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Introduction & Background

➤ Accelerators for linear systems: Conjugate Gradient, Conjugate Residual,
GCR, ORTHOMIN, GMRES, BiCGSTAB, IDR, ..

➤ Krylov subspace methods

➤ Picture for solving nonlinear equations is more complex

(a) Linear accelerators invoked when solving Jacobian systems iteratively
in Newton→ Inexact Newton methods

(b) Quasi-Newton methods, BFGS, LBFGS, ..., : approximate Jacobian/
inverse with Low-rank updates

(c) Anderson acceleration, Pulay mixing, ... nonlinear acceleration view-
point + (rough) a linear model
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➤ This talk: take the viewpoint of extending nonsymmetric Krylov methods
[GCR, ORTHOMIN, ..] to nonlinear setting

➤ Many many possible options and viewpoints

➤ Can exploit models that are locally more accurate; can exploit known
results on global convergence; etc.

➤ Possible to derive methods that emcompass all three viewpoints (a), (b),
(c) shown above.

➤ One specific goal: unravel algorithms with short-term recurrence

... Let us begin with some background
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Extrapolation and Acceleration: A few historal landmarks

Extraplotion: given sequence (sj)

- define extrapolated sequence: t
(j)
k =

∑k
i=0 αisj+i with

∑
αi = 1

➤ Richardson’s ‘deferred approach to the limit’ 1910, 1927.

➤ Aitken [1926] – initially to compute zeros of polynomials.

➤ Romberg [1955] – integration, ...

➤ Shanks [1955] generalizes Aitken’s method

➤ Wynn [1956]: Elegant implementation of Shanks transform→ ϵ-algorithm

➤ Discovery ignited substantial following in late 1960s - early 1970s

➤ C. Brezinski, H. Sadok, K. Jbilou, M. Redivo Zaglia, Germain-Bonne, G.
Walz, A. Sidi and co-workers, ...



➤ In physics: Different approaches - e.g., Anderson mixing, DIIS, ..., were
developed - with a similar goal

➤ Viewpoint closer to quasi-Newton than to extrapolation

➤ In Numerical Linear Algebra: Acceleration for linear systems : Chebyshev
acceleration (old), but also Minimal Polynomial Extrapolation (MPE- Cabay-
Jackson); Reduced Rank Extrapolation, many others
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Acceleration

➤ Common situation: A (complex) physical simulation leading to a sequence
of a physical quantity (charge densities, potentials, pressures, ...)

➤ Common approach: fixed point iteration xk+1 = g(xk)

• Acceleration methods try to solve the system x− g(x) = 0 by creating
a sequence that invokes function g and the previous iterates.

• In essence we seek to solve f(x) = 0 where f(x) ≡ x− g(x)

• With one restriction: use only function evaluations and lin. combinations
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Acceleration, Extrapolation, Quasi-Newton
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Inexact Newton, Quasi-Newton, Krylov-Newton

We now focus on solving f(x) = 0 (f : Rn→ Rn) Newton Approach

Set x0 = an initial guess.
For n = 0, 1, 2, · · · until conv. do:

Solve: J(xj)δj = −f(xj) (*)
Set: xj+1 = xj + δj

← f(xj + δ) ≈ f(xj) + J(xj)δ

with J(xj) = f ′(xj) = Jacobian at xj

Standard Newton: solve (*) exactly

Inexact Newton methods: solve system (*) approximately.

Quasi-Newton methods: solve system (*) in which Jacobian is replaced by
an estimate obtained from previous iterates.

Newton-Krylov methods: solve system (*) by a Krylov subspace method
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Note: In Krylov-Newton, Jacobian of f not needed explicitly.

➤ Compute Jv via finite difference approximation: ∂f
∂x

v ≈ f(x+ϵv)−f(x)
ϵ

➤ Can use Newton-Krylov to accelerate sequence: xj+1 = g(xj)

.. by solving f(x) = 0 where f(x) = x− g(x)

Important consideration: need to compute f(xj + ϵv) for arbitrary v ..

