
APPLICATIONS OF GRAPH LAPLACEANS: GRAPH EMBEDDINGS

Graph embeddings

ä We have seen how to build a graph to represent data

ä Graph embedding does the opposite: maps a graph to data

Given: a graph that models some data (e.g., a kNN graph)
●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
−→ Data: Y = [y1, y2, · · · , yn] in Rd×n

Note: In practice Y is transposed [Y ∈ Rn×d]

ä Trivial use: visualize a graph (d = 2)

ä Wish: mapping should preserve similarities in graph.

152 UM6P’25 Spring School., Feb. 18-24, 2025

Vertex embedding: map every vertex xi to a vector yi ∈ Rd

ä Many applications [clustering, finding missing link, semi-supervised learn-
ing, community detection, ...]

Graph embedding: Embed a whole graph to a vector y ∈ Rd [e.g., graph
classification]

ä Graph captures similarities, closeness, ..., in data
ä Many methods do this
Objective: Build a mapping of each vertex i to a

data point yi ∈ Rd

x

x
j

i

y
i

y
j

ä Next we focus on vertex embedding.

ä Eigenmaps and LLE are two of the best known classical methods

153 UM6P’25 Spring School., Feb. 18-24, 2025

ä Eigenmaps uses the graph Laplacean

ä Recall: Graph Laplacean is a matrix defined by :

L = D −W

{
wij ≥ 0 if j ∈ Adj(i)
wij = 0 else

D = diag

dii =
∑
j 6=i

wij


with Adj(i) = neighborhood of i (excludes i)

ä Remember that vertex i represents data item xi. We will use i or xi to
refer to the vertex.

ä We will find the yi’s by solving an optimization problem.

154 UM6P’25 Spring School., Feb. 18-24, 2025

The Laplacean eigenmaps approach

Laplacean Eigenmaps [Belkin-Niyogi ’01] *minimizes*

F(Y) =

n∑
i,j=1

wij‖yi − yj‖2 subject to Y DY > = I

Motivation: if ‖xi − xj‖ is small (orig. data), we
want ‖yi − yj‖ to be also small (low-Dim. data)
ä Original data used indirectly through its graph
ä Objective function can be translated to a trace
(see Property 3 in Lecture notes 9) and will yield
a sparse eigenvalue problem

x

x
j

i

y
i

y
j

155 UM6P’25 Spring School., Feb. 18-24, 2025

ä Problem translates to:

min Y ∈ Rd×n

Y D Y > = I

Tr
[
Y (D −W)Y >

]
.

ä Solution (sort eigenvalues increasingly):

(D −W)ui = λiDui ; yi = u>i ; i = 1, · · · , d

ä An n× n sparse eigenvalue problem [In ‘sample’ space]

ä Note: can assume D = I. Amounts to rescaling data. Problem becomes
(I −W)ui = λiui ; yi = u>i ; i = 1, · · · , d

156 UM6P’25 Spring School., Feb. 18-24, 2025

Locally Linear Embedding (Roweis-Saul-00)

ä LLE is very similar to Eigenmaps. Main differences:

1) Graph Laplacean matrix is replaced by an ‘affinity’ graph

2) Objective function is changed: want to preserve graph

1. Graph: Each xi is written as a convex
combination of its k nearest neighbors:
xi ≈ Σwijxj,

∑
j∈Ni

wij = 1

ä Optimal weights computed (’local calcula-
tion’) by minimizing

‖xi − Σwijxj‖ for i = 1, · · · , n

x

x
j

i

157 UM6P’25 Spring School., Feb. 18-24, 2025

2. Mapping:

The yi’s should obey the same ’affinity’ as xi’s

Minimize:∑
i

∥∥∥∥∥∥yi −
∑
j

wijyj

∥∥∥∥∥∥
2

subject to: Y 1 = 0, Y Y > = I

Solution: (I −W>)(I −W)ui = λiui; yi = u>i .

