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Introduction & Background

» Many applications require the computation of a few eigen-
values + associated eigenvectors of a matrix A
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e Structural Engineering —
(Goal: frequency response)

e Electronic structure calcu-
lations [Schrodinger equa-
tion..] — Quantum chemistry

e Stability analysis [e.g., elec-
trical networks, mechanical
system,..]
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» What is really needed is an invariant subspace of some
large matrix A, i.e., a subspace X such that :

AX C X o AY =YC
Y = basis of subspace X of dim m, C € R™*™

» Often ‘dominant’ invariant subspace needed [‘dimension
reduction’]

» Smallest eigenvalues needed in, e.g., electronic structure
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Problems: = Approximate the subspace
= Update it, e.g., when data changes
= Estimate its dimension (inexpensively)

= Exploit the subspace for certain calculations
[e.g., model reduction]

= Track subspace of a sequence of matrices

= Find approximate common invariant sub-
space to a set of matrices
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Rayleigh-Ritz projection

Given: a subspace X known to contain good approximations
to eigenvectors of A.

Question: How to extract good approximations to eigenval-
ues/ eigenvectors from this subspace?

Answer: | Projection method

» Let@Q = [q1,.-.,qmn] an orthonormal basis of X.

» Express approximation as u© = Qy and obtain y by writing
QHA—-ADNa =0 — QPAQy = \y

» Called Rayleigh Ritz process — Abbrev.: RR
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Subspace Iteration

Original idea: projection technigue onto a subspace of the

form|Y = A*X]|- Also called just the: “Power method”

» In practice: Replace A* by suitable polynomial [Chebyshev]

ALGORITHM : 1 [X 0w, D] = Subsit(A, X)
1. Start: Select an initial system X = [x1,..., 2]
and an initial polynomial Cy.
Until convergence Do:
Compute X = Cy(A)X. [Original: X = A*X]
[ X new, D] = Rayleigh-Ritz (A, X)
If convergence satisfied Return.

Else X := X,.w & select a new polynomial C,
6. EndDo

SRS CURR AN



Assumptions:

oA 2 [Ae] 200 2 [Am] > A 2> -

m P = eigenprojector (associated with Aq, -« , An)
s Ly = span{xi,Ta,...,Ty}. ASSUME:

s {Px;};—1...m linearly independent.

m P =1 prOJector onto £y = span{Xy}.

THEOREM: For each eigenvector u; of A,z = 1,...,m, there
exists a unique vector s; in the subspace L, such that Ps; =
u;. Moreover, the following inequality is satisfied

A, &
! ‘|‘€k> s

1L = Po)uills < llus — sill: (\

where €, tends to zero as k tends to infinity.

)
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Q: What Chebychev ,~<—Unwanted ——>= wanted

pOIynomiaI? In T+1 L
Typical scenario — Mm M

Deg. 6 Cheb. polynom. v =1.2
Common thinking: shift and scale .|

Ato B = (A — cI)/h:

0.8 r

A'm+1‘|_An h — )\m—l—l_An 0.6 |
2 ) T 2

C —

Then: pg(t) = Cr(t)/Cr(A1)
» Eigs of B in [—1,1] are now
the ‘unwanted’ eigenvalues ’

2+

» Polynomial ‘optimal’ in some sense for each \;, 1= < m
individually - but not for the invariant subspace as a whole.
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Krylov vs. subspace iteration

» From the perspective of computing invariant subspaces

Krylov-type methods Subspace iteration methods

+ Fast + Updates are easy

+ Optimal in a certain sense || + Geared toward subspaces

+Requires one starting [vs individual eigenvalues]
vector + Tolerates changes in A

— Not easy to update — Slower

— Changes in A not allowed

Important note: both types of methods require only matrix-
vector products. Can get superior convergence with shift-and-
invert [replace A with (A — oI)~! in Algorithms]. Issue: cost
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Example: subspace iteration for Kohm-Sham equation

