nITGCR：A nonlinear acceleration procedure based on Generalized Conjugate Residuals

Yousef Saad
University of Minnesota

NASCA 2023
 A日ヴท

First:

> Joint work with: Yuanzhe Xi (Emory), Shifan Zhao, Huan He (Harvard), Ziyuan Tang (Minnesota)
> Work supported by NSF.
> Related articles:

- NLTGCR: a class of nonlinear acceleration procedures based on Conjugate Residuals, Huan He, Ziyuan Tang, Shifan Zhao, YS, and Yuanzhe Xi
- Shanks sequence transformations and Anderson acceleration, C. Brezinski, M. Redivo-Zaglia, YS - SIAM Review, 2018

Introduction \& Background

> Accelerators for linear systems: Conjugate Gradient, Conjugate Residual, GCR, ORTHOMIN, GMRES, BiCGSTAB, IDR, ..
> Krylov subspace methods
> Picture for solving nonlinear equations is more complex
(a) Linear accelerators invoked when solving Jacobian systems iteratively in Newton \rightarrow Inexact Newton methods
(b) Quasi-Newton methods, BFGS, LBFGS, ..., : approximate Jacobian/ inverse with Low-rank updates
(c) Anderson acceleration, Pulay mixing, ... nonlinear acceleration viewpoint + (rough) a linear model
$>$ This talk: take the viewpoint of extending nonsymmetric Krylov methods [GCR, ORTHOMIN, ..] to nonlinear setting
> Many many possible options and viewpoints
> Can exploit models that are locally more accurate; can exploit known results on global convergence; etc.
> Possible to derive methods that emcompass all three viewpoints (a), (b), (c) shown above.
> One specific goal: unravel algorithms with short-term recurrence
... Let us begin with some background

Extrapolation and Acceleration: A few historal landmarks

Extraplotion: given sequence (s_{j})

- define extrapolated sequence:
$t_{k}^{(j)}=\sum_{i=0}^{k} \alpha_{i} s_{j+i}$ with $\sum \alpha_{i}=1$
> Richardson's 'deferred approach to the limit' 1910, 1927.
> Aitken [1926] - initially to compute zeros of polynomials.
> Romberg [1955] - integration, ...
> Shanks [1955] generalizes Aitken's method
$>$ Wynn [1956]: Elegant implementation of Shanks transform $\rightarrow \epsilon$-algorithm
$>$ Discovery ignited substantial following in late 1960s - early 1970s
> C. Brezinski, H. Sadok, K. Jbilou, M. Redivo Zaglia, Germain-Bonne, G. Walz, A. Sidi and co-workers, ...
$>$ In physics: Different approaches - e.g., Anderson mixing, DIIS, ..., were developed - with a similar goal
> Viewpoint closer to quasi-Newton than to extrapolation
> In Numerical Linear Algebra: Acceleration for linear systems: Chebyshev acceleration (old), but also Minimal Polynomial Extrapolation (MPE- CabayJackson); Reduced Rank Extrapolation, many others

Acceleration

> Common situation: A (complex) physical simulation leading to a sequence of a physical quantity (charge densities, potentials, pressures, ...)
> Common approach: fixed point iteration

$$
x_{k+1}=g\left(x_{k}\right)
$$

- Acceleration methods try to solve the system $x-g(x)=0$ by creating a sequence that invokes function g and the previous iterates.
- In essence we seek to solve $f(x)=0$ where $f(x) \equiv x-g(x)$
- With one restriction: use only function evaluations and lin. combinations

Acceleration, Extrapolation, Quasi-Newton

Inexact Newton, Quasi-Newton, Krylov-Newton

We now focus on solving $f(x)=0 \quad\left(f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right)$ Newton Approach

Set $x_{0}=$ an initial guess.
For $n=0,1,2, \ldots$ until conv. do: Solve: $J\left(x_{j}\right) \delta_{j}=-f\left(x_{j}\right)$ Set: $x_{j+1}=x_{j}+\delta_{j}$
$\leftarrow f\left(x_{j}+\delta\right) \approx f\left(x_{j}\right)+J\left(x_{j}\right) \delta$
with $J\left(x_{j}\right)=f^{\prime}\left(x_{j}\right)=$ Jacobian at x_{j}
Standard Newton: solve (*) exactly

Inexact Newton methods: solve system (*) approximately.
Quasi-Newton methods: solve system (*) in which Jacobian is replaced by an estimate obtained from previous iterates.

