D1V1de and conquer algorlthms and software

for large Hermitian eigenvalue problems
Yousef Saad

Department of Computer Science
and Engineering

University of Minnesota

Purdue University
Oct. 7th, 2016

Collaborators:

Past work: e Haw-ren Fang [former post-doc]
e Grady Schoefield and Jim Chelikowsky
[UT Austin] - Windowing into PARSEC

New group e Ruipeng Li[now at LLNL]

effort: e Eugene Vecharynski [Lawrence Berkeley Lab]
e Chao Yang [Lawrence Berkeley Lab]
e Yuanzhe Xi [Post-doc, Univ. of Minnesota]

» Work supported by DOE : Scalable Computational Tools
for Discovery and Design: Excited State Phenomena in Energy
Materials [Institutions: UT Austin, UC Berkeley, U Minn]

» And by NSF: Advanced algorithms and high-performance
software for large scale eigenvalue problems [with E. Polizzi, U.
Mass Amherst]

Introduction & Motivation

» Some applications require the computation of a large
number of eigenvalues and vectors of very large matrices.
These are found mostly in quantum physics/ chemistry.

» Density Functional Theory in electronic structure calcula-
tions: ‘ground states’

» Excited states involve transitions and invariably lead to much
more complex computations

lllustration:

In Time-Dependent Density Functional Theory (TDDFT), the
so-called Cassida approach computes eigenvalues of a ma-
trix K built using both occupied and unocuppied states.

Occupied States Empty States

» Each pair — one column| 2ot Av Au b r

of K i\/j
» To compute each column _

need to solve a Poisson eqn.
on domain

» Intense calculation, lots
of parallelism

One colflmn of K
One Difficulty: | (among others): need to calculate unoccu-
' pied states as well as occupied states.
» Similar types of calculations in the GW approach [see, e.g.,
BerkeleyGW] — But more complex

» Challenge: ‘Hamiltonian of size n ~ 10° get 10% of bands’

Soving large eigenvalue problems: Current state of the art

» Eigenvalues at one end of the spectrum:
e Subspace iteration + filtering [e.g. FEAST, Cheb,...]

e Lanczos+variants (no restart, thick restart, implicit
restart, Davidson,..)

e Block Algorithms [Block Lanczos, TraceMin,
LOBPCG, ...]

e + Many others - more or less related to above

» ‘Interior’ eigenvalue problems (middle of spectrum):

e Combine shift-and-invert + Lanczos/block Lanczos.
Used in, e.g., NASTRAN

Issues with shift-and invert | (and related approaches)

» |ssue 1: factorization not always feasible
e Can use iterative methods?
» Issue 2: lterative techniques often fail —

e Reason: Highly indefinite problems.

Spectrum slicing for computing many eigenvalues

Rationale: Eigenvectors on both ends of wanted spectrum

need not be orthogonalized against each other :
A

A A

» |dea: Get the spectrum by ‘slices’ or ‘'windows’ [e.g., a few
hundreds or thousands of pairs at a time]

» (Can use polynomial or rational filters

» |n an approach of this type the filter is the key ingredient.

Goal: Compute each slice independently from the others.

A Compute slices separately

YY) i

) MUM \) JK \ _

e For each slice Do:
[get *all* eigenpairs in a slice]
EndDo
e Only need a good estimate of window size

Computing a slice of the spectrum

How to compute eigenvalues in the middle of the
spectrum of a large Hermitian matrix?

Common practice: Shift and invert + some projec-
-1 tion process (Lanczos, subspace iteration..)

» Requires factorizations of A — oI for a sequence of o’s
» Qut of the question for some (e.g. large 3D) problems.

» First Alternative: Polynomial filtering

Polynomial filtering

> Apply Lanczos or Sub- 5, _ H(A) where ¢(t) is
space iteration to: a polynomial

» Each matvec y = Avisreplaced by y = ¢(A)v
» Eigenvalues in high part of filter will be computed first

» Old (forgotten) idea. But new context is *very* favorable

Key ingredients: |

e Selecting Polynomials

e Locking/deflation or other strategies in order not to miss
eigenvalues.

What polynomials?

