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Background. Origins of Eigenvalue Problems

Structural Engineering [Ku = AMu] (Goal: fre-
guency response)

®m Electronic structure calculations [Schrodinger equa-
tion..]

® Stability analysis [e.g., electrical networks, mechanical
system,..]

m Bifurcation analysis [e.g., in fluid flow]

» Large eigenvalue problems in quantum chemistry use up
biggest portion of the time in supercomputer centers




Background. New applications in data analytics

» Machine learning problems often require a (partial) Singular
Value Decomposition -

» Somewhat different issues in this case:
= \ery large matrices, update the SVD
= Compute dominant singular values/vectors

= Many problems of approximating a matrix by one of
lower rank (Dimension reduction, ...)

» But: Methods for computing SVD somewhat similar to those
for standard eigenvalue problems




Background. The Problem (s)

We consider the eigenvalue problem

Ax = \x

where A is symmetric real (or Hermitian complex)

» Also: Ax = ABx where B is symmetric positive definite,
A Is symmetric or nonsymmetric

» What to compute:
= Afew )\; 's with smallest or largest real parts;
= All \;’s in a certain region of C;
= A few of the dominant eigenvalues;
= All \;’s (rare).




Background. The main tools

Projection process: (a) Build a ‘good’ subspace K = span(V);
(b) get approximate eigenpairs by a Rayleigh-Ritz process:

VI(A — AXI)Vy =0

e

» A\ = Ritz value, u = Vy = Ritz vector.

» Two common choices for K
1) Power subspace K = span{A*X}; or span{ P, (A)X,};
2) Krylov subspace K = span{v, Av,--- , A¥ 1y}




Background. The main tools (cont)

Shift-and-invert:

» |f we want eigenvalues near o, replace A by (A — o)~ L.

Example: | power method: v; = Aw,_;/scaling replaced by

Vi — (A—O'I)_I’Uj_l
J scaling

» Works well for computing a few eigenvalues near o/
» Used in commercial package NASTRAN (for decades!)

» Requires factoring (A — o) (or (A — o B) in generalized
case.) But convergence will be much faster.

» A solve each time - Factorization done once (ideally).
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Background. The main tools (cont)

Deflation:

» Once eigenvectors converge remove them from the picture

Restarting Strategies

» Restart projection process by using information gathered in
previous steps

» ALL available methods use some combination of these in-
gredients.

[e.g. ARPACK: Arnoldi/Lanczos + ‘implicit restarts’ + shift-and-
iInvert (option).]




Large problems in applications

» Some applications require the computation of a large
number of eigenvalues and vectors of very large matrices.
These are found mostly in quantum physics/ chemistry.

» Density Functional Theory in electronic structure calcula-
tions: ‘ground states’

» Excited states involve transitions and invariably lead to much
more complex computations. — Large matrices, *many” eigen-
pairs to compute

lllustration:

‘Hamiltonian of size n ~ 10° get 10% of bands’




Computing earth normal modes (/. V. De Hoop)
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Want all eigen-values/vectors inside a given interval

Issue: ‘mass’ matrix has a large null space..

Solution: change formulation of matrix problem.

... Work in progress.
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Soving large eigenvalue problems: Current state-of-the art

» Eigenvalues at one end of the spectrum:
® Subspace iteration + filtering [e.g. FEAST, Cheb,...]

®m | anczos+variants (no restart, thick restart, implicit
restart, Davidson,..), e.g., ARPACK code, PRIMME.

= Block Algorithms [Block Lanczos, TraceMin,
LOBPCG, SlepSc,...]

= + Many others - more or less related to above

» ‘Interior’ eigenvalue problems (middle of spectrum):

B Combine shift-and-invert + Lanczos/block Lanczos.
Used in, e.g., NASTRAN
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Issues with shift-and invert | (and related approaches)

» Issue 1: factorization may be too expensive
e (Can use iterative methods?
» Issue 2: lterative techniques often fail —

e Reason: Highly indefinite problems.

» Alternative to shift-and-invert: ‘Spectrum slicing’” with Poly-
nomial filtering




Spectrum slicing for computing many eigenvalues

Rationale: Eigenvectors on both ends of wanted spectrum

need not be orthogonalized against each other :
A

A A

» |dea: Get the spectrum by ‘slices’ or ‘'windows’ [e.g., a few
hundreds or thousands of pairs at a time]

» (Can use polynomial or rational filters




» |n an approach of this type the filter is the key ingredient.