ä (I −W>)(I −W) replaces the graph Laplacean of eigenmaps

158 UM6P’25 Spring School., Feb. 18-24, 2025

Implicit vs explicit mappings

ä In Eigenmaps and LLE we only determine a set of y′is in Rd from the data
points {xi}.

ä The mapping yi = φ(xi), i = 1, · · · , n is implicit

ä Difficult to compute a y for an x that is not one of the xi’s

ä Inconvenient for classification. Thus is known as the “The out-of-sample
extension” problem

ä In Explicit (also known as linear) methods: mapping φ is known explicitly
(and it is linear.)

159 UM6P’25 Spring School., Feb. 18-24, 2025

Locally Preserving Projections (He-Niyogi-03)

ä LPP is a linear dimensionality reduction technique

ä Recall the setting:
Want V ∈ Rm×d; Y = V >X

v T
d

m

m

d

n

n

X

Y

x

y

i

i

ä Starts with the same neighborhood graph as Eigenmaps: L ≡ D −W =
graph ‘Laplacean’; with D ≡ diag({Σiwij}).

160 UM6P’25 Spring School., Feb. 18-24, 2025

ä Optimization problem is to solve

min
Y ∈Rd×n, Y DY >=I

Σi,jwij ‖yi − yj‖2 , Y = V >X.

ä Difference with eigenmaps: Y is an explicit projection of X

ä Solution (sort eigenvalues increasingly)

XLX>vi = λiXDX
>vi yi,: = v>i X

ä Note: essentially same method in [Koren-Carmel’04] called ‘weighted
PCA’ [viewed from the angle of improving PCA]

161 UM6P’25 Spring School., Feb. 18-24, 2025

ONPP (Kokiopoulou and YS ’05)

ä Orthogonal Neighborhood Preserving Projections

ä A linear (orthogonoal) version of LLE obtained by writing Y in the form
Y = V >X

ä Same graph as LLE. Objective: preserve the affinity graph (as in LLE)
but with the constraint Y = V >X

ä Problem solved to obtain mapping:

min
V

Tr
[
V >X(I −W>)(I −W)X>V

]
s.t. V TV = I

ä In LLE replace V >X by Y
162 UM6P’25 Spring School., Feb. 18-24, 2025

More recent methods

ä Quite a bit of recent work - e.g., methods: node2vec, DeepWalk, GraRep,
.... See the following papers ... among many others :

[1] William L. Hamilton, Rex Ying, and Jure Leskovec Representation Learn-
ing on Graphs: Methods and Applications arXiv:1709.05584v3

[2] Shaosheng Cao, Wei Lu, and Qiongkai Xu GraRep: Learning Graph
Representations with Global Structural Information, CIKM, ACM Conference
on Information and Knowledge Management, 24

[3] Amr Ahmed, Nino Shervashidze, and Shravan Narayanamurthy , Distributed
Large-scale Natural Graph Factorization [Proc. WWW 2013, May 13-17,
2013, Rio de Janeiro, Brazil]

163 UM6P’25 Spring School., Feb. 18-24, 2025

Terminology: Encoding

ä The mapping from node to vector is often called an encoding

v

u

u

v

Enc(u)

d−dim
Enc(v)

space
Graph

y

y

ä Goal: encode should reflect similarity (if u and v are ‘similar’, their encod-
ings should be ‘close’)

ä Example: measure similarity by yTv yu

164 UM6P’25 Spring School., Feb. 18-24, 2025

Example: Graph factorization

ä Line of work in Papers [1] and [3] above + others

ä Instead of minimizing
∑
wij‖yi − yj‖2

2 as before

... try to minimize
∑
ij

|wij − yTi yj|
2

ä In other words solve: minY ‖W − Y TY ‖2
F

ä Referred to as Graph factorization

ä Common in knowledge graphs

ä Method seen so far are termed ‘shallow encoders’
165 UM6P’25 Spring School., Feb. 18-24, 2025

DEEP NEURAL NETWORKS (DNNS)

A (very) brief history of AI and DNNs

1950: ’Turing test’ – can a machine think?