Newton-Krylov methods: solve system (*) by a Krylov subspace method

Note: In Krylov-Newton, Jacobian of f not needed explicitly.
$>$ Compute $J v$ via finite difference approximation:

$$
\frac{\partial f}{\partial x} v \approx \frac{f(x+\epsilon v)-f(x)}{\epsilon}
$$

> Can use Newton-Krylov to accelerate sequence:

$$
x_{j+1}=g\left(x_{j}\right)
$$

.. by solving $f(x)=0$ where $f(x)=x-g(x)$
Important consideration: need to compute $f\left(x_{j}+\epsilon v\right)$ for arbitrary v..
$>\ldots$ instead of using only the x_{j} 's and f_{j} 's that are available

Inexact Newton, Quasi-Newton, Anderson Acceleration

Problem: \quad Find $x \in \mathbb{R}^{n}$ such that $f(x)=0$
Or solve: $\min \phi(x)$; Then $f(x)=\nabla \phi(x)$
Recall: Newton Krylov: $x_{j+1}=x_{j}+\delta_{j}$ where
$\delta_{j} \equiv$ approx. solution of $J\left(x_{j}\right) \delta+f\left(x_{j}\right)=0$ by a Krylov subspace method
> Notation $J \equiv J\left(x_{j}\right)$ - So Newton system is

$$
J \delta=-f\left(x_{j}\right)
$$

Let V_{l} is an orthonormal basis of the Krylov subspace

$$
K_{l}=\operatorname{span}\left\{v, J v, \cdots, J^{l-1} v\right\}, \quad \text { where } \quad v \equiv-f\left(x_{j}\right)
$$

$>$ Then approximate solution is in the form $\delta_{j}=V_{l} y_{l}$
> For example, if the method invoked is FOM, then:

$$
\delta_{j}=V_{l}\left(V_{l}^{T} J V_{l}\right)^{-1} V_{l}^{T}\left(-f\left(x_{j}\right)\right)
$$

> In essence: inverse Jacobian approximated by the matrix

$$
B_{j, I O M}=V_{l}\left(V_{l}^{T} J V_{l}\right)^{-1} V_{l}^{T}
$$

> For GMRES / GCR, inverse Jacobian approximation is:

$$
B_{j, G M R E S}=V_{l}\left(J V_{l}\right)^{\dagger}
$$

Important observation: approximations are for step j only - discarded in next step. The process has no 'memory'

Inexact Newton, Quasi-Newton, Anderson Acceleration

$>$ Quasi-Newton (QN) methods: build approximations to $J\left(x_{j}\right)$ or $J\left(x_{j}\right)^{-1}$, progressively using previous iterates
$>$ Notation: $\Delta x_{j} \equiv x_{j+1}-x_{j}, \quad \Delta f_{j} \equiv f\left(x_{j+1}\right)-f\left(x_{j}\right)$,
> Secant condition:

$$
J_{j+1} \Delta x_{j}=\Delta f_{j}, \quad J_{j+1} q=J_{j} q, \quad \forall q \quad \text { such that } \quad q^{T} \Delta x_{j}=0 .
$$

$>$ Broyden: $\exists!J_{j+1}$ that satisfies both conditions. Calculated as:

$$
J_{j+1}=J_{j}+\left(\Delta f_{j}-J_{j} \Delta x_{j}\right) \frac{\Delta x_{j}^{T}}{\Delta x_{j}^{T} \Delta x_{j}} .
$$

$>$ Type II Broyden: Inverse Jacobian approximated by G_{j} at step j
> Secant condition:
$>$ No-change condition:

$$
G_{j+1} \Delta f_{j}=\Delta x_{j}, \quad G_{j+1} q=G_{j} q, \quad \forall q \quad \text { such that } \quad q^{T} \Delta f_{j}=0 .
$$