Goal: Compute each slice independently from the others.
)

Compute slices separately

YY) i

) MUM \ ) JK \ _

For each slice Do:
o [get "all* eigenpairs in a slice]
EndDo

e Only need a good estimate of window size
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Computing a slice of the spectrum

How to compute eigenvalues in the middle of the
spectrum of a large Hermitian matrix?

Common practice: Shift and invert + some projec-
-1 tion process (Lanczos, subspace iteration..)

» Requires factorizations of A — oI for a sequence of o’s

» Expensive (memory+arithmetic) for some (e.g. large 3D)
problems.

» First Alternative: Polynomial filtering




Polynomial filtering

> Apply Lanczos or Sub- 5, _ H(A) where ¢(t) is
space iteration to: a polynomial

>

>
>
>
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Each matvec y = Avisreplacedby y = ¢p(A)v
Eigenvalues in high part of filter will be computed first
Old (forgotten) idea. But new context is *very* favorable

Consider Subspace lteration in following script.
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for iter=1:maxit Matlab Script |

Y = PolFilt(A, V, mu);
[V, R] = ar(Y,0);
%— Rayleigh-Ritz with A
C = V*(A*V);
[X, D] = eig(C);
d = diag(D);
%— get e-values closest to center of interval
[~, IdX] = sort(abs(d-gam),ascend’);
%— get their residuals

%— if enough pairs have converged exit

end
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What polynomials?

» For end-intervals: use standard Chebyshev polynomials

» For inside intervals: several choices

Pol. of degree 32 approx(.5) in [-1 1]

i1k

» Recall the maingoal: o
A polynomial that has __ .,
large values for A € <
[a, b] small values else- ~ |
where

0
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Use of quadratics: An old idea

» We want to compute eigenval-
ues near o = 1 of a matrix A with -
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A(A) C [o, 4].

» Use the simple transform:
p2(t) =1 — a(t — o).

» Fora = .2,0 = 1youget —

» Use Subs. lter. with M = p2(A).

» Eigenvalues near o become the dominant ones — so Sub-

space lteration will work — but...

» ... they are now poorly separated — slow convergence.
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Past work: Two-stage approach

» Two stage approach used 0

in filtlan [H-r Fang, YS 2011] -
» First select a “base filter”
» e.g., a piecewise polyno-
mial function [a spline]

a b

® Then approximate base filter by degree k polynomial
In a least-squares sense.

= No numerical integration needed
Main advantage: very flexible.

» Details skipped




Low-pass, high-pass, & barrier (mid-pass) filters

[a,b]=[0,3], [¢,n]=[0,1], d=10 [a,b]=[0,3], [¢,n]=[0.5,1], d=20

N | base filter y(\) ——— | | base filter p(\) ——
polynomial filter p(A) ------- 7] polynomial filter p(A) ------- 7]

Y Y

S =
\\ ....... \\x .......................................
__________________ DR
_02 ] ] ] ] ] _02 ] ] ] ] ]
0 0.5 1 15 2 2.5 3 0 0.5 1 1.5 2 25 3
A A

» See Reference on Lanczos + pol. filtering: Bekas, Kokio-
poulou, YS (2008) for motivation, etc.

» H.-r Fang and YS “Filtlan” paper [SISC,2012] and code




Misconception: High degree polynomials are bad

d=1000
T T T T T T
1+ base filter y(A) ——— -~
polynomial filter p(A) -------
0.8 - Yy .

Degree L A
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0.2 | / -
04 | -
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polynomial filter p(A) -------
0.8 | yoo .
Degree os | |
1600 B O A A
0.2+ -
0.2 .
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Simpler: Step-function Chebyshev + Jackson damping

Mid—-pass polynom. filter [-1 .3 .6 1]; Degree = 30

) Seek the beSt LS apprO' N —Standarddheb.
ximation to step function. ||| Jackson-Cheb.