1956: Dartmouth College Artificial Intelligence Conference. Invention of
the term ‘Artificial Intelligence’ [J. McCarthy]

1958: Rosenblatt invented the ‘Perceptron’ - idea of imitating neurons

1958+: Emphasis on symbolic processing/reasoning. invention of LISP

1964: Eliza (MIT) - a natural language processing program

1974-1980: 1st AI winter (lack of progress). Pb: NLP going nowhere

1980s: Multilayer Perceptron. More numerical/optimization approaches.
Departure away from Natural Language Processing.

167 UM6P’25 Spring School., Feb. 18-24, 2025

1982: Convolutionan Neural Networks (CNNs)

Mid-1980s: Back-propagation enters in force

1987-1993: 2nd AI winter (lack of progress). Pb: Lack of compute power

1997: Deep Blue (IBM) beets G. Gasparov - world Chess Champion

Mid-1990s: Research in ‘Data Mining’ gaining ground

2012: Huge breakthrough in CNNs (Alex-net) - boost from GPUs

2016: AlphaGo (DeepMind) beets Go Champion

2017: ’Transformers’ [“Attention is all you need”]

2018: GPT-1 (OpenAI) ... [Large Language Models]

2019: GPT-2 — The rest is history.

168 UM6P’25 Spring School., Feb. 18-24, 2025

Deep Neural Networks (DNNs) - general remarks

ä Ideas of neural networks goes back to the 1960s - were popularized in
early 1990s – then laid dormant until recently.

ä Two reasons for the come-back:

• DNN are remarkably effective in some applications

• big progress made in hardware [→ affordable ‘training cost’]

169 UM6P’25 Spring School., Feb. 18-24, 2025

Multilayer Perceptron (MLP)

ä Training a neural network can be
viewed as a problem of approximating
a function φ which is defined via sets
of parameters:

1z z2
z

3

z =x
0

φ()x = z
4

1st s
et o

f p
arameters

2nd set o
f p

arameters

4th set o
f p

arameters

3rd
 set o

f p
arameters

x z 4

φ

Problem: find sets of parameters such that φ(xi) ≈ yi, for i = 1, · · · , n

ä The set {xi, yi} is the training set

ä Notation: Often ŷi ≡ φ(xi) so we want yi ≈ ŷi for i = 1, · · · , n

170 UM6P’25 Spring School., Feb. 18-24, 2025

Start with one layer: Perceptron

ä Objective: To separate two given sets (A) and (B) of input data

ä Example of application: Distinguish SPAM and non-SPAM e-mails

Linear classifiers: Find a hyperplane which
best separates the data in classes A and B.

• Use hyperplane defined by:
φ(x) = wTx+ β

Linear

classifier

171 UM6P’25 Spring School., Feb. 18-24, 2025

ä Sets (A) , (B) defined by: φ(x) = σ(wTx+ β) (σ == sign function)

ä φ(x) ≥ 0→ x ∈ (A) and φ(x) < 0→ x ∈ (B)

ä Given: training data set (xi, yi) with labels (e.g., ’spam’–’non-spam’,
’malignant’ –’non-malignant’,...) where yi = ±1

ä Determine an optimal w for which φ(xi) ≈ yi for i = 1, · · · , n

ä ‘Inference’: Determine class of a new ‘test’ item x by evaluating φ(x)

172 UM6P’25 Spring School., Feb. 18-24, 2025

Multi-Layer Perceptrons (MLPs)

ä Neural Networks (NNs) generalize what was just described

ä First: Instead of a single vector w we will use a d× k matrix W and σ is
replaced by a continuous function known as an ’activation function’

ä φ(x) is a vector.

ä Second big change: use several layers of perceptrons instead of one.

ä First Layer: transform x to z1 = σ(W T
1 x+ b1) where W1 ∈ Rd×d1 and

σ = activation

173 UM6P’25 Spring School., Feb. 18-24, 2025

The activation functions

ä Several choices for the activation function σ used

ä Best known Rectified Linear Unit, or ReLU: σ(t) = max{0, t}.