$>$ Broyden (II): $\exists!G_{j+1}$ that satisfies both conditions. Calculated as:

$$
G_{j+1}=G_{j}+\left(\Delta x_{j}-G_{j} \Delta f_{j}\right) \frac{\Delta f_{j}^{T}}{\Delta f_{j}^{T} \Delta f_{j}},
$$

Note: Common feature of QN methods: The sequence of pairs of $\Delta x_{i}, \Delta f_{i}$ used to update previous approximation to $J\left(x_{j}\right)$ or $J\left(x_{j}\right)^{-1}$.
> Progressive low-rank approximation ...
> ... 'One rank at a time’

Anderson Acceleration

$>$ Want fixed point of $g(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Let $f(x)=g(x)-x$.
$>$ Select x_{0} and define $x_{1}=x_{0}+\beta f_{0} \quad[\beta$ is a parameter]
Given:

$$
x_{i} \text { and } f_{i}=f\left(x_{i}\right) \text { for } i=j-m, \cdots, j
$$

Let:

$$
\begin{aligned}
& \Delta x_{i}=x_{i+1}-x_{i}, \quad \Delta f_{i}=f_{i+1}-f_{i} \text { for } i=0,1, \cdots, j-m \\
& \mathcal{X}_{j}=\left[\Delta x_{j-m} \cdots \Delta x_{j-1}\right], \quad \mathcal{F}_{j}=\left[\Delta f_{j-m} \cdots \Delta f_{j-1}\right] .
\end{aligned}
$$

Compute: $x_{j+1}=\bar{x}_{j}+\beta \bar{f}_{j}$ where: $\bar{x}_{j}=x_{j}-\mathcal{X}_{j} \theta^{(j)}, \bar{f}_{j}=f_{j}-\mathcal{F}_{j} \theta^{(j)}$

And:

$$
\boldsymbol{\theta}^{(j)}=\operatorname{argmin}_{\theta \in \mathbb{R}^{m}}\left\|f_{j}-\mathcal{F}_{j} \theta\right\|_{2}
$$

Note: Original article formulated problem in the standard 'acceleration' form

$$
\bar{x}_{j}=\sum_{i=j-k}^{j} \mu_{i}^{(j)} x_{i} \quad \text { with } \quad \sum \mu_{i}^{(j)}=1
$$

$>$ The $\mu_{i}^{(j)}$,s must now minimize $\left\|\sum_{i=j-k}^{j} \boldsymbol{\mu}_{i}^{(j)} \boldsymbol{f}_{i}\right\|_{2}^{2}$
> Mathematically equivalent to previous formulation
Q Any relation to extrapolation?
$>$ Above formulation is very similar to expressions used for extrapolation.
> Anderson was very much inspired by litterature in extrapolation methods.

Relation with other methods

> In "generalized Broyden methods" [Louis \& Vanderbilt'84, Eyert'96] approximate Jacobian G_{j} satisfies m secant conditions at once:

$$
G_{j} \Delta f_{i}=\Delta x_{i} \text { for } i=j-m, \ldots, j-1
$$

> Matrix form:

$$
\boldsymbol{G}_{j} \mathcal{F}_{j}=\mathcal{X}_{j}
$$

> No-change condition:

$$
\left(G_{j}-G_{j-m}\right) q=0 \quad \forall q \in \operatorname{Span}\left\{\Delta f_{j-m}, \ldots, \Delta f_{j-1}\right\}^{\perp}
$$

$>$ After calculations we get a rank- k update formula:

$$
G_{j}=G_{j-m}+\left(\mathcal{X}_{j}-G_{j-m} \mathcal{F}_{j}\right)\left(\mathcal{F}_{j}^{T} \mathcal{F}_{j}\right)^{-1} \mathcal{F}_{j}^{T} .
$$

... and an update of the form:

$$
x_{j+1}=x_{j}-G_{j-m} f_{j}-\left(\mathcal{X}_{j}-G_{j-m} \mathcal{F}_{j}\right) \gamma_{j} ; \quad \gamma_{j}=\mathcal{F}_{j}^{\dagger} f_{j}
$$

$>$ Setting $G_{j-m}=-\beta I$ yields exactly Anderson's original method [which includes a parameter β]
> Result shown by Eyert (1996) [See also H-r Fang and YS (2009)]
$>$ Note $\bar{x}_{j}=x_{j}-\mathcal{X}_{j} \mathcal{F}_{j}^{\dagger} f_{j} \quad$ and $\quad \bar{f}_{j}=f_{j}-\mathcal{F}_{j} \mathcal{F}_{j}^{\dagger} f_{j}$
> Walker and Ni'11: Equivalence with GMRES in linear case.