» For end-intervals can just use Chebyshev

» For inside intervals: several choices

1+

» Recall the maingoal: o
A polynomial that has __ .,
large values for A € <
[a, b] small values else- ~ |

Pol. of degree 32 approx(.5) in [-1 1]

where

0

.

-0.2

#—

! ! ! !
0.1 0.2 0.3 0.4 0.5

11

! ! !
0.6 0.7 0.8

!
0.9

Past work: Two-stage approach

» Two stage approach used 0

in filtlan [H-r Fang, YS 2011] -
» First select a “base filter”
» e.g., a piecewise polyno-
mial function [a spline]

a b

e Then approximate base filter by degree k polynomial in a
least-squares sense.

e No numerical integration needed

Main advantage: Extremely flexible.

12 Purdue, 10/07/2016

Low-pass, high-pass, & barrier (mid-pass) filters

[a,b]=[0,3], [€,n]=[0,1], d=10 [a,b]=[0,3], [€,n]=[0.5,1], d=20

N | base filter y(\) ——— | | base filter p(\) ——
polynomial filter p(A) ------- 7] polynomial filter p(A) ------- 7]

Y Y

S =
S N A N S
------------------- D G \\\
_02]]]]] _02]]]]]
0 0.5 1 15 2 2.5 3 0 0.5 1 1.5 2 25 3
A A

» See Reference on Lanczos + pol. filtering: Bekas, Kokio-
poulou, YS (2008) for motivation, etc.

» H.-r Fang and YS “Filtlan” paper [SISC,2012] and code

Simpler: Step-function Chebyshev + Jackson damping

» Seek the best LS appro- *

.||—Jackson-Cheb.

Ximation to step function.

k
f(x) =) giviTi(x)
1=0

» Add ‘Damping coefficients’ ..|

to reduce/eliminate Gibbs oscil-
lations

Mid—-pass polynom. filter [-1 .3 .6 1]; Degree = 30
—— Standard Cheb.

—o Lanczos

» @G. Schofield, J. R. Chelikowsky and YS, CPC, 183, ('11)

Question: Why approximate the ‘step function’?

14

Purdue, 10/07/2016

Even Simpler: d-Dirac function

» QObtain the LS approxi-
mation to the d — Dirac func-
tion — Centered at some
point (TBD) inside the inter-
val. S

Three filters using different smoothing

- - -No damping
—Jackson
——Lanczos o

0.8

0.6

0.4r

—
<
SN—
x
aQ 02F
NN
OP\]
-0.2
_04 1 1 1 1 1 1 1 1
-1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1

>of

15

Pol. of degree 32 approx§(.5) in [-1 1]

1k
o8l (M)

—~ 08

<

N—
1

- 04 1
1
1
1

0.2
1
1
1
0 T— 1 L~
\/ \./
A,
i
_02 1 1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

<— Can use same damp-
ing: Jackson, Lanczos o
damping, or none.

Purdue, 10/07/2016

The Chebyshev expansion of 9, is

N | =

J=0

Pr(t) = ZHjTj(t) with p; = {cos(j cos ' (vy)) 7 >0

3=0

» Recall: The delta Dirac function is not a function — we can't
properly approximate it in least-squares sense. However:

Proposition Let pg(t) be the polynomial that minimizes
|7 (t)||., over all polynomials = of degree < k, such that
r(~v) = 1, where ||.||., represents the Chebyshev L2-norm.

Then pi(t) = pr(t)/pPr(Y)-

Theorem Assuming k > 1, the following equalities hold:

AL
1V/1— 82 > i—olTi()]?
B 27 1
o (zk + 1) X 1+ sin(2k+1)0, ’

(2k+1) sin 6,

where 6, = cos™ ' ~.

‘The soul of a new filter’ — A few details

Pm(t) = X707 T (t)

(1/2 if ko ==
Hie cos(k cos™!(~)) otherwise

’VJ(-m) = Damping coefficients.

Problem: I

Given interval (€, 1] find p,,,(t) of degree m, such that (1)
convergence with e.q. subspace iteration or Lanczos is fast
enough, (2) wanted eigenvalues are easy to identify and
extract, and (3) unwanted ones are never an issue.