ä The Sigmoid: σ(t) = (1 + e−t)−1

ä ... and the hyperbolic tangent σ(t) = tanh(t)

ä Note: ReLU ≥ 0; sigmoid and tanh lie in (0, 1) and (−1, 1) respectively.

ä The sigmoid is related to logistic regression and its derivative satisfies
σ′ = σ(1− σ).

-41 Prove the above relation.

-42 If θ(t) = tanh(t) and σ is the sigmoid, show that θ(t) = 1− 2σ(−2t)

174 UM6P’25 Spring School., Feb. 18-24, 2025

MLP - continued

ä 2nd layer transforms output z1 from 1st layer z2 = σ(W T
2 z1 + b2)

ä Generally, going from layer l− 1 to layer l:

zl = σ(W T
l zl−1 + bl)

ä where Wl ∈ Rdl−1×dl, bl ∈ Rdl, and σ

ä Do this for l = 1, 2, · · · , L+ 1 - where L = number of ‘hidden’ layers

ä zL+1 = output = φ(x). For example, when L = 3:

φ(x) = σ(W T
4 σ(W T

3 σ(W T
2 σ(W T

1 x+ b1) + b2) + b3) + b4).

175 UM6P’25 Spring School., Feb. 18-24, 2025

MLP

Input: x, Output: y
Set: z0 = x

For l = 1 : L+1 Do:
zl = σ(W T

l zl−1 + bl)

End
Set: φ(x) := zL+1

• layer # 0 = input layer
• layer # (L+ 1) = output layer Layer

Input

Layer

OutputHidden

Layer

ä A matrix Wl is associated with layers 1, 2, · · · , L+ 1 (for L hidden layers)

176 UM6P’25 Spring School., Feb. 18-24, 2025

MLP

ä Problem: Find φ (i.e., params. Wl, bl) s.t. φ(xi) ≈ yi for i = 1 : n

Example: digit recognition

ä We have a set x1, · · · , xn of labeled images of digits.

ä Each xi = vectorized picture.

ä yi = a digit between 0 and 9

ä Often yi expressed as a one-hot vector of length 10.

ä For example digit 2 will be [0,0,1,0,0,0,0,0,0,0] = e3

177 UM6P’25 Spring School., Feb. 18-24, 2025

ä If the images are 10× 20 ...

ä ... and we have L = 2 hidden layers with d1 = d2 = 100

ä Then input data has size n× d0 where d0 = 400 and the output will be of
size n× 10.

178 UM6P’25 Spring School., Feb. 18-24, 2025

Loss function and training

ä To train the model we need a set of data points xi, yi, i = 1 : n.

ä Input == a matrix X of size n× d0, – each row == a sample

ä Output == matrix Y of length n× C whose rows are ‘one-hot’ vectors [C
= # classes]

ä Each of the internal variables zl becomes a matrix Zl ∈ Rn×dl Now:

Zl = σ(Zl−1 ×Wl + bl)

where Wl Rdl−1×dl, bl ∈ R1×dl, and σ are the same as before.

179 UM6P’25 Spring School., Feb. 18-24, 2025

ä Note change of notation: samples xi and internal variables zi are now
row vectors

ä They occupy the rows of the matrix X and Zl respectively.

ä Above equation explots ‘broadcasting’ [feature of Pyhon]

ä Define W = {W1, b1,W2, b2, · · · ,WL, bL} the set of parameters

ä φ(x) is written as φW (x)

ä Problem: Find function φW s.t. φW (xi) ≈ yi for i = 1 : n

ä In matrix form φW (X) ≈ Y .

ä Possible formulation:

min
W
L(W) ≡ ‖Y − φW (X)‖2

F =

n∑
i=1

‖yi − φW (xi)‖2
2

180 UM6P’25 Spring School., Feb. 18-24, 2025

ä Recall: Y, φW (X) ∈ Rn×dL+1 where dL+1 ≡ C == number of classes.

