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Introduction: a few factoids

ä Data is growing exponentially at an “alarming” rate:

• 90% of data in world today was created in last two years

• Every day, 2.3 Million terabytes (2.3×1018 bytes) created

ä “Big data” term coined to reflect this trend

ä Mixed blessing: Opportunities & big challenges.

ä Trend is re-shaping & energizing many research areas ...

ä ... including my own: numerical linear algebra
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Introduction: What is data mining?

Set of methods and tools to extract meaningful information
or patterns from data. Broad area : data analysis, machine
learning, pattern recognition, information retrieval, ...

ä Tools used: linear algebra; Statistics; Graph theory; Approx-
imation theory; Optimization; ...

ä This talk: brief introduction – with emphasis on linear alge-
bra viewpoint

ä + our initial work on materials.

ä Big emphasis on “Dimension reduction methods”
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Picture modified from http://www.123rf.com/photo_7238007_man-drowning-reaching-out-for-help.html
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Major tool of Data Mining: Dimension reduction

ä Goal is not as much to reduce size (& cost) but to:

• Reduce noise and redundancy in data before performing a
task [e.g., classification as in digit/face recognition]

• Discover ‘important features’ or ‘patterns’

ä Map data to: Preserve proximity? Maximize variance?
Preserve a certain graph?

ä Other term used: feature extraction [general term for low
dimensional representations of data]
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The problem of Dimension Reduction

ä Given d � m find a
mapping Φ:

Φ : x ∈ Rm −→ y ∈ Rd

Practically: Given: X = [x1, · · · , xn] ∈ Rm×n, find a

low-dimens. representation Y = [y1, · · · , yn] ∈ Rd×n of X

m

n

X

Y

x

y

i

id

n

Φ may be linear,
or nonlinear (im-
plicit). Linear case
(W ∈ Rm×d):

Y = W>X
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Example: Principal Component Analysis (PCA)

In Principal Component Analysis W is computed to maxi-
mize variance of projected data:

max
W ∈ Rm×d

W>W = I

d∑
i=1

∥∥∥∥∥∥yi −
1

n

n∑
j=1

yj

∥∥∥∥∥∥
2

2

, yi = W>xi.

ä Leads to maximizing

Tr
[
W>(X − µe>)(X − µe>)>W

]
, µ = 1

n
Σn

i=1xi
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ä Solution W = { dominant eigenvectors } of the covariance
matrix == Set of left singular vectors of X̄ = X − µe>

SVD:

X̄ = UΣV >, U>U = I, V >V = I, Σ = Diag

ä Optimal W = Ud ≡ matrix of first d columns of U

ä Solution W also minimizes ‘reconstruction error’ ..

∑
i

‖xi −WW Txi‖2 =
∑

i

‖xi −Wyi‖2

ä In some methods recentering to zero is not done, i.e., X̄
replaced by X.
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Example : Digit images (a random sample of 30)
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2-D ’reductions’:
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Unsupervised learning

“Unsupervised learning” : meth-
ods that do not exploit known labels
ä Example of digits: perform a 2-
D projection
ä Images of same digit tend to
cluster (more or less)
ä Such 2-D representations are
popular for visualization
ä Can also try to find natural
clusters in data, e.g., in materials
ä Basic clusterning technique: K-
means
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Example: Sparse Matrices viewpoint (J. Chen & YS ’09)

ä Communities modeled by an ‘affinity’ graph [e.g., ’user A
sends frequent e-mails to user B’]
ä Adjacency Graph represented by a sparse matrix

← Original
matrix
Goal: Find

ordering so
blocks are
as dense as
possible→

ä Use ‘blocking’ techniques for sparse matrices
ä Advantage of this viewpoint: need not know # of clusters.
[data: www-personal.umich.edu/˜mejn/netdata/]
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Supervised learning: classification

ä Best illustration: written digits recognition example

Given: a set of
labeled samples
(training set), and
an (unlabeled) test
image.
Problem: find

label of test image
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ä Roughly speaking: we seek dimension reduction so that
recognition is ‘more effective’ in low-dim. space
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K-nearest neighbors (KNN) classification

ä Idea of a voting system: get
distances between test sample
and training samples

ä Get the k nearest neighbors
(here k = 8)

ä Predominant class among
these k items is assigned to the
test sample (“∗” here)
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Fisher’s Linear Discriminant Analysis (LDA)

Goal: Use label information to define a good projector, i.e.,
one that can ‘discriminate’ well between given classes

ä Define “between scatter”: a measure of how well separated
two distinct classes are.