Issue # one: | ‘balance the filter’

» To facilitate the selection of ‘wanted’ eigenvalues [Select A’s
such that ¢(A\) > bar] we need to ...

» ... find v so that ¢(£) == ¢(n)

R

Procedure: Solve the equation ¢~ (&) — ¢-(n) = 0 with re-
spect to ~v, accurately. Use Newton or eigenvalue formulation.

Issue # two: | Determine degree (automatically)

Jackson Chebyshev on [-1, -0.95]; deg. =3:2: 15 1 Jackson Chebyshev on [0.3, 0.6]; deg. =5:5:25
1 ¥ T T T T T T T r T T T T T T ¥ ¥ T
ool
i
0.8\ i 08}
0.7} . | 07l
_ osf : 1 o
< <
~ 05 1 - ~ 05
' X
Q g4t Q gy
0.3 : < 0.3F
0.2 - 0.2
1
01f ! i 01k
[]
0 1 L — 0 . | | 1
-1 -0.95 -0.9 -0.85 -0.8 -0.75 -0.7 -0.65 -0.6 -0.55 -0.5 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

A

» 1) Start low (e.g. 2); 2) Increase degree until value (s) at the
boundary (ies) become small enough —

» Eventually w’ll use criterion based on derivatives at € & n

Issue # Three : | Gibbs oscillations

» Discontinuous ‘function’ approximated — Gibbs oscillations

Three filters using different smoothing

- - -No damping
—Jackson
——|.anczos o

0.8

» Three options:

— 0.4

e No damping =
e Jackson damping |

e Lanczos o damping :

-0.2 N v/

-0.4
-1

» (Good compromise: Lanczos o damping

Extraction: Lanczos vs. Subspace iteration

» Subspace iteration is quite appealing in a electronic struc-
ture calculations — Can re-use previous subspace.

» Lanczos without restarts

» Lanczos with Thick-Restarting [TR Lanczos, Stathopoulos
et al '98, Wu & Simon’00]

» Crucial tool in TR Lanczos: deflation ('Locking’)

Main idea: Keep extracting eigenvalues in interval [&, n| un-
til none are left [remember: deflation]

» |f filter is good: Can catch all eigenvalues in interval thanks
to deflation + Lanczos.

» PolFilt Thick-Restart Lanczos in a picture:

Pol. of degree 32 approxd(.5) in [-1 1]

If accurate then lock
else add to Thick
start set.

Re

~ Reject

» Due to locking, no more candidates will show up in wanted
area after some point — Stop.

» Similar procedure possible with subspace iteration.

TR Lanczos: The 3 types of basis vectors

Basis vectors Matrix representation
" |
S |
O [7) N
2 4 s || [T
- & 2
| 3 S
o L @
-1 - =

24 Purdue, 10/07/2016

How do I slice a spectrum?

Analogue question:

How would | slice an onion if |

want each slice to have about
the same mass?

25

Purdue, 10/07/2016

» A good tool: Density of States — see:
e L. Lin, YS, Chao Yang recent paper.

e KPM method — see, e.qg., : [Weisse, Wellein, Alvermann,
Fehske, '06]

e | Interesting instance of a tool from physics used in linear
algebra.

» Misconception: ‘load balancing will be assured by just hav-
ing slices with roughly equal numbers of eigenvalues’

» In fact - will help mainly in balancing memory usage..

Slice spectrum into 8 with the DOS

0.025

0.02 -

0.015

0.01F

0.005 -

—-0.005

/a | (b)dt

1
Nslices

T p(t)dt

t:

)

» We must have:

Purdue, 10/07/2016

27

» Implemented in C: First version of (sequential) EVSL.

» Polynom. Filt. Lanczos Thick-Restart with deflation + spec-

trum slicing,

» Also: Subspace iteration, non-restarted Lanczos.

» A test example from the PARSEC collection.
» Matrix Ge99H100 [n = 112,985, nnz = 7,892, 195]

Matrix la, b]

[, €]

#eig

Ge99H100 [— 1 .2264, 32.703]_]

[—0.65, —0.0096]

250

» Asked to compute eigenvalues/vectors in 6 slices.