ä Above formulation is seldom employed. Preferred approach: exploit
cross-entropy distance - a notion based on information theory.

ä if yi, ŷi are scalars minimize cross-entropy loss: L(W) = −1
n

∑
i yi log(ŷi)

ä Otherwise - apply softwax operation to each row yi: ŷi = softmax(yi)

ä Softmax of a row/col. vector z is:
Exp. Operation done componentwise

softmax(z) = exp(z)
sum[exp(z)]

ä Product yi log(ŷi) in scalar case, replaced by inner product.

ä Thus, the cross-entropy loss function which we want to minimize is

L(W) = −1
n

∑n
i=1(yi, log ŷi) .

181 UM6P’25 Spring School., Feb. 18-24, 2025

Training a DNN

ä Basic idea: use Gradient Descent wj+1 = wj − ηj∇φ(wj),

scalar ηj = termed the step-size or learning rate in ML

ä Well understood algorithm when φ is convex - not too useful as is in ML

ä In deep learning, φ(w) is often the mean of other cost functions:

φ(w) = 1
n

∑n
i=1 φi(w) → ∇φ(w) = 1

n

∑n
i=1∇φi(w)

ä Recall ‘Mean Squared Error’ (MSE) caseL φ(w) = 1
n

∑n
i=1 ‖yi−φw(xi)‖2

2

ä Similarly for the cross-entropy cost.

182 UM6P’25 Spring School., Feb. 18-24, 2025

ä Expensive to compute ‘full’ gradient ∇φ but not ∇φi(w), for some i

ä Idea of Stochastic Gradient Descent (SGD): replace∇φ(wj) by∇φk(wj)
where k is an index between 1 and n drawn at random.

ä Result is an iteration of the type: wj+1 = wj − ηj∇φk(wj) - - where φk
drawn at random among {φ1, φ2, · · · , φn}

Mini-batching Using a single function φk at a time not efficient.

ä Compromise: replace function φk, by av-
erage of m functions drawn randomly from full
set. Let Bj the sample at step j - define:

φBj(w) ≡ 1
|Bj|
∑

k∈Bj φk(w).

Batch-SGD: wj+1 = wj − ηj∇φBj(wj) j = 1, 2, · · · , nB.

183 UM6P’25 Spring School., Feb. 18-24, 2025

ä ’epoch’ == a cycle through all mini-batches Bj

ä Simplest among a few ‘optimizers’

ä Best known technique to train a neural network is know as the Adaptive
Moment Estimation (Adam) algorithm.

ä Adam exploit two ideas: variance reduction and momentum.

ä Variance reduction is a form of diagonal preconditioning - scales variables
adaptively, adjusting the learning rate for each parameter individually

ä Momentum == add a multiple of the previous increment wj − wj−1:

ä GD +Momemtum: wj+1 = wj − ηj∇φ(wj) + ν(wj − wj−1)

ä Adam has two momentum terms: for gradient and for variance.

184 UM6P’25 Spring School., Feb. 18-24, 2025

Adam:

mt = β1mt−1 + (1− β1)gt , m̂t = mt/(1− βt1)
vt = β2vt−1 + (1− β2)(gt)

2 , v̂t = vt/(1− βt2)

wt = wt−1 −
ηm̂t√
v̂t + ε

.

ä gt is the gradient at step t,and β1 and β2, are decay rates.

ä Divisions, squaring, square roots, of vectors done componentwise.

ä Recommended parameters: β1 = 0.9, β2 = 0.999, ε = 10−8.

185 UM6P’25 Spring School., Feb. 18-24, 2025

Issues with ‘optimization’

ä Problem is not convex, highly parameterized, ...,

ä We may have a huge number of local minima.

ä Hard to analyze mathematically why it all works.