—o Lanczos

k
f(x) = )  giviTi(x)
1=0

» Add ‘Damping coefficients’ ..|
to reduce/eliminate Gibbs oscil-
lations

» @G. Schofield, J. R. Chelikowsky and YS, CPC, 183, ('11)

Question: Why approximate the ‘step function’?




Even Simpler: d-Dirac function

» QObtain the LS approxi-
mation to the d — Dirac func-
tion — Centered at some
point (TBD) inside the inter-
val. S

Three filters using different smoothing

- - -No damping
—Jackson
——Lanczos o
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Pol. of degree 32 approx§(.5) in [-1 1]

1k
o8l (M)

—~ 08

<

N—
1

- 04 1
1
1
1

0.2
1
1
1
0 T— 1 L~
\/ \./
A,
i
_02 1 1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

<— Can use same damp-
ing: Jackson, Lanczos o
damping, or none.
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The Chebyshev expansion of 9, is

N | =

J=0

Pr(t) = ZHjTj(t) with p; = {cos(j cos ' (vy)) 7 >0

3=0

» Recall: The delta Dirac function is not a function — we can't
properly approximate it in least-squares sense. However:

Proposition Let pg(t) be the polynomial that minimizes
|7 (t)||., over all polynomials = of degree < k, such that
r(~v) = 1, where ||.||., represents the Chebyshev L2-norm.

Then pi(t) = pr(t)/pPr(Y)-




‘The soul of a new filter’ — A few technical details

Pm(t) = X707 T (t)

Hr =

{1/2 if kb ==

cos(k cos™1(«)) otherwise
'yj(-m) — Damping coefficients.

» quite simple...

» .. provided we handle a few practical issues




Issue # one: | ‘balance the filter’

» To facilitate the selection of ‘wanted’ eigenvalues [Select A’s
such that ¢(A\) > bar] we need to ...

» ... find v so that ¢(£) == ¢(n)

R

Procedure: Solve the equation ¢~ (&) — ¢-(n) = 0 with re-
spect to ~v, accurately. Use Newton or eigenvalue formulation.




Issue # two: | Determine degree (automatically)

Jackson Chebyshev on [-1, -0.95]; deg. =3:2: 15 1 Jackson Chebyshev on [0.3, 0.6]; deg. =5:5:25
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A

» 1) Start low (e.g. 2); 2) Increase degree until value (s) at the
boundary (ies) become small enough —

» Eventually w’ll use criterion based on derivatives at € & n




Issue # Three : | Gibbs oscillations

» Discontinuous ‘function’ approximated — Gibbs oscillations

Three filters using different smoothing

- - -No damping
—Jackson
——|.anczos o

0.8

» Three options:

— 0.4

e No damping =
e Jackson damping |

e Lanczos o damping :

-0.2 N v/

-0.4
-1

» (Good compromise: Lanczos o damping




Backround: The Lanczos Algorithm

» Algorithm builds orthonormal basis V,,, = [v1, v, ¢+ , V)]
for the Krylov subspace: span{v;, Av{,--- , A" v}

(Oﬂ1 B2 \

B2 aa B3
» ... such that: B3 ag B4

VHAV,, = T,, - with Tm =

\ B )

»  Note: three
term recurrence:

Bj+1vj+1 = Av; — av; — B4

» Eigenvalues of A on both ends of spectrum are well approx-
imated by eigenvalues of T;,, (Ritz values).
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Projection: Lanczos vs. Subspace iteration

» Subspace iteration is quite appealing in some applications
(e.g., electronic structure): | Can re-use previous subspace.

» Lanczos without restarts

» Lanczos with Thick-Restarting [TR Lanczos, Stathopoulos
et al '98, Wu & Simon’00]

» Crucial tool in TR Lanczos: deflation ('Locking’)

Main idea: Keep extracting eigenvalues in interval [&, n| un-
til none are left [remember: deflation]

» |f filter is good: Can catch all eigenvalues in interval thanks
to deflation + Lanczos.




Polynomial filtered Lanczos

» Use the Lanczos algorithm with A replaced by pi(A), where
pr(t) = polynomial of degree k

» |dea not new (and not too popular in the past)

1. Very large problems;

What is new? | 2. (tens of) Thousands of eigenvalues;

3. Parallelism.

» Combine with spectrum slicing

» Main attraction: reduce cost of orthogonalization




Hypothetical scenario: large A, *many* wanted eigenpairs

» Assume A has size 10M

» ... and you want to compute 50,000 eigenvalues/vectors
(huge for numerical analysits, not for physicists) ...