NONLINEAR TRUNCATED GCR

Revisiting old friends: The GCR method

Recall main goal: start with accelerators in linear case - then see how to extend them to nonlinear case

Class of Krylov subspace methods:

- Conjugate gradient (Hestenes and Stiefel, '51), Conjugate Residual (Stiefel '55), Lanczos (51), Bi-CG (Fletcher 76)
- Accelerators developed in 1980s, 1990s: GCR, ORTHOMIN, GMRES, BiCGSTAB, IDR, ..
> We consider the Generalized Conjugate Residual (GCR) [Eisenstat, Elman, Schultz, '83]

GCR for linear case: $A x=b$

ALGORITHM: 1. GCR

Input: Matrix $A, R H S b$, initial x_{0}.
Set $p_{0}=r_{0} \equiv b-A x_{0}$.
з: for $j=0,1,2, \cdots$, Until convergence do
4: $\quad \alpha_{j}=\left(r_{j}, A p_{j}\right) /\left(\boldsymbol{A} p_{j}, A p_{j}\right)$
${ }_{5:} \quad \boldsymbol{x}_{j+1}=\boldsymbol{x}_{\boldsymbol{j}}+\boldsymbol{\alpha}_{\boldsymbol{j}} \boldsymbol{p}_{\boldsymbol{j}}$
${ }_{6:} \quad \boldsymbol{r}_{j+1}=\boldsymbol{r}_{\boldsymbol{j}}-\boldsymbol{\alpha}_{\boldsymbol{j}} \boldsymbol{A} \boldsymbol{p}_{j}$

$$
p_{j+1}=r_{j+1}-\sum_{i=0}^{j} \beta_{i j} p_{i} \quad \text { where } \quad \beta_{i j}:=\left(A r_{j+1}, A p_{i}\right) /\left(A p_{i}, A p_{i}\right)
$$

${ }_{8:}$ end for
$>$ Recall: the set $\left\{\boldsymbol{A} \boldsymbol{p}_{i}\right\}_{i=0, \ldots, j}$ is orthogonal
> Two practical variants
Restarting GCR(k) - restart every k steps
Truncation TGCR(m,k) - Truncated GCR: Orthogonalize against m most recent vectors only + restart dimension of k
$>$ In TGCR(m,k) Line 7 becomes: [Notation: $j_{m}=\max \{0, j-m+1\}$]

$$
p_{j+1}=r_{j+1}-\sum_{i=j_{m}}^{j} \beta_{i j} p_{i} \quad \text { where } \quad \beta_{i j}:=\left(A r_{j+1}, A p_{i}\right) /\left(A p_{i}, A p_{i}\right)
$$

> GCR(k): Eisenstat, Elman and Schultz [83] - equivalent to GMRES(k)
> TGCR initially developed by Vinsome '76 (as ORTHOMIN), analyzed in 1983 GCR paper

Properties of (full) GCR in linear case

Notation: $\quad \boldsymbol{P}_{k}=\left[p_{0}, p_{1}, \cdots, p_{k}\right] \quad \boldsymbol{R}_{k}=\left[r_{0}, r_{1}, \cdots, r_{k}\right], \quad V_{k}=A P_{k}$
Property: (Eisenstat-Elman-Schultz) The residual vectors produced by (full) GCR are semi-conjugate, i.e., $\left(r_{j}, A r_{i}\right)=0$ for $i<j$.

Corollary: When $A=A^{T}$ residuals are conjugate
Property: When \boldsymbol{A} is symmetric real, then the matrix $\left(\boldsymbol{A R _ { k }}\right)^{T}\left(\boldsymbol{A} \boldsymbol{P}_{k}\right)$ is lower bidiagonal.