[—%2 + Vion + Vi + Vmc} U(r) = E¥(r) Wwith:

e Hartree potential (local) V*Vyg = —4xp(r)
:Dch depends on functional. For Vae = F(p(r))

® Vion = nonlocal —does not explicitly v, _ e+ 3. P,
depend on p o .

e Vy and V. depend nonlinearly on
eigenvectors:

p(r) = 22757 |abs(r) |
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Self-Consistent Iteration

Initial Guess for V., V = V;
Solve (—3V?2 —|i V) = €9;
Calculate new p(lr) = > 2% |1i|?
Find new Vg —VlZVH = 47 p(r) V = Viaew
Find new Vwi = flp(r)]

View = Vion + VIj[ + Ve + ‘Mixing’
If | View — Vl| < tol stop
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The subspace filtering viewpoint

Given a basis [v1,. .., U],
filter’ each vector as

» pi. = Low deg. polynomial [Chebyshev]

» Filtering step not used to com-
pute eigenvectors accurately

» SCF & diagonalization loops
merged

» Another viewpoint: nonlinear
form of subspace iteration

Deg. 8 Cheb. polynom., on interv.: [-11]
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Select initial V = V4
Get initial basii‘, {;} (diag)

Calculate new p(lr) = > 2% |14|?
Find new Vj: —Vl2VH = 47mp(r)
Find new Vmi = flp(r)] V = View
View = Vion + VIi + Vi + ‘Mixing’

If | Viyew — Vl| < tol stop

Filter basis {;} (\i/vith H,,..,)+orth.
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Yunkai Zhou, Y.S., Murilo L. Tiago, and James R. Chelikowsky, Parallel Self-Consistent-
Field Calculations with Chebyshev Filtered Subspace lteration, Phy. Rev. E, vol. 74, p.
066704 (2006)

method # A x x scF, CPU(s.)

Stso5Hoqg POlynomlal ChebSIl | 124761 11 9946.69
deg. == 8. Single proc. ARPACK 142047 | 10 162026.37
TRLan | 145909 10 26852.84

S’i9041H1860 # PEs = 48; ng =2,992,832. Degree m =8

Natate | # A % x # SCF| tetaleV | 45t CPU total CPU

atom

190154804488 18 -92.00412 102.12 h.|294.36 h.
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The Grassmannian perspective

» Recall: Stiefel manifold (‘compact’ Stiefel manifold):
St(p,n) ={Y € R"*P : YTY =TI}.

» Set of matrices with p orthonormal columns

» Grassmann manifold is the quotient manifold
G(p,n) = S(p,n)/O0(p)

where O(p) = orthogonal group of unitary p X p matrices.
» Each point on G(p, n) = a subspace of dimension p of R™

» (Can be represented by a basis V' € St(p, n).
Notation: [V], [it does not matter which basis V' of is used]
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e A. Edelman, T. A. Arias, and S. T. Smith, The geometry of
algorithms with orthogonality constraints, SIMAX, 20 (1999)

» Tangent space of the Grassmann manifold at [Y'] is the set
of matrices A € R"*P s.t.

YTA =0

» The EAS paper (above) considers minimizing
F(Y)=,Tr[YTAY]

where Y1Y = I by a Newton approach

» The gradient of F'(Y') on G=(I—-YYT)AY
the manifold at point [Y'] is
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» For Newton: We need to solve HessA = — G on manifold

» Notation: II=T—-YY"! Cy =YTAY
» Newton leads to Sylvester equation:

[I[AA — ACy| = —TIAY

» Solution: A = —Y + Z(Y?Z)~! where Z solves
AZ — ZCy =Y
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A few other well-known references

1. P.-A. Absil, R. Mahony, R. Sepulchre and P. Van Dooren “A Grassmann-
Rayleigh Quotient Iteration for Computing Invariant Subspaces”, SIAM
Review, (2002)

2. P. A. Absil, R. Mahony and R. Sepulchre, Riemannian Geometry of
Grassmann Manifolds with a View on Algorithmic Computation, Acta
Applicandae Mathematicae, 80 (2004)