➤ ... instead of using only the xj’s and fj’s that are available
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Inexact Newton, Quasi-Newton, Anderson Acceleration

Problem: Find x ∈ Rn such that f(x) = 0

Or solve: minϕ(x); Then f(x) = ∇ϕ(x)

Recall: Newton Krylov: xj+1 = xj + δj where

δj ≡ approx. solution of J(xj)δ + f(xj) = 0 by a Krylov subspace method

➤ Notation J ≡ J(xj) - So Newton system is

Jδ = −f(xj)

11 NASCA23, Jul 3-6, 2023



➤ Let Vl is an orthonormal basis of the Krylov subspace

Kl = span{v, Jv, · · · , J l−1v}, where v ≡ −f(xj)

➤ Then approximate solution is in the form δj = Vlyl

➤ For example, if the method
invoked is FOM, then:

δj = Vl(V
T
l JVl)

−1V T
l (−f(xj))

➤ In essence: inverse Jacobian
approximated by the matrix Bj,IOM = Vl(V

T
l JVl)

−1V T
l

➤ For GMRES / GCR, inverse
Jacobian approximation is:

Bj,GMRES = Vl(JVl)
†.

Important observation: approximations are for step j only – discarded in
next step. The process has no ‘memory’
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Inexact Newton, Quasi-Newton, Anderson Acceleration

➤ Quasi-Newton (QN) methods: build approximations to J(xj) or J(xj)
−1,

progressively using previous iterates

➤ Notation: ∆xj ≡ xj+1 − xj , ∆fj ≡ f(xj+1)− f(xj),

➤ Secant condition:

Jj+1∆xj = ∆fj,

➤ No-change condition:

Jj+1q = Jjq, ∀q such that qT∆xj = 0.

➤ Broyden: ∃! Jj+1 that satisfies both conditions. Calculated as:

Jj+1 = Jj + (∆fj − Jj∆xj)
∆xT

j

∆xT
j ∆xj

.
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➤ Type II Broyden: Inverse Jacobian approximated by Gj at step j

➤ Secant condition:

Gj+1∆fj = ∆xj,

➤ No-change condition:

Gj+1q = Gjq, ∀q such that qT∆fj = 0.

➤ Broyden (II): ∃! Gj+1 that satisfies both conditions. Calculated as:

Gj+1 = Gj + (∆xj −Gj∆fj)
∆fT

j

∆fT
j ∆fj

,

Note: Common feature of QN methods: The sequence of pairs of ∆xi,∆fi

used to update previous approximation to J(xj) or J(xj)
−1.

➤ Progressive low-rank approximation ...

➤ ... ‘One rank at a time’
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Anderson Acceleration

➤ Want fixed point of g(x) : Rn→ Rn. Let f(x) = g(x)− x.

➤ Select x0 and define x1 = x0 + βf0 [β is a parameter]

Given: xi and fi = f(xi) for i = j −m, · · · , j
Let: ∆xi = xi+1 − xi, ∆fi = fi+1 − fi for i = 0, 1, · · · , j −m

Xj = [∆xj−m · · · ∆xj−1], Fj = [∆fj−m · · · ∆fj−1].

Compute: xj+1 = x̄j + βf̄j where: x̄j = xj −Xj θ
(j), f̄j = fj −Fj θ

(j)

And: θ(j) = argminθ∈Rm∥fj −Fj θ∥2
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Note: Original article formulated problem in the standard ‘acceleration’ form

x̄j =

j∑
i=j−k

µ
(j)
i xi with

∑
µ

(j)
i = 1

➤ The µ
(j)
i ’s must now minimize

∥∥∥∑j
i=j−k µ

(j)
i fi

∥∥∥2

2

➤ Mathematically equivalent to previous formulation

Q Any relation to extrapolation?

➤ Above formulation is very similar to expressions used for extrapolation.

➤ Anderson was very much inspired by litterature in extrapolation methods.
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Relation with other methods

➤ In “generalized Broyden methods” [Louis & Vanderbilt’84, Eyert’96] ap-
proximate Jacobian Gj satisfies m secant conditions at once:

Gj∆fi = ∆xi for i = j −m, . . . , j − 1.