» ... In the lower part of the spectrum - or the middle.

» By (any) standard method you will need to orthogonalize at
least 50K vectors of size 10M. Then:

® Space needed: = 4 x 10'% b = 4TB *just for the basis*
= QOrthogonalization cost: 5 x 10'% = 50 PetaOPS.

m At step k, each orthogonalization step costs =~ 4kn

® Thisis = 200, 000 for k close to 50, 000.




How do I slice a spectrum?

Analogue question:

How would | slice an onion if |

want each slice to have about
the same mass?

34
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» A good tool: Density of States — see:
e L.Lin,YS, Chao Yang recent paper.

e KPM method — see, e.q., : [Weisse, Wellein, Alvermann,
Fehske, '06]

e | Interesting instance of a tool from physics used in linear
algebra.

» Misconception: ‘load balancing will be assured by just hav-
ing slices with roughly equal numbers of eigenvalues’

» In fact - will help mainly in balancing memory usage..




Slice spectrum into 8 with the DOS

0.025

0.02 -

0.015

0.01F

0.005 -

—-0.005

/a | (b)dt

1
Nslices

" () dt

t:

)

» We must have:
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A little digression: The KPM method

» Formally, the Density Of States (DOS) of a matrix A is

) e 0 isthe Dirac d-function or Dirac distribution
where .
o A\ < A <Z...<Z )\, arethe eigenvalues of A

» ¢(t) == a probability distribution function == probability of
finding eigenvalues of A in a given infinitesimal interval near t.

» Also known as the spectral density

» \ery important uses in Solid-State physics




The Kernel Polynomial Method

» Used by Chemists to calculate the DOS — see Silver and
Roder'94 , Wang '94, Drabold-Sankey’93, + others

» Basic idea: expand DOS into Chebyshev polynomials
» Coefficients ~ lead to evaluating Tr (7 (A))

» Use trace estimators [discovered independently] to get traces

» Details skipped




Spectrum Slicing and the EVSL project

» EVSL uses polynomial and rational filters

» Each can be appealing in different situations.

Conceptually simple idea: cut the overall interval containing the
spectrum into small sub-intervals and compute eigenpairs in
each sub-interval independently.

For each subinterval: select a filter
polynomial of a certain degree so its
high part captures the wanted eigen- =~
values. In illustration, the polynomials ~ "
are of degree 20 (left), 30 (middle),
and 32 (right).




Levels of parallelism |

Slice 2 Slice 1

Slice 3

JU

Macro-task 1

Domain 1

JL

Domain 2

JU

Domain 3

Domain 4

The two main levels of parallelism in EVSL

40
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3D discrete Laplacian example (60° — n = 216,000) Used
¢ = 0.8. Partitioning [0.6, 1.2] into 10 sub-intervals. » Goal:
compute all 3,406 eigenvalues in interval [0.6, 1.2]

&is M)

i — &

V[Sz'a"h']

O© 00O NO O1 A WDN .

—_i
o

0.60000, 0.67568]
0.67568, 0.74715]
0.74715, 0.81321]
0.81321, 0.87568]
0.87568, 0.93574]
0.93574, 0.99339]
0.99339, 1.04805]
1.04805, 1.10090)]
1.10090, 1.15255]
1.15255, 1.20000)]

0.07568
0.07147
0.06606
0.06247
0.06006
0.05765
0.05466
0.05285
0.05165
0.04745

337
351
355
321
333
340
348
339
334
348
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Results |

~.

deg

iter

matvec

CPU time (sec)

residual

matvec

total

Mmax

avg

116
129
145
159
171
183
198
209
219
243

© 00O NO OB~ WDND —

—
o

1814
2233
2225
1785
2239
2262
2277
1783
2283
1753

210892
288681
323293
284309
383553
414668
451621
373211
500774
426586

430.11
587.14
658.44
580.09
787.00
848.71
922.64
762.39
1023.24
874.11

759.24

986.67
1059.57

891.46
1180.67
1255.92
1338.47
1079.30
1433.04
1184.76

6.90 x 107
5.30x 107
6.60 x 107
3.60 x10~%
6.80 x10~%
9.90 x10~%
2.30x 107"
8.50 x 10~%
4.30x10~%
5.70x 10~