28

Purdue, 10/07/2016

» DOS + integration — (estimated) 242 eigenvalues in (&, 7]
— roughly 40/interval [actual 250/6 ~ 41.66]

Slice #| Width |actual # e.v. Pol. Deg. # Matvecs
1 10.0869 38 169 50738
2 10.0708 46 220 33046
3 10.0997 42 165 49542
4 10.2542 42 71 21342
5 10.0740 38 264 79238
6 0.0547 44 301 60244

» Computed all 250 eigenvalues -

A digression: The KPM method

» Formally, the Density Of States (DOS) of a matrix A is

) e O is the Dirac d-function or Dirac distribution
re .
Whe o N\ < Ay < ... < M\, are the eigenvalues of A

» ¢(t) == a probability distribution function == probability of
finding eigenvalues of A in a given infinitesimal interval near t.

» Also known as the spectral density

» \ery important uses in Solid-State physics

The Kernel Polynomial Method

» Used by Chemists to calculate the DOS — see Silver and
Roder'94 , Wang '94, Drabold-Sankey’93, + others

» Basic idea: expand DOS into Chebyshev polynomials

» Coefficients v lead to evaluating Tr (7% (A))

» Use trace estimators [discovered independently] to get traces
» Next: A few details

» Assume change of variable done so eigenvalues liein [—1, 1].

» Include the weight function in the expansion so expand:

O(t) = V1 —t2¢(t) = V1 — 2 X %ané(t —).

Then, (full) expansion is: ¢(t) = >27° urTr(t).

Expansion coefficients u are formally defined by:

Ty (t) () dt

2_5k0/ 1
K —
\/l—t2

2 — 0k /
= T.(t)\/1 — t20(t)dt
m k(t) v b(t)
2 — 5
= <0 Z Tw(X\;), (6;; = Dirac symbol)
nit j=1

Note: > Ti(N\;) = Trace|Ti(A)]

Estimate this, e.g., via stochastic estimator

nvec

S (v Tu(A).

vec =1

Trace(Tr(A)) =

Purdue, 10/07/2016

» To compute scalars of the form v!T}(A)v, exploit again
3-term recurrence of the Chebyshev polynomial ...

18
=== Fxact |
ier | o2 -w /o Jackson

14} —w/ Jackson [
12}
10+

» Same Jackson smooth-=

=

Ing as before can be used

O N & OV ®

An example with degree 80 polynomials

0.18f
—te— T xxact
0.16} oo | —e— KPM w/ Jackson|
0.14} '
0.12¢
— O.1}
=

KPM, deg = 80

0.08¢
0.06¢
0.04¢
0.02¢

KPM, deg = 80

0.2F | 4 +Exact

0.15¢}

0.05¢}

—e— KPM w/o Jackson

Left: Jackson damping; right: without Jackson damping.

34

Purdue, 10/07/2016

Spectrum Slicing and the EVSL project

» EVSL uses polynomial and rational filters

» Each can be appealing in different situations.

Conceptually simple idea: cut the overall interval containing the
spectrum into small sub-intervals and compute eigenpairs in
each sub-interval independently.

For each subinterval: select a filter
polynomial of a certain degree so its
high part captures the wanted eigen- =~
values. In illustration, the polynomials ~ "
are of degree 20 (left), 30 (middle),
and 32 (right).

Levels of parallelism |

Slice 2 Slice 1

Slice 3

JU

Macro-task 1

Domain 1

JL

Domain 2

JU

Domain 3

Domain 4

The two main levels of parallelism in EVSL

36

Purdue, 10/07/2016

3D discrete Laplacian example (60° — n = 216,000) Used
¢ = 0.8. Partitioning [0.6, 1.2] into 10 sub-intervals. » Goal:
compute all 3,406 eigenvalues in interval [0.6, 1.2]

&is M)

i — &

V[Sz'a"h']

O© 00O NO O1 A WDN .