3. G. W. Stewart, “Error and perturbation bounds for subspaces associ-
ated with certain eigenvalue problems”, SIAM Rev., 15 (1973)

4. J. W. Demmel, “Three methods for refining estimates of invariant sub-
spaces”, Computing 38 (1987)

5. F. Chatelin, Simultaneous Newton’s iterations for the eigenproblem,
Proc. Oberwolfach Conference (1984)

6. A. Sameh, J. Wisniewski, The TraceMin algorithm, 1982.
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The Grassmannian perspective (continued)

» Problem with these 2nd-order methods: Need to solve mul-
tiple systems of equations or a Sylvester equation at each step

» (Can we use Grassmannian perspective without inversion?
» |dea: Use a gradient - or conjugate gradient - approach
Recall: On G(p, n), gradient of objective function ¢ at [Y] is
G=V¢y =I—-YYT)AY = AY — YCy

with Cy = YTAY.
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Gradient approach

» Next iterate is of the follow- Y =Y + uG
ing form ( to be determined) ’

» Direction of gradient will in-
crease ¢ locally but new iterate
must stay on manifold.

» (Could follow a geodesic (EAS paper) ..

» Or follow a path along G but implicitly re-project each Y +
pG on manifold, i.e., consider [Y + uG]
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» (Can show
oY) = (V) + pl|GlZ + ETr[AY]THATII[AY]

» ... and because YTG = 0 we have:
YTY = [Y + puG)TY + uG] = I + p’GTG.

» Let: G'G = UDgU?" = spectral decomposition of GTG
» Want: To orthonormalize Y without changing its span

> Sol: Right-multiply Y by UD;*, i.e., define new Y as:

Y(u) =YUD;' = (Y +uG)UD; .

where: D, = [I + p?Dg]Y/?
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Y,=YU G, =GU
Set: o = (YUTAYU)” Yi = (GESAGu)zz Then:
D, = Diag(a;); D., = Diag(~:);

d(Y (1)) = 3T [I + p?Dp] " [Do + 2uDp + p2D5]

i | io- 1 N a; + 2Bip + it
This Is a ratio Qb(Y(/L)) _ _Z :
nal function — 27— 1+ B

Derivative of dY(M) Em’: Bi +(vi —a; B — ﬁf;ﬂ
Y(p) — (1 + Bip?)?
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» Each numerator is an inverted parabola: 7 then >\
» Easy to devise procedures to optimize ¢(Y (w))

Z Careful in case 3;’s are small !

ALGORITHM : 2 Gradient Ascent algorithm

0. Start: Select initial Y such thatY'Y = 1I.

1. Compute G = AY — YCy

2. While|G||r > tol

3 Compute and Diagonalize GT'G as G'G = UDgU”*
4 Compute D, D,

5. Call get_mu to approximately maximize ¢(Y (p))

6. SetY := (Y + uG)UI[I + p2Dg]~1/?
/.

8.

Compute G = AY — YCy
EndWhile
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Use of Conjugate Gradients [work in progress (!)]

s Can’t use perspective of linear CG [obj. function not quadratic]

= Also we are maximizing a function [¢(Y )]
= An approach based on a Polak-Ribiere formulation works
quite well. New Con,j. Direction P:

Phew = P + BGpew Where = <Gneuéa%>Gnew>

= But we will also project new P on tangent space:
Pow+— (I —-YYD)P,,,

s Since YL P = 0 formulas similar to Grad. case available

new

[Slightly more expensive]
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Conjugate Gradients — Polak-Ribiere

ALGORITHM : 3 Conjugate Gradient Ascent algorithm
0. Start: Select initial Y such thatYT'Y = 1I.

1. ComputeG = AY —YCy;SetP =G

2. While|G||r > tol

3 Call get_mu to approximately maximize ¢(Y (p))
4 Set|Y, R| = qr(Y + pP,0) [Matlab]

5. Compute Gpew = AY — YCy

6. Compute B = Cnew=G:Gnew) gnd set:
7.

8.

9.