➤ Matrix form: GjFj = Xj

➤ No-change condition:

(Gj −Gj−m)q = 0 ∀q ∈ Span{∆fj−m, . . . ,∆fj−1}⊥

➤ After calculations we get a rank-k update formula:

Gj = Gj−m + (Xj −Gj−mFj)(FT
j Fj)

−1FT
j .
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... and an update of the form:

xj+1 = xj −Gj−mfj − (Xj −Gj−mFj)γj; γj = F†jfj

➤ Setting Gj−m = −βI yields exactly Anderson’s original method [which
includes a parameter β]

➤ Result shown by Eyert (1996) [See also H-r Fang and YS (2009)]

➤ Note x̄j = xj −XjF†jfj and f̄j = fj −FjF†jfj

➤ Walker and Ni’11: Equivalence with GMRES in linear case.
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NONLINEAR TRUNCATED GCR



Revisiting old friends: The GCR method

Recall main goal: start with accelerators in linear case - then see how to
extend them to nonlinear case

Class of Krylov subspace methods:

Conjugate gradient (Hestenes and Stiefel, ’51), Conjugate Residual (Stiefel
’55), Lanczos (51), Bi-CG (Fletcher 76)

Accelerators developed in 1980s, 1990s: GCR, ORTHOMIN, GMRES,
BiCGSTAB, IDR, ..

➤ We consider the Generalized Conjugate Residual (GCR) [Eisenstat, El-
man, Schultz, ’83]
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GCR for linear case: Ax = b

ALGORITHM : 1 GCR

1: Input: Matrix A, RHS b, initial x0.
2: Set p0 = r0 ≡ b−Ax0.
3: for j = 0, 1, 2, · · · , Until convergence do
4: αj = (rj, Apj)/(Apj, Apj)

5: xj+1 = xj + αjpj

6: rj+1 = rj − αjApj

7: pj+1 = rj+1 −
∑j

i=0 βijpi where βij := (Arj+1, Api)/(Api, Api)

8: end for

➤ Recall: the set {Api}i=0,··· ,j is orthogonal
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➤ Two practical variants

Restarting GCR(k) - restart every k steps

Truncation TGCR(m,k) - Truncated GCR: Orthogonalize against m

most recent vectors only + restart dimension of k

➤ In TGCR(m,k) Line 7 becomes: [Notation: jm = max{0, j −m + 1}]

pj+1 = rj+1 −
j∑

i=jm

βijpi where βij := (Arj+1, Api)/(Api, Api)

➤ GCR(k): Eisenstat, Elman and Schultz [83] - equivalent to GMRES(k)

➤ TGCR initially developed by Vinsome ’76 (as ORTHOMIN), analyzed in
1983 GCR paper
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Properties of (full) GCR in linear case

Notation: Pk = [p0, p1, · · · , pk] Rk = [r0, r1, · · · , rk], Vk = APk

Property: (Eisenstat-Elman-Schultz) The residual vectors produced by (full)
GCR are semi-conjugate, i.e., (rj, Ari) = 0 for i < j.

Corollary: When A = AT residuals are conjugate

Property: When A is symmetric real, then the matrix (ARk)
T (APk) is lower

bidiagonal.

Property: When A is nonsingular, (full) GCR breaks down iff it produces an
exact solution.

breakdown↔ ’lucky breakdown’
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Property: Approximate solution at k-th step is xk+1 = x0 + PkV
T
k r0

➤ We say that the algorithm induces the ’approximate inverse’ Bk = PkV
T
k

- a rank-k matrix. Let Lk = Span(Vk) and π = VkV
T
k . Then

Bk = A−1π → Bk inverts A exactly in Lk, i.e., Bkπ = A−1π.

ABk = π.

When A is symmetric then Bk is self-adjoint when restricted to Lk.

BkAx = x for any x ∈ Span{Pk}, i.e., Bk inverts A exactly from
the left when A is restricted to the range of Pk.

BkA is the projector onto Span{Pk} and orthogonally to ATLk.

➤ Reminescent of Moore-Penrose properties
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Nonlinear case: Inexact-Newton with GCR

Problem : f(x) = 0

Inexact Newton:
xj+1 = xj + δj where:
∥Jδj + fj∥ ≤ ηj∥fj∥

fj ≡ f(xj)

J ≡ Df(xj))

➤ Dembo-Eisenstat-Steihaug ’82, Dembo-Steihaug ’83, ...,

➤ Inexact-Newton GCR : solve systems approximately with TGCR(m,k)

➤ Inexact Newton is a simple, well-understood framework.

➤ Lots of results with linesearch + trust-region global strategies.

➤ Newton-GMRES [Brown & YS, 1990]; Convergence results [Brown & YS,
1994, Eisenstat & Walker ’94]
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Next: Multisecant viewpoint

➤ Linear TGCR builds m

directions such that:
{Apjm, · · ·Apj} is orthogonal

➤ In nonlinear case we can still use this basis– where A is ‘some’ Jacobian.