ä Over-parameterization plays a central role

ä Notion of generalization: How does the model perform on unseen data
(not in training set)? Defines accuracy of model

ä Important: Lower cost function does not mean better accuracy

186 UM6P’25 Spring School., Feb. 18-24, 2025

Back to Back-propagation

Graph of forward phase for calcu-
lation zl = σ(W T

l zl−1 + bl)

ä Nodes of comput. graph: cir-
cles (the zk’s) and squares (the
parameters, Wk, bk).

w l

z
l−1 lz z

l+1

b l

ä Call f the original objective function - L(W)

ä Want: the gradient of f with respect to all parameters wl, bl

ä Assume a forward propagation step was done. All nodes evaluated

ä In back-propagation arrows in Figure are reversed.

187 UM6P’25 Spring School., Feb. 18-24, 2025

ä Evaluate: ∂f
∂zl

= ∂f
∂zl+1
× ∂zl+1

∂zl

ä Note: ∂f
∂zl+1

was evaluated at a
prior traversal step in graph

w l

z
l−1 lz z

l+1

b l

ä Also: ∂zl+1

∂zl
is readily computable from zl+1 = σ(W T

l+1zl + bl+1)

ä Next follow the (reversed) arrows, and compute
∂f

∂Wl

=
∂f

∂zl
×
∂zl

∂Wl

and
∂f

∂bl
=
∂f

∂zl
×
∂zl

∂bl
.

ä Above calculations take place in the ‘leaves’ of back-propagation graph.
They yield desired partial derivaties wrt Wl, bl

ä Similar situation when the zi’s are matrices [general case]

ä Back-propagation ampounts to a sequence of matrix products.
188 UM6P’25 Spring School., Feb. 18-24, 2025

AI thinking vs. numerical analysis thinking: “Attention”

Trivial example: Given very noisy ‘training points’

xi, yi to an unknown function f , ‘recover’ f

NA : Interpolate in Least-Squares sense

ä Need to select interpolant type, e.g., cubic

ML : use data points + some form of averaging with ’attention’.

189 UM6P’25 Spring School., Feb. 18-24, 2025

ä Given {ki, vi} keys, values (NA: xtraini , ytraini })
ä ... a query q (NA: The x where we want f(x))
ä ... and a Kernel a(q, k). Approximation at q:

A(q) =
∑
i

a(q, ki)vi

ä “Attention” mechanism aver-
ages by giving more importance to
points near q
ä Nadaraya-Watson attention
[Kernel Regression]

average with a(q,k)i

k kk q
1 2

v
1

v 2

n

190 UM6P’25 Spring School., Feb. 18-24, 2025

Transformers

ä Up-to ≈ 2015: MLP, CNN, RNN+LSTM, + Focus on images. Then:

ä “Attention is all you need” paper [Vaswani al, ’17] – a major breakthrough

Before: LLMs needed to account for sequentiality.. order in words. Diffi-
culties: stability, ...,

Now: use (1) attention + (2) adding ‘positional encoding’ scheme to em-
bedding.

191 UM6P’25 Spring School., Feb. 18-24, 2025

Tokenization + Embedding

ä Very first step of LLMs: transform sequences of strings (words, chars)
into tokens

ä ... and then into vectors via embedding

ä Result: matrix X0 of size n× d;

ä n = number of tokens, d = embedding dimension

ä X0 transformed
through L passes

XL = T (X0) = (TL ◦ TL−1 ◦ · · · ◦ T1)(X0).

ä T` termed `-th ‘transformer block’

192 UM6P’25 Spring School., Feb. 18-24, 2025

ä `-th block == parameterized function T`(· ; Θ`) : Rn×d→ Rn×d.