—_i
o

0.60000, 0.67568]
0.67568, 0.74715]
0.74715, 0.81321]
0.81321, 0.87568]
0.87568, 0.93574]
0.93574, 0.99339]
0.99339, 1.04805]
1.04805, 1.10090)]
1.10090, 1.15255]
1.15255, 1.20000)]

0.07568
0.07147
0.06606
0.06247
0.06006
0.05765
0.05466
0.05285
0.05165
0.04745

337
351
355
321
333
340
348
339
334
348

37

Purdue, 10/07/2016

Results |

~.

deg

iter

matvec

CPU time (sec)

residual

matvec

total

Mmax

avg

116
129
145
159
171
183
198
209
219
243

© 00O NO OB~ WDND —

—
o

1814
2233
2225
1785
2239
2262
2277
1783
2283
1753

210892
288681
323293
284309
383553
414668
451621
373211
500774
426586

430.11
587.14
658.44
580.09
787.00
848.71
922.64
762.39
1023.24
874.11

759.24

986.67
1059.57

891.46
1180.67
1255.92
1338.47
1079.30
1433.04
1184.76

6.90 x 107
5.30x 107
6.60 x 107
3.60 x10~%
6.80 x10~%
9.90 x10~%
2.30x 107"
8.50 x 10~%
4.30x10~%
5.70x 10~

7.02x1071!
7.39x10711
5.25x 10711
4.72x 10~ 1
9.45x 10711
1.13x 10711
3.64x 101!
1.34x 10710
4.41x10~H
1.41x 10~ 11

Note: # of eigenvalues found inside each [&;, n;] is exact.
Purdue, 10/07/2016

38

Average statistics per slice for different numbers of slice (n;),
for the 3D discrete Laplacian example with ¢ = 0.8.

matvec CPU time

deg

iter

number

time

per slice

total

34.5
88.0
177.2
266.1
356.8

9284.5
3891.8
2065.4
1351.9
1081.7

328832.0
347704.6
365758.8
361809.0
392083.3

681.74
715.98
747.69
746.04
807.46

11817.35
2126.97
1116.91

911.54
909.62

23634.69
10634.85
11169.13
13673.12
18192.45

39

Purdue, 10/07/2016

Hamiltonian matrices from the PARSEC set

Matrix n ~ nnz [a, b] 1€, 1] Ve]
GegrHrg 112,985 7.9M [—1.21,32.76] [—0.64, —0.0053] | 212
GegoH 100 112,985 | 8.5M | [—1.22,32.70] [—0.65, —0.0096] | 250
Siy1GesHyo 185,639 |15.0M | [—1.12,49.82] | [—0.64, —0.0028] | 218
SigrHrg 240,369 | 10.6 M | [—1.19,43.07] | [-0.66, —0.0300] | 213
Gay Asy Hro | 268,096 | 18.5M | [—1.25,1301] | [—0.64, —0.0000] | 201

Numerical results for PARSEC matrices
, , CPU time (sec) residual
Matrix deg| iter | matvec
matvec| total max avg
GegrHrg 26|1431| 37482 282.70| 395.91/9.40x107%|2.55x 1010
GeggH 19 26 |1615| 42330| 338.76| 488.91/9.10x107%9|2.26 x 1010
Sis1Geys1Hye | 35/1420| 50032 702.32| 891.983.80x107%|8.38 x 101!
Sig7Hrg 30|1427| 43095| 468.48| 699.90|7.60x107%|3.29x 1010
Gay1Asy Hyo 2022334 (471669 [8179.51(9190.46 |4.20x 10712/ 4.33 x 10713

40

Purdue, 10/07/2016

An OpenMP parallelization across 2, 4 and 10 spectral
intervals of a divide and conquer approach for SiO matrix;
n = 33,401 andnnz = 1,317, 655.

Time (sec.)

1100

Parallel scaling of the divide and conquer strategy

1000
900
800
700
600
500
400
300
200

100

2 intervals

< —»—4 intervals [
\ -6-10 intervalsf

-~
-~
-~
-
-
-
-
-~
-
-~
-
-
-~
-
-
-~
~ -

0

Number of OpenMP threads

» Eigenvalues computed: 1002 lowest eigenpairs.

41

Purdue, 10/07/2016

Why use rational filters?