Property: When \boldsymbol{A} is nonsingular, (full) GCR breaks down iff it produces an exact solution.

$$
\text { breakdown } \leftrightarrow \text { 'lucky breakdown' }
$$

Property: Approximate solution at k-th step is $\quad x_{k+1}=x_{0}+P_{k} V_{k}^{T} r_{0}$
$>$ We say that the algorithm induces the 'approximate inverse' $B_{k}=P_{k} V_{k}^{T}$

- a rank-k matrix. Let $\mathcal{L}_{k}=\operatorname{Span}\left(\boldsymbol{V}_{k}\right)$ and $\pi=\boldsymbol{V}_{k} \boldsymbol{V}_{k}^{T}$. Then
$\square B_{k}=A^{-1} \boldsymbol{\pi} \rightarrow B_{k}$ inverts A exactly in \mathcal{L}_{k}, i.e., $B_{k} \pi=A^{-1} \pi$.
- $A B_{k}=\pi$.
- When \boldsymbol{A} is symmetric then \boldsymbol{B}_{k} is self-adjoint when restricted to \mathcal{L}_{k}.
- $B_{k} A x=x$ for any $x \in \operatorname{Span}\left\{P_{k}\right\}$, i.e., B_{k} inverts A exactly from the left when A is restricted to the range of P_{k}.
- $B_{k} A$ is the projector onto $\operatorname{Span}\left\{P_{k}\right\}$ and orthogonally to $A^{T} \mathcal{L}_{k}$.
> Reminescent of Moore-Penrose properties

Nonlinear case: Inexact-Newton with GCR

$$
\text { Problem : } f(x)=0
$$

Inexact Newton:

$$
\begin{array}{|ll}
\hline x_{j+1}=x_{j}+\delta_{j} \quad \text { where: } & f_{j} \equiv f\left(x_{j}\right) \\
\left\|J \delta_{j}+f_{j}\right\| \leq \eta_{j}\left\|f_{j}\right\| & \left.J \equiv D f\left(x_{j}\right)\right)
\end{array}
$$

$>$ Dembo-Eisenstat-Steihaug '82, Dembo-Steihaug '83, ...,
> Inexact-Newton GCR : solve systems approximately with TGCR(m,k)
> Inexact Newton is a simple, well-understood framework.
$>$ Lots of results with linesearch + trust-region global strategies.
> Newton-GMRES [Brown \& YS, 1990]; Convergence results [Brown \& YS, 1994, Eisenstat \& Walker '94]

Next: Multisecant viewpoint

> Linear TGCR builds m directions such that:

$\left\{\boldsymbol{A} \boldsymbol{p}_{j_{m}}, \cdots \boldsymbol{A} \boldsymbol{p}_{j}\right\}$ is orthogonal

- In nonlinear case we can still use this basis- where \boldsymbol{A} is 'some' Jacobian.
$>$ This is done in inexact Newton where: $A=J\left(x_{0}\right)$ - fixed.
$>$ Here: we assume that at step j we have a set of (at most) m current 'search' directions $\left\{p_{i}\right\}$ for $i=j_{m}, j_{m}+1, \cdots, j$
$>$ Along with $v_{i} \equiv J\left(x_{i}\right) p_{i}, i=j_{m}, j_{m}+1, \cdots, j$
> Set:

$$
P_{j}=\left[p_{j_{m}}, p_{j_{m}+1}, \cdots, p_{j}\right], \quad V_{j}=\left[v_{j_{m}}, v_{j_{m}+1}, \cdots, v_{j}\right] .
$$

$>$ Note: In Linear Case or Inexact Newton case $v_{i}=J p_{i}(J$ is fixed $)$
$>$ Here J varies with iterate $-v_{i}=J\left(x_{i}\right) p_{i} \quad\left(==A p_{i}\right.$ in TGCR $)$
$>p_{i}$ and v_{i} are 'paired' much like the Δf_{j} and Δx_{i} of QN and AA
$>$ Notation

$$
V_{j}=[J] P_{j}
$$

Main Idea of Nonlinear Extension:

$>$ Just build orthonormal basis V_{j} as in TGCR
> Do usual projection step to minimize 'linear residual' - i.e.,

$$
x_{j+1}=x_{j}+P_{j} y_{j} \quad \text { where } \quad y_{j}=\operatorname{argmin}_{y}\left\|f\left(x_{j}\right)+V_{j} y\right\|
$$

$>$ Note: V_{j} orthonormal $\rightarrow y_{j}=V_{j}^{T}\left(-f\left(x_{j}\right)\right) \equiv V_{j}^{T} r_{j}$

ALGORITHM : $2 . \quad n / T G C R(m, k)$

Input: $f(x)$, initial x_{0}.
Set $r_{0}=-f\left(x_{0}\right)$.
Compute $v=J r_{0} ; \quad \triangleright$ Use Frechet
$v_{0}=v /\|v\|, p_{0}=r_{0} /\|v\| ;$
for $j=0,1,2, \cdots$, Until convergence do
$y_{j}=V_{j}^{T} r_{j}$
$x_{j+1}=x_{j}+\boldsymbol{P}_{j} \boldsymbol{y}_{j}$
\triangleright Scalar α_{j} becomes vector y_{j} $r_{j+1}=-f\left(x_{j+1}\right) \quad \triangleright$ Replaces linear update: $r_{j+1}=r_{j}-V_{j} \boldsymbol{y}_{j}$ Set: $p:=r_{j+1}$; and $i_{0}=\max (0, j-m+1)$
Compute $v=J p \quad \triangleright$ Use Frechet
Compute $\left[p_{j+1}, v_{j+1}\right]=b \operatorname{Orth}\left(P_{j}, V_{j}, v, m\right)$
If $\bmod (j, k)==0$, restart
end for

A few properties

$>$ Notation: $\tilde{r}_{j+1}=r_{j}-V_{j} y_{j} \quad$ (Linear Residual) ; $\quad z_{j}=\tilde{r}_{j}-r_{j}$
The following properties are satisfied by the vectors produced by \boldsymbol{n} ITGCR:

1. The system $\left[v_{j_{m}}, v_{j_{m}+1}, \cdots, v_{j+1}\right]$ is orthonormal.
2. $\left(\tilde{r}_{j+1}, v_{i}\right)=0 \quad$ for $\quad j_{m} \leq i \leq j$, i.e., $V_{j}^{T} \tilde{r}_{j+1}=0$.
3. $\left\|\tilde{r}_{j+1}\right\|_{2}=\min _{y}\left\|f\left(x_{j}\right)+[J] P_{j} y\right\|_{2}=\min _{y}\left\|f\left(x_{j}\right)+V_{j} y\right\|_{2}$
4. $\left(v_{j+1}, \tilde{r}_{j+1}\right)=\left(v_{j+1}, r_{j}\right)$
5. $V_{j}^{T} r_{j}=\left(v_{j}, \tilde{r}_{j}\right) e_{1}-V_{j}^{T} z_{j}$ where $e_{1}=[1,0, \cdots, 0]^{T} \in \mathbb{R}^{m_{j}}$ with $m_{j} \equiv$ $\min \{m, j+1\}$.
$>$ What can we say about the deviation z_{j} ?

A few properties (cont.)

Define: | $s_{j}=f\left(x_{j+1}\right)-f\left(x_{j}\right)-J\left(x_{j}\right)\left(x_{j+1}-x_{j}\right)$. |
| :--- |
| $w_{i}=\left(J\left(x_{j}\right)-J\left(x_{i}\right)\right) p_{i} ; \quad$ and $\quad W_{j}=\left[w_{j_{m}}, \cdots, w_{j}\right]$. |

The difference $z_{j+1}=\tilde{r}_{j+1}-r_{j+1}$ satifies the relation:

$$
\begin{aligned}
\tilde{r}_{j+1}-r_{j+1} & =W_{j} y_{j}+s_{j}=W_{j} V_{j}^{T} r_{j}+s_{j} \quad \text { and therefore: } \\
\left\|\tilde{r}_{j+1}-r_{j+1}\right\| & \leq\left\|W_{j}\right\|_{2}\left\|r_{j}\right\|_{2}+\left\|s_{j}\right\|_{2}
\end{aligned}
$$

$>$ All this means is that the difference is of "second order"
> Hence: can switch to linear form of residual at some point
> Saves one fun. eval

Let $d_{j}=x_{j+1}-x_{j}=P_{j} y_{j}$. One may ask: Is this a descent direction?