(G,G)
& em 7= Gz 7 /BP and G := Gpew
Phew := (I — YYT)Pnew

EndWhile
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A few numerical tests

Test cases: o0 |
1) Finite Difference Laplacean on o0 |
35 X 40 grid (n = 1, 400) .
2) Matrix Ukerbe1 from
SuiteSParse collection —
» All tests: m = Subsp. dim. = 8

3000
nz = 15704

» For Standard Subspace iteration — we apply optimal shift so
A— A—ol[whereo = (A, + Ag)/2]

» Tests: 1) Standard subspace iteration 2) Manifold Gradient
method and 3) Conj. Gradient version of manifold SubsitMf, 4)
Chebyshev subspace iteration
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Small Laplacean [35 X 40 grid, n = 1400, nnz

—— Subslt
- = =MfGr
——MfCG

45

—a— ChebOpt |

—=—Chebl10

40

150 200
lterations

Trace of Cy vs. its

0 50 100 250 300

350

Res. Norm

- -
-
__—a oy -

1074

——Subsilt
- = =MfGr

—a—MfCG
—=— ChebOpt
—=—Chebl10

0 50

1076

1078

150 200 250 300
lterations

Invariance Meas. vs. its

100 350

Performance measures: 1) Trace; 2) Invariance || AY =Y Cy |4
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Matrix Ukerbel [n = 5,981, nnz = 15704]

Trace(D q)

——Subslt
- - =-MfGr
——MfCG

—a— Chebl11

—&—ChebOpt |

50 100 150 200 250 300
lterations

Trace of Cy vs. its

350

Res. Norm

10
\—_\

100 .
10"
1072
10'3;

- [——Subslt
10.4;, - = =MfGr

—a—MfCG
105 - | —8—ChebOpt

- |[—=—Chebl11

-6 L I I 1 1 1 1 |

10 0 50 100 150 200 250 300 350

lterations

Invariance Meas. vs. its
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Application: Joint Diagonalization

» Current joint work with Karim Seghouane

Standard Orthogonal Joint Diagonalization (OJD): given p
matrices A;,--- , A, find a unitary matrix @Q such that each
Q1 A,;Q is close to a diagonal.

» Main applications: Blind Source Separation, ICA, ...

Typical formal formulation: — O (O A-ON 12

» Deals with the case where each A; is dense.

» Well-known algorithm: A Jacobi-like method [Cardoso &
Souloumiac, '96]. Cost: O(pn?)
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Large matrices: Use a subspace approach

» Previous criterion and obj. function do not work

» Roughly: Seek an n X k matrix (k < n) such that

1) A;QQ — QD; small for some diagonal D; [Invariance]
2) (Q near dominant invariant subspace for each A;

New objective function:

D
f(Q,Dy,...,Dp) =) || A:Q — QD;l|3.
=1

» Does not specify which invariant subspace is selected [we
let algorithm take care of this]
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ALGORITHM : 4 Subspace iteration for partial JOD

Start : select initial Q such QTQ = I
While { Not converged }

Fory =1,---,p

Compute X; = A;Q

EndFor

Let X = [Xq,--- , X))

Compute X = QXV' the SVD of X

Define Q := Q(:, 1 : k) [Matlab notation used]
EndWhile

» Alternative: Similar algorithm to Grassmann gradient ascent
- but uses combined objective function (to maximize)

YY) =132 T[YTAY] —nYr  |A4:Q — QCq,l3
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Updating the SVD (E. Vecharynski and YS’13)

Problem | Given partial SVD of X, to get partial SVD of X,

» Example: In information retrieval, updates of the form
Xew = [ X, D] (documents added) where D € R**P

» Assume X=X, = U3, V,!

» Compute Dy = (I — U U}')D and its QR factorization:

[Up, R] = qr(Dy,0), R € RP*P, Up e R"XP N

T
~ Vi O _ [ UI'D
0] = (0, Ot | Y 0]y =[5 VEP)]
Zha—-Simon (’99): Compute SVD of Hp & get approximate SVD
from above — This is a Rayleigh-Ritz projection method for the
SVD [E. Vecharynski & YS 2013]



» When the number of updates is large ZS becomes costly.
» |dea: Replace Up by a low dimensional approximation:

» Use U of the form U = [Uy, Z;] instead of U = [Uy, U,
» 7, == rank-l approximation of Dy, = (I — UU; )D

» Details of Experiments skipped but: we get slightly improved
precision at a much lower cost.