** Joint work with Yuanzhe Xi

» (Consider a spectrum like this one:

» Polynomial filtering utterly ineffective for this case

» Second issue: situation when Matrix-vector products are

expensive

» Generalized eigenvalue problems.

43

Purdue, 10/07/2016

» Alternative is to H(z) = .
use rational filters:

Jz 0'3

» We now need to solve linear systems

» Tool: Cauchy integral representations of spectral projectors

/_\ P _ %IF(A L SI)_ldci
] e Numer. integr. P — P
v e Use Krylovor S.l. on P

» Sakurai-Sugiura approach [Krylov]
» Polizzi [FEAST, Subsp. lter.]

44 Purdue, 10/07/2016

What makes a good filter

25

0.5

real(c) =[0.0]; imag(oc) =[1.1]; pow =3

real(c) =[0.0]; imag(c) =[1.1]; pow =3

- 3 ‘ _-
Opt. pole — Opt. pole® : N £ PR
== Single pole 0817 == Single pole | K A
. 3 i
| - * - Single-pole 1,4l * - Single-pole® ! Y
" ’
- - -Gauss 2-poles - - -Gauss 2-poles v £ e .
4 o
- - - Gauss 2-poles? 07H{ - - - Gauss 2-poles? Y -
! ! ! /$ &"\
N i Piie
! I i -
! * 1 ‘r"\
N
1 1
) £
1 A
1 f A'/
' f A
1 1,'
1 \,‘
1 K4
- !
yyyyyy I
A 1
vvvvvv - !
- L ! ! ! ! !
2 1.5 1 -0.9 -0.8 -0.7 -0.6 -0.5

7 7 J -

» Assume subspace iteration is used with above filters. Which
filter will give better convergence?

» Simplest and best indicator of performance of a filter is the
magnitude of its derivative at -1 (or 1)

45

Purdue, 10/07/2016

The Cauchy integral viewpoint

» Standard Mid-point, Gauss-Chebyshev (1st, 2nd) and Gauss-
Legendre quadratures. Left: filters, right: poles

Number of poles = 6

0.8

0.6

0.4

0.2 B 0.2+ —— L d
— Gauss-Legendre egendre
0 — Gauss-Cheb. 1 ——Cheb-1
- - -Gauss—-Cheb. 2 of teo-oo-] R 5
Mid—pt | —— Mld—pt

T

0.2 | | T | | L L L L
-2 -15 -1 -0.5 0 0.5 1 15 2 0 0.2 0.4 0.6 0.8 1

» Notice how the sharper curves have poles close to real axis
40 e —————————————————— e Purdue, 10/07/2016

The Gauss viewpoint: Least-squares rational filters

» Given: poles 01,02, , 0p

» Related basis functions ¢;(z) =

1

Z—O'j

¢(z) = Y0, a;¢;(z) that minimizes
JZe w(®)|h(t) — &(t)|%dt

» h(t) = step function x_1,1)-

» w(t)= weight function.
For example a = 10,
B = 0.1

47

w(t)

(0 if |t| > a
git |t <1

L 1 else

Purdue, 10/07/2016

How does this work?

» A small example : Laplacean ona 43 X 53 grid. (n = 2279)

» Take 4 poles obtained from mid-point rule(/N. = 2 on each
1/2 plane)

» Want: eigenvalues inside [0, 0.2]. There are nev = 31 of
them.

» Use 1) standard subspace iteration + Cauchy (FEAST) then
2) subspace iteration + LS Rat. Appox.

» Use subspace of dm nev + 6
> 3 =0.2

48 Purdue, 10/07/2016

3.5 T T T 100 T T E|
- - -Cauchy fun. -+ -Cauchy fun.|]
sl —LSrat.-fun. || [—e— LS rat. fun. ||
25¢ 1 107k
2 PEIERN 1 10°k
\
15) \ 1 1oL
! ~
1 10°F .
S
h
\ 6 ~
0.5+ ,l N 4 107k ‘\,_\
’ *
- ~ - 7
~05 I I I I I I I I I 108 L L
5 -4 -3 -2 -1 0 1 2 3 4 5 0 5 10 15

» LS Uses the same poles + same factorizations as Cauchy
but

» ... much faster as expected from a look at the curves of the
functions

49 Purdue, 10/07/2016

» QOther advantages:

e Can select poles far away from real axis — faster iterative
solvers [E. Di Napoli et al.]

e \ery flexible — can be adapted to many situations
e Can use multiple poles (!)
» Implemented in EVSL.. [Interfaced to UMFPACK as a solver]

Better rational filters: Example

» Take same example as before 43 X 53 Laplacean

» Now take 6 poles [3 X 2 midpoint rule]
» Repeat each pole [double poles.]