7.02x1071!
7.39x10711
5.25x 10711
4.72x 10~ 1
9.45x 10711
1.13x 10711
3.64x 101!
1.34x 10710
4.41x10~H
1.41x 10~ 11

42

Note: # of eigenvalues found inside each [&;, n;] is exact.
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Hamiltonian matrices from the PARSEC set

Matrix n ~ nnz [a, b] 1€, 1] Ve ]
GegrHrg 112,985 7.9M [—1.21,32.76] [—0.64, —0.0053] | 212
GegoH 100 112,985 | 8.5M | [—1.22,32.70] [—0.65, —0.0096] | 250
Siy1GesHyo 185,639 |15.0M | [—1.12,49.82] | [—0.64, —0.0028] | 218
SigrHrg 240,369 | 10.6 M | [—1.19,43.07] | [-0.66, —0.0300] | 213
Gay Asy Hro | 268,096 | 18.5M | [—1.25,1301] | [—0.64, —0.0000] | 201

Numerical results for PARSEC matrices
, , CPU time (sec) residual
Matrix deg| iter | matvec
matvec| total max avg
GegrHrg 26|1431| 37482 282.70| 395.91/9.40x107%|2.55x 1010
GeggH 19 26 |1615| 42330| 338.76| 488.91/9.10x107%9|2.26 x 1010
Sis1Geys1Hye | 35/1420| 50032 702.32| 891.983.80x107%|8.38 x 101!
Sig7Hrg 30|1427| 43095| 468.48| 699.90|7.60x107%|3.29x 1010
Gay1Asy Hyo 2022334 (471669 [8179.51(9190.46 |4.20x 10712/ 4.33 x 10713

43
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Why use rational filters?

** Joint work with Yuanzhe Xi

» (Consider a spectrum like this one:

» Polynomial filtering utterly ineffective for this case

» Second issue: situation when Matrix-vector products are

expensive

» Generalized eigenvalue problems.

45
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» Alternative is to H(z) = .
use rational filters:

Jz 0'3

P(A) =Y aj(A—o; )7 We now need to solve
linear systems

» Tool: Cauchy integral representations of spectral projectors

m | PEm(A-sDTds
\__/

e Numer. integr. P — 1—3
e Use Krylovor S.l.on P

»  Sakurai-Sugiura approach [Krylov]
» Polizzi [FEAST, Subsp. lter. ]




What makes a good filter

25

0.5

real(c) =[ 0.0]; imag(oc) =[ 1.1]; pow =3

real(c) =[ 0.0]; imag(c) =[ 1.1]; pow =3

- 3 ‘ _-
Opt. pole — Opt. pole® : N £ PR
== Single pole 0817 == Single pole | K A
. 3 i
| - * - Single-pole 1,4l * - Single-pole® ! Y
" ’
- - -Gauss 2-poles - - -Gauss 2-poles v £ e .
4 o
- - - Gauss 2-poles? 07H{ - - - Gauss 2-poles? Y -
! ! ! /$ &"\
N i Piie
! I i -
! * 1 ‘r"\
N
1 1
) £
1 A
1 f A'/
' f A
1 1,'
1 \,‘
1 K4
- !
yyyyyy I
A 1
vvvvvv - !
- L ! ! ! ! !
2 1.5 1 -0.9 -0.8 -0.7 -0.6 -0.5

7 7 J -

» Assume subspace iteration is used with above filters. Which
filter will give better convergence?