➤ This is done in inexact Newton where: A = J(x0) - fixed.

➤ Here: we assume that at step j we have a set of (at most) m current
‘search’ directions {pi} for i = jm, jm + 1, · · · , j

➤ Along with vi ≡ J(xi)pi, i = jm, jm + 1, · · · , j

➤ Set:
Pj = [pjm, pjm+1, · · · , pj], Vj = [vjm, vjm+1, · · · , vj].

➤ Note: In Linear Case or Inexact Newton case vi = Jpi (J is fixed)



➤ Here J varies with iterate - vi = J(xi)pi (== Api in TGCR)

➤ pi and vi are ‘paired’ much like the ∆fj and ∆xi of QN and AA

➤ Notation Vj = [J ]Pj

Main Idea of Nonlinear Extension:

➤ Just build orthonormal basis Vj as in TGCR

➤ Do usual projection step to minimize ‘linear residual’ - i.e.,

xj+1 = xj + Pjyj where yj = argminy∥f(xj) + Vjy∥

➤ Note: Vj orthonormal→ yj = V T
j (−f(xj)) ≡ V T

j rj
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ALGORITHM : 2 nlTGCR(m,k)

1: Input: f(x), initial x0.
2: Set r0 = −f(x0).
3: Compute v = Jr0; ▷ Use Frechet
4: v0 = v/∥v∥, p0 = r0/∥v∥;
5: for j = 0, 1, 2, · · · , Until convergence do
6: yj = V T

j rj

7: xj+1 = xj + Pjyj ▷ Scalar αj becomes vector yj

8: rj+1 = −f(xj+1) ▷ Replaces linear update: rj+1 = rj − Vjyj

9: Set: p := rj+1; and i0 = max(0, j −m + 1)

10: Compute v = Jp ▷ Use Frechet
11: Compute [pj+1, vj+1] = bOrth(Pj, Vj, v,m)

12: If mod(j,k) == 0, restart
13: end for
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A few properties

➤ Notation: r̃j+1 = rj − Vjyj (Linear Residual) ; zj = r̃j − rj

The following properties are satisfied by the vectors produced by nlTGCR:

1. The system [vjm, vjm+1, · · · , vj+1] is orthonormal.

2. (r̃j+1, vi) = 0 for jm ≤ i ≤ j, i.e., V T
j r̃j+1 = 0.

3. ∥r̃j+1∥2 = miny ∥f(xj) + [J ]Pjy∥2 = miny ∥f(xj) + Vjy∥2
4. (vj+1, r̃j+1) = (vj+1 , rj)

5. V T
j rj = (vj, r̃j)e1 − V T

j zj where e1 = [1, 0, · · · , 0]T ∈ Rmj with mj ≡
min{m, j + 1}.

➤ What can we say about the deviation zj?
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A few properties (cont.)

Define:
sj = f(xj+1)− f(xj)− J(xj)(xj+1 − xj).

wi = (J(xj)−J(xi))pi ; and Wj = [wjm, · · · , wj].

The difference zj+1 = r̃j+1 − rj+1 satifies the relation:

r̃j+1 − rj+1 = Wjyj + sj = WjV
T
j rj + sj and therefore:

∥r̃j+1 − rj+1∥ ≤ ∥Wj∥2 ∥rj∥2 + ∥sj∥2

➤ All this means is that the difference is of “second order”

➤ Hence: can switch to linear form of residual at some point

➤ Saves one fun. eval

30 NASCA23, Jul 3-6, 2023



➤ Let dj = xj+1 − xj = Pjyj. One may ask: Is this a descent direction?

Let f(x) = 1
2
∥f(x)∥22 and let ṽjm, · · · , ṽj be the columns of:

Ṽj ≡ J(xj)Pj.

Then,

(∇f(xj), dj) = −(vj, rj)
2 −

j−1∑
i=jm

(vi, rj)(ṽi, rj)
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➤ Multisecant property

➤ Observe that the update at step j takes the form:

xj+1 = xj + PjV
T
j rj = xj + PjV

T
j (−f(xj))

➤ Thus, we are in effect using a secant-type method
with the Approximate inverse Jacobien:

Gj+1 = PjV
T
j

➤ In addition:

The unique solution to the problem

min{∥B∥F subject to: BVj = Pj}

is achieved by the matrix Gj+1 = PjV
T
j .