(a) A`(X`−1) = MHA(LN(X`−1)),

(b) M` = MLP(LN(X`−1 +A`(X`−1))),

(c) X` = X`−1 +A`(X`−1) +M` ≡ T`(X`−1)

MHA = Multi-headed attention block

LN = Layer-Normalization

MLP = Multilayer Perceptron block

’Residual Attention’ X`−1 + A`(X`−1) in (b) and (c) helps capture incre-
mental changes

ä Additional LN step added at last layer: XL := LN(XL)

ä Final output is passed to a bias-free linear layer to obtain loss function
193 UM6P’25 Spring School., Feb. 18-24, 2025

MLP stage - written in (row) vector form


a

(`)
i = MHA(LN(x

(`−1)
1 , x

(`−1)
2 , · · · , x(`−1)

i)

m
(`)
i = MLP(LN(x

(`−1)
i + a

(`)
i))

x
(`)
i = x

(`−1)
i + a

(`)
i + m

(`)
i

m
(`)
i = W

(`)
dwn

σ

(
W (`)

up
γ (x

(`−1)
i + a

(`)
i) + b(`)

up

)
+ b

(`)
dwn

Weights
(2nd MLP) Activation function,

(e.g. ReLU, thanh,..)

Weights
(1st MLP)

Normalization
function

194 UM6P’25 Spring School., Feb. 18-24, 2025

GPT3: counting the 175B parameters

ä Embedding dimension in GPT3 = dembed = 12, 288

MLP: Dimension used for Wup,Wdwn = 4dembed × dembed = 4 ×
(12, 288)2 ≈ 4 × 1.5 × 108 = 6 × 108 Each. i.e., ≈ 12× 108

ä Multiply by the number of blocks (=96 in GPT3)→ ≈ 120B

MHA: 4 matrices of size dembed × 120 times 96 heads times 96 blocks,→
≈ 54B+

ä Total 174B + add initial params for embeddings ≈ 175B

ä For Llama3: 450B params.

195 UM6P’25 Spring School., Feb. 18-24, 2025

Q: Where is the Linear Algebra?

ä More precisely: Which Linear Algebra tools/methods can help here?

ä Really need to look deep inside the various boxes to find answers

ä Some recent advances were deeply rooted in NLA -

ä Next: 2 examples

196 UM6P’25 Spring School., Feb. 18-24, 2025

Example: A pure LA idea that is very successful

“Transformers are RNNs: Fast Autoregressive Transformers with Linear
Attention”, A. Katharopoulos, A. Vyas, N. Pappas, F. Fleuret (’21)

ä Scaled Dot-product Attention :
ä Softmax applied row-wise
ä Q: n× d, K: n× d, V : n× v

Al = softmax
(
QKT

√
d

)
V

Q V

K
T

d x n

n x d n x v

ä Cost: O(n2) – But without the softmax term:

ä Do KTV first – then Q× result: → O(n) cost

ä Idea: replace softmax(QKT) by φ(Q)φ(KT)

(Judicious func. φ applied rowwise to Q,K)

ä Very simple idea. Very impactful paper [Huge gain in training time]

197 UM6P’25 Spring School., Feb. 18-24, 2025

Example: Low-rank structure in DNN

“LoRa: Low-Rank Adaptation of Large Language Models” E. Hu, Y. Shen,
P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen (’21)

ä LoRa able to reduce number of parameters in Chat-GPT3 from 175B to
17M - (i.e., / by 10,000)

ä Observed: Depth of DNN → low-
dimensional paramater-spaces
Over-parameterization→ Low-Dim.

ä Idea: Low-rank modifs to some W0

ä Many follow-up papers, (e.g., analysis)

W0 (d× dv)

(Frozen)

h = x×W0 + x×AB

(Trained)

A (d× r)

B
(r × dv)

⊕

x (1× dv)

198 UM6P’25 Spring School., Feb. 18-24, 2025

GRAPH NEURAL NETWORKS

Graph Neural Networks

ä Idea: exploit graphs in neural networks - Replace CNN with Aggregation

ä A GNN is not a specific model but rather a framework

ä Goal == to produce an embedding for nodes of a graph

Given: A graph G = (V,E) (n nodes) + feature matrix X(0) ∈ Rn×d0

ä Row i of X(0) == ‘feature’ of node i

ä At layer l we will create/modify features in Rdl for each node

ä Fundamental operation used for this: the message-passing mechanism

200 UM6P’25 Spring School., Feb. 18-24, 2025

x
(`+1)
i = UPDATE

(
x

(`)
i , AGGREGATE({x(`)

j : j ∈ N (vi)})
)
,

ä Node features created/modified
from layer to layer - At layer l: x(l)

i .
ä Message-passing: aggregate fea-
tures from neighbors N (vi):

j

i

2

j
1

j
3

ä In addition, the features are linearly modified by weights to be optimized.