Let $f(x)=\frac{1}{2}\|f(x)\|_{2}^{2}$ and let $\tilde{v}_{j_{m}}, \cdots, \tilde{v}_{j}$ be the columns of:

$$
\tilde{V}_{j} \equiv J\left(x_{j}\right) P_{j} .
$$

Then,

$$
\left(\nabla f\left(x_{j}\right), d_{j}\right)=-\left(v_{j}, r_{j}\right)^{2}-\sum_{i=j_{m}}^{j-1}\left(v_{i}, r_{j}\right)\left(\tilde{v}_{i}, r_{j}\right)
$$

Multisecant property

$>$ Observe that the update at step j takes the form:

$$
x_{j+1}=x_{j}+P_{j} V_{j}^{T} r_{j}=x_{j}+P_{j} V_{j}^{T}\left(-f\left(x_{j}\right)\right)
$$

$>$ Thus, we are in effect using a secant-type method with the Approximate inverse Jacobien:

$$
G_{j+1}=P_{j} V_{j}^{T}
$$

The unique solution to the problem
> In addition:

$$
\min \left\{\|B\|_{F} \text { subject to: } \quad B V_{j}=P_{j}\right\}
$$

is achieved by the matrix $G_{j+1}=P_{j} V_{j}^{T}$.
> Yet another multi-secant type method, but ...

The method shares also characteristics of inexact Newton
> In particular: possible to add global convergence strategies - e.g. backtracking [unlike AA]
$>$ The relation $v_{j}=J\left(x_{j}\right) p_{j}$ is accurate - [Frechet diff.]
$>$ Contrast with the relation $\Delta f_{j} \approx J \Delta x_{j}$ (Anderson, QN)
> Two function evaluations per iteration but ...
$>\ldots$ can be reduced to one as soon as r_{j} becomes close to \tilde{r}_{j} (linear)

General GCR framework

> There are situations where Anderson does amazingly well..
> Example Picard iteration for Navier Stokes. [A form of Preconditioned fixed-pt iter.]

Q: Can we implement Anderson acceleration in the form of GCR? The two are fairly close

A: Yes -
> Details skipped -

Experiments - Bratu problem

> Illustrates the importance of exploiting symmetry [Recall: in linear symmetric case GCR becomes CR, requires window-size of 2]
> .. and importance of adaptive version
Nonlinear eigenvalue problem (Bratu)
$>$ Take $\boldsymbol{\lambda}=0.5$.

$$
\begin{aligned}
-\Delta u & =\lambda e^{u} \text { in } \Omega=(0,1) \times(0,1) \\
u(x, y) & =0, \text { for }(x, y) \in \partial \Omega
\end{aligned}
$$

$>$ FD discretization with grid of size $100 \times 100 \rightarrow r$ Problem size $=n=$ 10, 000
> Tested: nITGCR, anderson, and a basic adaptive gradient method (steplength dynamically adapted)

The Adaptive update version

$>$ Bratu problem is almost linear - also true for all problems near convergence
> Idea: exploit the linearized update version of nITGCR to cut number of func. evals. by \approx half
$>$ Need an adaptive mechanism: switch from the nonlinear to linear updates - [\approx linear regime]
> and switch back when needed
> Define the nonlinear and nonlinear res. at step j :

$$
\begin{aligned}
& r_{j+1}^{n l}=-f\left(x_{j+1}\right), \\
& r_{j+1}^{l i n}=r_{j}^{n l}-V_{j} y_{j} .
\end{aligned}
$$

$>$ Criterion will use the angular distance between the two vectors:

$$
d_{j}:=1-\frac{\left(r_{j}^{r_{j}^{l}} T^{T} r_{j}^{l i n}\right.}{\left\|r_{j}^{n l}\right\|_{2} \cdot\left\|r_{j}^{l i n}\right\|_{2}}
$$

$>$ Linear updates turned on when $d_{j}<\tau$, where τ is a threshold
$>$ Check d_{j} regurlarly, for example, every 10 iterations,
$>$ Switch back to nonlinear updates when $d_{j} \geq \tau$
$>$ In experiments, we set the threshold to $\tau=0.01$.
$>$ Window size $m=1$,

Function evaluations.