107

- - =Cauchy fun.
— LS rat. fun. ||
- - -LS mult.pole

51

107
0 N
1 10k
1 10tk
10°F
107k

107°

Purdue, 10/07/2016

Introduction

* Joint work with Vasilis Kalantzis and Ruipeng Li

» Partition graph using edge-
separators (‘vertex-based parti-
tioning’)

» (Common strategy: Exploit
DD for matvec’s

53

m |
2) @ @& @) @
© © @ 9 @
______________ r - ==4
1
1
1
@ 2 13 14

© @ ® O 0 |
® @ © @ O

Purdue, 10/07/2016

,,,

————— /— ~ External
""" I~ / interface poil
\

Distributed graph TN
and its matrix
representation

» Stack all interior variables u,, us, - -+ , u, into a vector wu,
then interface variables y

[By E;) (zl\ (zl\

» Result: E : :
B, E Up Uy

\v/ \v)

Notation:

S U —

100

200F

300

Write as:

400

500

600 -

700

400 500 600 700 800
4380

300

200

900

100

nz

Purdue, 10/07/2016

55

The spectral Schur complement

e Eliminating the u;'s we get

(510\) E,» --- Ey, \ (?h\
Eyr Sa(A) -+ Eg Y2 | 0
\ EpT1 EpTz T Sp(A)) \yp)

o S;(A\) =C; — A — E](B; — \I)"'E;

e Interface problem (non-linear): S(A)y(A) = 0.

e Top part can be recovered as u; = — (B — AI) " 'E;y(\).
e See also AMLS [Bennighof, Lehoucqg, 2003]

Spectral Schur complement (cont.)
State problem as: | e Find o € R such that

One eigenvalue of S(o) = 0, or,

» (o) =0 where u(o) ==smallest (|.|) eig of S(o).

» Can treat (o) as a function — root-finding problem.
» The function u(o) is analytic for any o ¢ A(B) with
dp(o) (B — o) Ey(o)|I2
do ly(@)lz

Basic algorithm - Newton’s scheme

» We can formulate a Newton-based algorithm.

ALGORITHM : 1. Newton Scheme

Select initial o
Repeat:
Compute pu(o) = Smallest eigenvalue in modulus
of S(o) & associated eigenvector y(o)
Setn := ||[(B — oI) 'Ey(o)l|2
Seto := o + pu(o)/(1 + n?)
Until: |u(o)| < tol

NOOONWN -

» (o) computed by an inverse iteration scheme.
» Details omitted

Complex Rational Filter + Schur complements

» Goal: DD techniques in contour integral-based methods

B—-slI FE
A—SI—(BT C—SI>_)
B 1 * —(B —sI)"'ES(s)™!
(A=) = | 5(s)""
» Then, Cauchy integral formula for spectral projector yields:
* | —W .
G=_- / S(s)- 1ds, W= / (B — sI)" ES(s)"'ds
217 217

» Advantage: Does not involve inverse of whole matrix
50— P Urdue, 10/07/2016

> Let P=[P1,Pz]:[* _W]

* | G

» We know how to compute P, or P, X randn (s, ns)

Q: How can we recover eigenvectors of A from P?

A: Observe: it P = VVT,and V = (}}) then P, = V'V

e Just capture the range of P, : Subspace iteration - Lanc-
Z0S

e This approach is a one-shot method [no easy way to iter-
ate]

e See: V. Kalantzis, J. Kestyn, E. Polizzi, and YS PFEAST: A
High Performance Eigenvalue Solver Using Three Full Levels
of MPI Parallelism in Proc. Supercomputing’16.