➤ Yet another multi-secant type method, but ...
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➤ The method shares also characteristics of inexact Newton

➤ In particular: possible to add global convergence strategies – e.g. back-
tracking [unlike AA]

➤ The relation vj = J(xj)pj is accurate - [Frechet diff.]

➤ Contrast with the relation ∆fj ≈ J∆xj (Anderson, QN)

➤ Two function evaluations per iteration but ...

➤ ... can be reduced to one as soon as rj becomes close to r̃j (linear)
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General GCR framework

➤ There are situations where Anderson does amazingly well..

➤ Example Picard iteration for Navier Stokes. [A form of Preconditioned
fixed-pt iter.]

Q: Can we implement Anderson acceleration in the form of GCR? The two
are fairly close

A: Yes -

➤ Details skipped -
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Experiments - Bratu problem

➤ Illustrates the importance of exploiting symmetry [Recall: in linear sym-
metric case GCR becomes CR, requires window-size of 2]

➤ .. and importance of adaptive version

Nonlinear eigenvalue
problem (Bratu)
➤ Take λ = 0.5.

−∆u = λeu in Ω = (0, 1)× (0, 1)

u(x, y) = 0, for (x, y) ∈ ∂Ω

➤ FD discretization with grid of size 100 × 100 →r Problem size = n =

10, 000

➤ Tested: nlTGCR, anderson, and a basic adaptive gradient method (step-
length dynamically adapted)
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The Adaptive update version

➤ Bratu problem is almost linear – also true for all problems near conver-
gence

➤ Idea: exploit the linearized update version of nlTGCR to cut number of
func. evals. by ≈ half

➤ Need an adaptive mechanism: switch from the nonlinear to linear updates
- [≈ linear regime]

➤ and switch back when needed

➤ Define the nonlinear and
nonlinear res. at step j:

rnl
j+1 = −f(xj+1),

rlin
j+1 = rnl

j − Vjyj.



➤ Criterion will use the angular
distance between the two vectors:

dj := 1− (rnlj )Trlinj

∥rnlj ∥2·∥r
lin
j ∥2

➤ Linear updates turned on when dj < τ , where τ is a threshold

➤ Check dj regurlarly, for example, every 10 iterations,

➤ Switch back to nonlinear updates when dj ≥ τ

➤ In experiments, we set the threshold to τ = 0.01.
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➤ Window size m = 1,
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Exploiting symmetry

Bratu problem with:
AA, L-BFGS, Nonlinear CG
(NCG), [fletcher reeves], and
Inexact Newton with CG
(Newton-CG).
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Molecular optimization with Lennard-Jones potential(∗)

➤ Illustrates the importance of a global strategy - linesearch / backtracking
+ exploiting the Jacobian at multiple points

➤ Goal: find atom positions that minimize total potential enery:

Lennard-Jones Poten-
tial (xi = position of
atom i)

E =

Nat∑
i=1

i−1∑
j=1

4×
[

1

∥xi − xj∥12
−

1

∥xi − xj∥6

]

Initial Config → Iterate to mininmize ∥∇E∥2 → Final Config
➤ Difficult problem due to high powers→ Backtracking essential

(*) Thanks: Stefan Goedecker’s course site - Basel Univ.
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−→

➤ Initial geometry: ’Face-Centered Cube’ + perturbation

➤ Adaptive gradient method: xj+1 = xj − tj∇E(xj) – with tj adapted –
can be made to work fairly well.

➤ AA will fail unless underlying fixed point iteration selected carefully:
xj+1 = xj − µ∇E(xj) where µ ∼ 10−3. Also must take β ∼ 10−2.
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Graph Convolutional Network

Dataset: Cora [2708 scientific pubs., 5429 links, 7 classes]. Goal: node
classification [topic of paper from words and links]

nlTGCR vs. Adam: training loss and validation accuracy
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Concluding remarks

➤ Method can be adapted to context of stochastic gradient-type methods

➤ In deep learning: build Pj, Vj across different batches

➤ i.e., ignore the fact that the objective function varies with each batch

➤ Challenge: QN-type methods exploit smoothness but ...

➤ ... Stochastic character limits smoothness.

➤ Future:

• 1) Adapt a few more of the Krylov methods developed in the 1980s

• 2) Adapt nltgcr to non-smooth context [more to be done here]
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