Retrieval accuracy, p = 25 Updating time, p = 25

0.75 0.4
—78
sV 1
0.7 = = GKL 0351 - -
0.3
0.65¢
S
@ —~ 0257
S o8 g
o ~
a = 02
& 0.55 E
s 0.15
<
0.5
0.1}
045 I~ 0-05,
0.4 I I I I I 0 1 1 1 1 1
500 600 700 800 900 1000 1100 500 600 700 800 900 1000 1100

Number of documents Number of documents
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What dimension to use in dimension reduction?

» Important problem in signal processing applications, ma-
chine learning, ...

» Often: a certain rank is selected ad-hoc. Dimension reduc-
tion is application with this “guessed” rank.

» k = intrinsic rank of data. Can we estimate it?

» Recall: Numerical rank :

e-rank = number k of sing. values > €
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Determining rank by eigenvalue counts

» Idea: count eigenvalues of AT A (or AAT) that are > €.

» Let A be a Hermitian matrix with eigenpairs (\;, u;), where

AlSAZS"°S>‘n

» Given: a,bsuchthat A\ < a <b< A\,
» Want:  pep = numberof A\;’'s € |a, b].

» Standard method: Use Sylvester inertia theorem. Requires
two LD L* factorizations — expensive!
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» Alternative: Exploit trace of P= > uuj.
the eigen-projector: Ai € [a b]

Goal now: approxi-
» We know that: T (P?) = Kap PP

mate : Tr (P)
P not avail- P — h(A) where h(t) — 1 if t € [ab]
able but: = h(A) where h(t) = 0 otherwise

» Can approximate h(t) by a polynomial 1/
» Then use statistical estimator for approximating Tr (¢ (A))
» Details: [E. Di Napoli, E. Polizzi, and Y.S., 2013]
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Alternative: ‘Density of States’ (DOS)

» Formally, the Density Of States (DOS) of a matrix A is

where: o is the Dirac o-function or Dirac distribution
» Term used by mathematicians: Spectral Density

» ¢(t) == a probability distribution function == probability of
finding eigenvalues of A in a given infinitesimal interval near t.

» Many uses in Solid-State physics
» Survey paper: [Lin-Lin, YS, Chao Yang], SIAM review, 2016.
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The Kernel Polynomial Method

» Used by Chemists to calculate the DOS — see Silver and
Roder'94 , Wang '94, Drabold-Sankey’93, + others

» Basic idea: expand DOS into Chebyshev polynomials

» Use trace estimators [discovered independently] to get traces
needed in calculations

» Assume change of variable done so eigenvalues liein [—1, 1].

» Include the weight function in the expansion so expand:
- 1 &
P(t) = V1 —t2¢(t) = VI — 12 x — > (Lt — Aj).
n -
71=1
Then, (full) expansion is: ¢(t) = >.7° e Tk(t).
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An example: The Benzene matrix

>> TestKpmDos

Matrix Benzene n =8219 nnz = 242669
Degree = 40 # sample vectors = 10
Elapsed time 1s 0.235189 seconds.
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Integrating to get eigenvalue counts

» Note: number of eigenvalues in an interval [a, b] is

b b
{ab] :/a Zé(t — ;) dt E/a no(t)dt .
J

> If we use KPM to approximate &(t) = ¢(t)/+/1 — 2 then
P T(t)

» A little calculation shows that the result obtained in this way
Is identical with that of the eigenvalue count by Cheb expansion
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Use of the Lanczos Algorithm

» Lanczos process builds orthogonal polynomials wrt to:
(b.0) = [ p(Ha(t)dt = (p(A)vr, a(A)v)

» lLetf;,y; 2 = 1---,m be the eigenvalues / eigenvectors
of tridiagonal matrix T;,, [Ritz values]

Idea: exploit relation of Lanczos with (discrete) orthogonal
polynomials and related Gaussian quadrature:

/ p(t)dt = Zaip(é’i) a; = [ely]’

» Formula exact when p is a polynomial of degree < 2m + 1
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See: Golub & Meurant ‘93, and also Gautschi’81, Golub and Welsch ’69.