9/29/2016

ITS

Yousef Saad -- SOFTWARE

SOFTWARE

NV
EVSL Eﬁw\é a library of (sequential) eigensolvers based on spectrum slicing. Version 1.0
released on [09/11/2016]
EVSL provides routines for computing eigenvalues located in a given interval, and their
associated eigenvectors, of real symmetric matrices. It also provides tools for spectrum
slicing, i.e., the technique of subdividing a given interval into p smaller subintervals and
computing the eigenvalues in each subinterval independently. EVSL implements a
polynomial filtered Lanczos algorithm (thick restart, no restart) a rational filtered Lanczos
algorithm (thick restart, no restart), and a polynomial filtered subspace iteration.

ITSOL a library of (sequential) iterative solvers. Version 2 released. [11/16/2010]

ITSOL can be viewed as an extension of the ITSOL module in the SPARSKIT package. It
is written in C and aims at providing additional preconditioners for solving general sparse
linear systems of equations. Preconditioners so far in this package include (1) ILUK (ILU
preconditioner with level of fill) (2) ILUT (ILU preconditioner with threshold) (3) ILUC
(Crout version of ILUT) (4) VBILUK (variable block preconditioner with level of fill - with
automatic block detection) (5) VBILUT (variable block preconditioner with threshold -
with automatic block detection) (6) ARMS (Algebraic Recursive Multilevel Solvers --
includes actually several methods - In particular the standard ARMS and the ddPQ version
which uses nonsymmetric permutations).

ZITSOL a complex version of some of the methods in ITSOL is also available.

http://www-users.cs.umn.edu/~saad/software/

1/6

9/29/2016

pPARMS
Pl

Yousef Saad -- SOFTWARE

DARMS Version 3.2 released. [11/16/2010]

A portable library of distributed-memory sparse iterative solvers. Version 3.2 posted.

Note: PSPARSLIB [a FORTRAN77 portable library of distributed-memory sparse iterative
solvers released first circa 1995] is no longer posted. pARMS replaces PSPARSLIB. The
older version of pARMS [pARMS_2.2] will remain posted but will have no support.

This work was supported by the Department Of Energy.

3

|

[FILTLAN]

)
0
o
~ oa
L 1
0 .
&n
02|
g B s i s 0 5 g

FILTLAN Version 1.0a released. [08/22/2011]

A Filtered Lanczos package for solving interior and extreme symmetric eigenproblems.
Version 1.0a posted. Suppose you want to compute all the eigenvalues of a matrix A that are
located in an interval which is a subset deep inside the spectrum of A. The matrix A is
symmetric, and may be issued from the discretization of a 3-D problem (e.g., a Poisson
operator), so shift-and-invert may not be an option. In this situation a filtered Lanczos
approach is ideal and tests reveal that this approach is very effective, especially when the
number of eigenvalues-eigenvectors to be computed is very large.

This work was supported by the Department Of Energy.

CUDA ITSOL [05/13/2011] The CUDA Iterative Solver package. This is a package for
performing various sparse matrix operations and, more importantly, for solving sparse
linear systems of equations. It is written under CUDA. The package was developed by
Ruipeng Li [PhD Student, Univ. of Minnesota].

See this technical report for details on the methods implemented and more.

This work was supported by the Department Of Energy.

http://www-users.cs.umn.edu/~saad/software/

2/6

Part I: | Polynomial filtering

» Polnym. Filter. appealing when # of eigenvectors to be
computed is large and when Matvecs are inexpensive

» Will not work too well for generalized eigenvalue problem

» Will not work well for spectra with very large outliers.

Part Il: | Rational filtering

» We must rethink the way we view Rational filtering - away
from Cauchy and into approximation of functions. LS approach
is flexible, easy to implement, easy to understand.

Part Ill: | Domain Decomposition

» We *must* combine DD with any filtering technique [rational
or polynomial]

» Many ideas still to explore in Domain Decomposition for
interior eigenvalue problems

» EVSL code available here:
WWwW.Ccs.umn.edu/~saad/software/EVSL

» Fully parallel version (MPI) in the works

