = Multilayer Perceptron block

'Residual Attention” X,_; + A,(X,_1) in (b) and (c) helps capture incre-
mental changes

» Additional LN step added at last layer: X1 := LN(X7})

» Final output is passed to a bias-free linear layer to obtain loss function
UM6P’25 Spring School., Feb. 18-24, 2025

MLP stage - written in (row) vector form

((e—1) _ (£—1)

al® = mua(LNV, <Y, xED)
reaeees <--m§£) — MLP(LN(x"Y 4+ al?))
X7(:£) _ Xgf—l) 4 argﬁ) 4 mgf)

\

m® = o o (W 3 & al)) £l

[NT

Weights Weights Normalization

v u
Activation function, " ¥&?) function

(2" MLP)

(e.g. ReLU, thanh,..)
194 UMG6P’25 Spring School., Feb. 18-24, 2025

GPT3: counting the 175B parameters

» Embedding dimension in GPT3 = dgnpeq = 12, 288

MLP: Dimension used for Wy,, Wawn = 4dembed X dembeda = 4 X

(12,288)? ~ 4 x 1.5 x 10® = 6 x 10°® Each. i.e., ‘ ~ 12 x 10°

» Multiply by the number of blocks (=96 in GPT3) — ‘ = 1203\

MHA: 4 matrices of size d.,,;.q X 120 times 96 heads times 96 blocks, —
~ b4 B+

» Total 174B + add initial params for embeddings ~ 175B
» For Llama3: 450B params.

UM6P’25 Spring School., Feb. 18-24, 2025

(Q: Where is the Linear Algebra?

More precisely: Which Linear Algebra tools/methods can help here?
Really need to look deep inside the various boxes to find answers

Some recent advances were deeply rooted in NLA -

Y VY Y Y

Next: 2 examples

Example: A pure LA idea that is very successful

‘ “Iransformers are RNNs: Fast Autoregressive Transformers with Linear
Attention”, A. Katharopoulos, A. Vyas, N. Pappas, F. Fleuret ('21)

» Scaled Dot-product Attention : -
» Softmax applied row-wise A; = softmax (QK) 174
» Q:nxd, Kinxd, VinXxwv

KT

dxn

nxd

vd

» Cost: O(n?) — But without the softmax term:

» Do KTV first —then Q x result: — O(n) cost
» Idea: replace softmax(QK?) by ¢(Q)p(KT)

(Judicious func. ¢ applied rowwise to Q, K)

» \ery simple idea. Very impactful paper [Huge gain in training time]

UM6P’25 Spring School., Feb. 18-24, 2025

Example: Low-rank structure in DNN

‘ “LoRa: Low-Rank Adaptation of Large Language Models” E. Hu, Y. Shen,
P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen (°21)

» LoRa able to reduce number of parameters in Chat-GPT3 from 175B to
17M - (i.e., / by 10,000)

h=xXxW,+x X AB

» QObserved: Depth of DNN — low- \

dimensional paramater-spaces / . -
Over-parameterization — Low-Dim. Wo (dxdy) | | (r x d,)

» |dea: Low-rank modifs to some W, (Frozen) (Trained)

» Many follow-up papers, (e.g., analysis) \/ Aldxn)

eeeeess——— (1 X d,)

UM6P’25 Spring School., Feb. 18-24, 2025

GRAPH NEURAL NETWORKS I

Graph Neural Networks

» |dea: exploit graphs in neural networks - Replace CNN with Aggregation
» A GNN is not a specific model but rather a framework
» (Goal == to produce an embedding for nodes of a graph
Given: A graph G = (V, E) (n nodes) + feature matrix X(© ¢ Rmxdo
» Row i of X(© == ‘feature’ of node i
» At layer I we will create/modify features in R% for each node

» Fundamental operation used for this: the message-passing mechanism

UM6P’25 Spring School., Feb. 18-24, 2025

2" = UPDATE (azge), AGGREGATE({z\”: j € N(v;)})),

» Node features created/modified
from layer to layer - At layer I: =",

» Message-passing: aggregate fea-
tures from neighbors N (v;):

» In addition, the features are linearly modified by weights to be optimized.

» See the GCN example.

UM6P’25 Spring School., Feb. 18-24, 2025

Graph Convolutional Networks

» Aggregate operation simple to describe.

>. Let A = adjacency matrix and D = A e D12 AD-1/2
diag of row-sums of A = A + I. Define:

GCN - Layerltol + 1 update X =g (AX W)

» WU is a parameter determined by training
» Each row of X® is a feature

» At last layer this becomes the desired embedding [a row for each node.]

UM6P’25 Spring School., Feb. 18-24, 2025

#9043

044

#1045

A

XU = g(AXOWOY) —f x+1) (-oeoev ,

e
.

W ©)

Layeritol + 1in GCN
See Pytorch codes for the ENZYME dataset [graph classification]
See Pytorch codes for the Cora dataset [Node classification]

What is the difference between Node and Graph Classification?

UM6P’25 Spring School., Feb. 18-24, 2025

Graph Attention Networks (GATs)

» |dea: exploit ‘Attention’ in GCN

» In very simple terms: we now add weights to adjacency matrix

» Weights based on attention mechanism - and they are learned
Given: A graph G = (V, E) (n nodes) + feature matrix X(© ¢ Rnxdo

» (Goal same as before == produce an embedding for nodes of a graph

» Attention-based message-passing:
compute weighted average of transformed
features in N (v;):

() — o (A, X(@)Ww))

» Entry a;; of A, == attention weight between nodes ¢ and j:
exp(ei;)

B D ke N (3) exp(eik)

aij
» = softmax of neighoring e;;s— Whatis e;;?

UM6P’25 Spring School., Feb. 18-24, 2025

» e;; == Attention score between node ¢ and neighbors 5 € N (2)

e;j = LeakyReLU (aT- [W“)’T:ni | W“)’Ta:j]) | == concatenation

» Note: Bias often added before applying LeakyReLu
» a € R2?is alearnable attention vector
» LeakyReLU(t) = max{t,at} (where0 < a <« 1)

» Aggregation similar to GCN. Main differences:

Scaled Adjacency matrix A replaced by A,
A, 1S now learned
Additional parameter: a € R24

#46| See Pytorch codes for GAT

UM6P’25 Spring School., Feb. 18-24, 2025

» *Many* interesting new matrix problems in areas that involve the effective
exploitation of data

» (Change happens fast in part because we are better connected
» In particular: many many resources available online.

» Huge potential for making a good impact by looking at a topic from new
perspective

» To a researcher in computational linear algebra : Tsunami of change on
types or problems, algorithms, frameworks, culture,..

UM6P’25 Spring School., Feb. 18-24, 2025

» My favorite quote. Alexander Graham Bell (1847-1922) said:

When one door closes, another opens; but we often look so long and so
regretfully upon the closed door that we do not see the one which has
opened for us.

» Visit my web-site at www.cs.umn.edu/ ~saad

» More complete version of this material will available in course csci-8314
— notes (and more) are open to all.

Thank you ! |

UM6P’25 Spring School., Feb. 18-24, 2025

www.cs.umn.edu/~saad