» Consider now [ p(t)dt =< p,1 >= (Stieljes) integral =
(P(A)v,v) =3 Bip(Ni) =< ¢, p >

where v = Y B;u; = eigen -expansion of v, ¢, = > 370,
» Note: Ideal case 3; = 1/+/n yieds ¢, = ¢

» Then (¢, p) = > a;p(0;) = >_ a; (dg,, p) —
¢fv ~ Z a”i59i

» Statistically produce choice |3; = 1/+4/n, Vi|, average re-
sults over several vectors v with ||v||. = 1.
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Back to estimating the rank: Threshold selection

» Recall: numerical rank = # sing. values > €
Q: How to select €?
A: Obtain it from the DOS function

Exact DOS by KPM, deg = 30 Exact DOS by KPM, deg = 30 Exact DOS by KPM, deg = 30
I I I I | 1.8 ‘ ‘ ‘ ‘ ‘ : ‘ : - ¢ I I I I I I I I ]
1.6 4
1 14 i 3
2 ]
< =< 1l i =
= = p=
0.8 4
1.50
1 0.6 1
11
1 0.4+ g
1 5 2 05 1 18 2 a5 8 as 4
A A A

Exact DOS plots for three different types of matrices.
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» To find: point immediatly following the initial sharp drop
observed.

» Simple idea: use derivative of DOS function ¢

» For an n X n matrix with eigenvalues Ay > Ay > -+« > A\,;:

e =min{t: A\ <t < A\,,d'(t) = 0}.

» |n practice replace by

e =min{t: \; <t < A\,, |@d'(t)| > tol}
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DOS with KPM, deg = 50 Lanczos Approximation (matrix size=1961)

3 S 1400 ,
Q
25 £
[ (o} (o]
2 ‘0 o oo ° °
o 13501
~~ 15 2
= g
z 5
o 1
'%1300-—Curm|é’tiveAvg °
0.5H 3+
- o (r¢)g
o £ - - -Exact °
+= ; :
s e W 120 10 20 30
A Number of vectors (1 —> 30)
(A) (B)

(A) The DOS found by KPM.
(B) Approximate rank estimation by The Lanczos method for
the example netz4504.
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Approximate Rank Estimation of various matrices

Ipi_ceria3d (linear programming) 3,576
S80PI_n1 (model reduction prbm.) 4, 028
ukerbel (2D finite elem. prom.) 5,981
Erdos992 (collaboration network) 6,100
Geom (computl. geometry) 7,343
California (web search) 9,664
C-40 (non-linear optimization) 9,941




Matrices | Threshold Eigencount| M=100, n,=30
€ above € r.-KPM|r.-Lanczos
Ipi_ceria3d| 28.19 /8 /8.69 78.74
S80PI n1 1.76 2157 2154.04| 2156.48
ukerbe1 0.169 4030 4030.84| 4031.39
Erdos992 3.96 716 711.20 708.00
Geom 90 240 325.30 | 240.042
California 0.02 1646 5600.78 1646.66
C-40 48160.4 53 57.16 52.05

» Details: S. Ubaru, Y. S. and A. Seghouane, "Fast Estima-
tion of Approximate Matrix Ranks Using Spectral Densities," in
Neural Computation, vol. 29, 2017.
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Concluding remarks

» Many tasks in applications deal with invariant subspaces

» Beneficial to explore algorithms that treat invariant sub-
spaces as Grassmannian objects

» Krylov subspace methods not best choice for types of prob-
lems that arise in some applications ...

» ... but they are amazingly powerful for other tasks [e.g.
Spectral densities]
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