» Simplest and best indicator of performance of a filter is the
magnitude of its derivative at -1 (or 1)
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The Cauchy integral viewpoint

» Standard Mid-point, Gauss-Chebyshev (1st, 2nd) and Gauss-
Legendre quadratures. Left: filters, right: poles

Number of poles = 6

0.8

0.6

0.4

0.2 B 0.2+ —— L d
— Gauss-Legendre egendre
0 — Gauss-Cheb. 1 ——Cheb-1
- - -Gauss—-Cheb. 2 of teo-oo-] R 5
Mid—pt | —— Mld—pt

T

0.2 | | T | | L L L L
-2 -15 -1 -0.5 0 0.5 1 15 2 0 0.2 0.4 0.6 0.8 1

» Notice how the sharper curves have poles close to real axis
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The Gauss viewpoint: Least-squares rational filters

» Given: poles 01,02, , 0p

» Related basis functions ¢;(z) =

Z—O'j

d(z) = le ajqu(z) that minimizes

JZoo w(t)|h(t) — o(t)|*dt

» h(t) = step function x_1,1)-

> w(t)= weight function. (0 if
For example a = 10, w(t) =< B if
B =0.1 | 1 else

it| > a
1] <1




How does this work?

» A small example : Laplacean ona 43 X 53 grid. (n = 2279)

» Take 4 poles obtained from mid-point rule(/N. = 2 on each
1/2 plane)

» Want: eigenvalues inside [0, 0.2]. There are nev = 31 of
them.

» Use 1) standard subspace iteration + Cauchy (FEAST) then
2) subspace iteration + LS Rat. Appox.

» Use subspace of dm nev + 6
> 3 =0.2




3.5 T T T 100 T T E|
- - -Cauchy fun. -+ -Cauchy fun.|]
sl —LSrat.-fun. || [ —e— LS rat. fun. ||
25} 1 107k
2 PEIERN 1 10°k
\
15 ) \ 1 1oL
! ~
1 10°F .
RS
p
\ 6 ~
0.5+ ,l N 4 107k ‘\,_\
’ *
- ~ - 7
~05 I I I I I I I I I 108 L L
-5 -4 -3 -2 -1 0 1 2 3 4 5 0 5 10 15

» LS Uses the same poles + same factorizations as Cauchy
but

» ... much faster as expected from a look at the curves of the
functions




» QOther advantages:

e Can select poles far away from real axis — faster iterative
solvers [E. Di Napoli et al.]

e \Very flexible — can be adapted to many situations
e (Can use multiple poles (!)
» Implemented in EVSL.. [Interfaced to UMFPACK as a solver]




Better rational filters: Example

» Take same example as before 43 X 53 Laplacean

» Now take 6 poles [3 X 2 midpoint rule]
» Repeat each pole [double poles.]
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Yousef Saad -- SOFTWARE

SOFTWARE

NV
EVSL Eﬁw\é a library of (sequential) eigensolvers based on spectrum slicing. Version 1.0
released on [09/11/2016]
EVSL provides routines for computing eigenvalues located in a given interval, and their
associated eigenvectors, of real symmetric matrices. It also provides tools for spectrum
slicing, i.e., the technique of subdividing a given interval into p smaller subintervals and
computing the eigenvalues in each subinterval independently. EVSL implements a
polynomial filtered Lanczos algorithm (thick restart, no restart) a rational filtered Lanczos
algorithm (thick restart, no restart), and a polynomial filtered subspace iteration.

ITSOL a library of (sequential) iterative solvers. Version 2 released. [11/16/2010]

ITSOL can be viewed as an extension of the ITSOL module in the SPARSKIT package. It
is written in C and aims at providing additional preconditioners for solving general sparse
linear systems of equations. Preconditioners so far in this package include (1) ILUK (ILU
preconditioner with level of fill) (2) ILUT (ILU preconditioner with threshold) (3) ILUC
(Crout version of ILUT) (4) VBILUK (variable block preconditioner with level of fill - with
automatic block detection) (5) VBILUT (variable block preconditioner with threshold -
with automatic block detection) (6) ARMS (Algebraic Recursive Multilevel Solvers --
includes actually several methods - In particular the standard ARMS and the ddPQ version
which uses nonsymmetric permutations).

ZITSOL a complex version of some of the methods in ITSOL is also available.

http://www-users.cs.umn.edu/~saad/software/
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Conclusion

>

Polynomial Filtering appealing when # of eigenpairs to be

computed is large and Matvecs are cheap
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\/

55

May not work well for generalized eigenvalue problems
Will not work well for spectra with large outliers.
Alternative: Rational filtering

Both approaches implemented in EVSL

Current work: test this on the earth normal modes problem.

EVSL code available here:
WWW.Ccs.umn.edu/~saad/software/EVSL

Fully parallel version (MPI) in the works
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