Iterations

Exploiting symmetry

Bratu problem with:
AA, L-BFGS, Nonlinear CG (NCG), [fletcher reeves], and Inexact Newton with CG (Newton-CG).

Molecular optimization with Lennard-Jones potential(*)

> Illustrates the importance of a global strategy - linesearch / backtracking + exploiting the Jacobian at multiple points
> Goal: find atom positions that minimize total potential enery:

Lennard-Jones Potential $\left(x_{i}=\right.$ position of atom i)

$$
E=\sum_{i=1}^{N a t} \sum_{j=1}^{i-1} 4 \times\left[\frac{1}{\left\|x_{i}-x_{j}\right\|^{12}}-\frac{1}{\left\|x_{i}-x_{j}\right\|^{6}}\right]
$$

$$
\begin{array}{|l|}
\hline \text { Initial Config } \rightarrow \text { Iterate to mininmize }\|\nabla E\|^{2}
\end{array} \rightarrow \text { Final Config }
$$

$>$ Difficult problem due to high powers \rightarrow Backtracking essential
(*) Thanks: Stefan Goedecker's course site - Basel Univ.

> Initial geometry: 'Face-Centered Cube' + perturbation
$>$ Adaptive gradient method: $x_{j+1}=x_{j}-t_{j} \nabla E\left(x_{j}\right)$ - with t_{j} adapted can be made to work fairly well.
> AA will fail unless underlying fixed point iteration selected carefully: $x_{j+1}=x_{j}-\mu \nabla E\left(x_{j}\right)$ where $\mu \sim 10^{-3}$. Also must take $\beta \sim 10^{-2}$.

Lennard-Jones problem.)

Zoom near convergence

Graph Convolutional Network

Dataset: Cora [2708 scientific pubs., 5429 links, 7 classes]. Goal: node classification [topic of paper from words and links]

nITGCR vs. Adam: training loss and validation accuracy

A few references

- Eyert, V. (1996). A comparative study on methods for convergence acceleration of iterative vector sequences. J. Computational Phys., 124:271-285.
- H. ren Fang and Y. Saad (2009). Two classes of multisecant methods for nonlinear acceleration. Numerical Linear Algebra with Applications, 16(3)
- Sterck, H. D. and He, Y. (2021). On the asymptotic linear convergence speed of Anderson acceleration, Nesterov acceleration, and nonlinear GMRES. SIAM Journal on Scientific Computing, 43(5):S21-S46.
- Walker, H. F. and Ni, P. (2011). Anderson acceleration for fixed-point iterations. SIAM J. Numer. Anal., 49(4)
- Zhang, J., O'Donoghue, B., and Boyd, S. (2020). Globally convergent type-I Anderson acceleration for nonsmooth fixed-point iterations. SIAM Journal on Optimization, 30(4) (2020)
- D. Scieur, A. D'Aspremont, F. Bach, Regularized nonlinear acceleration, Math. Program., 179 (2020) 47-83.
- A. Toth, C.T. Kelley, Convergence analysis for Anderson Acceleration, SIAM J. Numer. Anal., 53(2) (2015)
- T. Rohwedder T, R. Schneider, An analysis for the DIIS acceleration method used in Quantum Chemistry calculations, J. Math. Chem., 49(9) (2011) 1889-1914.

Concluding remarks

$>$ Method can be adapted to context of stochastic gradient-type methods
$>$ In deep learning: build P_{j}, V_{j} across different batches
$>$ i.e., ignore the fact that the objective function varies with each batch
> Challenge: QN-type methods exploit smoothness but ...
> ... Stochastic character limits smoothness.
> Future:

- 1) Adapt a few more of the Krylov methods developed in the 1980s
- 2) Adapt nltgcr to non-smooth context [more to be done here]