ä See the GCN example.

201 UM6P’25 Spring School., Feb. 18-24, 2025

Graph Convolutional Networks

ä Aggregate operation simple to describe.

ä Let A = adjacency matrix and D̃ =

diag of row-sums of Ã = A+ I. Define:
Â := D̃−1/2ÃD̃−1/2

GCN - Layer l to l+ 1 update X(`+1) = σ
(
ÂX(`)W (`)

)
ä W (l) is a parameter determined by training

ä Each row of X(l) is a feature

ä At last layer this becomes the desired embedding [a row for each node.]

202 UM6P’25 Spring School., Feb. 18-24, 2025

X(l)

Â

W (`)

X(l+1)X(l+1) = σ(ÂX(l)W (l))

Layer l to l + 1 in GCN

-43 See Pytorch codes for the ENZYME dataset [graph classification]

-44 See Pytorch codes for the Cora dataset [Node classification]

-45 What is the difference between Node and Graph Classification?

203 UM6P’25 Spring School., Feb. 18-24, 2025

Graph Attention Networks (GATs)

ä Idea: exploit ‘Attention’ in GCN

ä In very simple terms: we now add weights to adjacency matrix

ä Weights based on attention mechanism - and they are learned

Given: A graph G = (V,E) (n nodes) + feature matrix X(0) ∈ Rn×d0

ä Goal same as before == produce an embedding for nodes of a graph

204 UM6P’25 Spring School., Feb. 18-24, 2025

ä Attention-based message-passing:
compute weighted average of transformed
features in N (vi):

j

i

2

j
1

j
3

X(`+1) = σ
(
AαX

(`)W (`)
)

ä Entry αij of Aα == attention weight between nodes i and j:

αij =
exp(eij)∑

k∈N (i) exp(eik)

ä ≡ softmax of neighoring eij’s – What is eij?

205 UM6P’25 Spring School., Feb. 18-24, 2025

ä eij == Attention score between node i and neighbors j ∈ N (i)

eij = LeakyReLU
(
aT ·

[
W (`),Txi ‖W (`),Txj

])
‖ == concatenation

ä Note: Bias often added before applying LeakyReLu

ä a ∈ R2d is a learnable attention vector

ä LeakyReLU(t) = max{t, αt} (where 0 ≤ α� 1)

ä Aggregation similar to GCN. Main differences:

Scaled Adjacency matrix Â replaced by Aα

Aα is now learned

Additional parameter: a ∈ R2d

-46 See Pytorch codes for GAT

206 UM6P’25 Spring School., Feb. 18-24, 2025

Final words

ä *Many* interesting new matrix problems in areas that involve the effective
exploitation of data

ä Change happens fast in part because we are better connected

ä In particular: many many resources available online.

ä Huge potential for making a good impact by looking at a topic from new
perspective

ä To a researcher in computational linear algebra : Tsunami of change on
types or problems, algorithms, frameworks, culture,..

207 UM6P’25 Spring School., Feb. 18-24, 2025

ä My favorite quote. Alexander Graham Bell (1847-1922) said:

When one door closes, another opens; but we often look so long and so
regretfully upon the closed door that we do not see the one which has
opened for us.

ä Visit my web-site at www.cs.umn.edu/ ~saad

ä More complete version of this material will available in course csci-8314
– notes (and more) are open to all.

Thank you !

208 UM6P’25 Spring School., Feb. 18-24, 2025

www.cs.umn.edu/~saad