ä Define “within scatter”: a measure of how well clustered
items of the same class are.

ä Objective: make “between scatter” measure large and “within
scatter” small.

Idea: Find projector that maximizes the ratio of the “between
scatter” measure over “within scatter” measure
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Define:

SB =
c∑

k=1

nk(µ
(k) − µ)(µ(k) − µ)T ,

SW =
c∑

k=1

∑
xi ∈Xk

(xi − µ(k))(xi − µ(k))T

Where:

• µ = mean (X)
• µ(k) = mean (Xk)
• Xk = k-th class
• nk = |Xk|

H

GLOBAL CENTROID 

CLUSTER CENTROIDS

H

X
3

1
X

µ

X
2
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ä Consider 2nd
moments for a vec-
tor a:

aTSBa =
c∑

i=1

nk |aT(µ(k) − µ)|2,

aTSWa =
c∑

k=1

∑
xi ∈ Xk

|aT(xi − µ(k))|2

ä aTSBa ≡ weighted variance of projected µj’s

ä aTSWa ≡ w. sum of variances of projected classes Xj’s

ä LDA projects the data so as to maxi-
mize the ratio of these two numbers:

max
a

aTSBa

aTSWa

ä Optimal a = eigenvector associated with the largest eigen-
value of: SBui = λiSWui .
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LDA – Extension to arbitrary dimensions

ä Criterion: maximize the ratio
of two traces:

Tr [UTSBU ]

Tr [UTSWU ]

ä Constraint: UTU = I (orthogonal projector).

ä Reduced dimension data: Y = UTX.

Common viewpoint: hard to maximize, therefore ...

ä ... alternative: Solve instead
the (‘easier’) problem:

max
UTSWU=I

Tr [UTSBU ]

ä Solution: largest eigenvectors of SBui = λiSWui .
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LDA – Extension to arbitrary dimensions (cont.)

ä Consider the original
problem:

max
U ∈ Rn×p, UTU=I

Tr [UTAU ]

Tr [UTBU ]

Let A, B be symmetric & assume that B is semi-positive
definite with rank(B) > n− p. Then Tr [UTAU ]/Tr [UTBU ]
has a finite maximum value ρ∗. The maximum is reached for a
certain U∗ that is unique up to unitary transforms of columns.

ä Consider
the function:

f(ρ) = max
V TV =I

Tr [V T(A− ρB)V ]

ä Call V (ρ) the maximizer.

ä Note: V (ρ) = Set of eigenvectors - not unique
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ä Define G(ρ) ≡ A− ρB and its n eigenvalues:

µ1(ρ) ≥ µ2(ρ) ≥ · · · ≥ µn(ρ) .

ä Clearly:

f(ρ) = µ1(ρ) + µ2(ρ) + · · ·+ µp(ρ) .

ä Can express this differently. Define eigenprojector:

P (ρ) = V (ρ)V (ρ)T

ä Then:
f(ρ) = Tr [V (ρ)TG(ρ)V (ρ)]

= Tr [G(ρ)V (ρ)V (ρ)T ]

= Tr [G(ρ)P (ρ)].
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ä Recall [e.g.
Kato ’65] that:

P (ρ) =
−1

2πi

∫
Γ

(G(ρ)− zI)−1 dz

Γ is a smooth curve containing the p eivenvalues of interest

ä Hence: f(ρ) =
−1

2πi
Tr

∫
Γ

G(ρ)(G(ρ)− zI)−1 dz = ...

=
−1

2πi
Tr

∫
Γ

z(G(ρ)− zI)−1 dz

ä With this, can prove :

1. f is a non-increasing function of ρ;
2. f(ρ) = 0 iff ρ = ρ∗;
3. f ′(ρ) = −Tr [V (ρ)TBV (ρ)]
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Can now use Newton’s method.

ρnew = ρ−
Tr [V (ρ)T(A− ρB)V (ρ)]

−Tr [V (ρ)TBV (ρ)]
=

Tr [V (ρ)TAV (ρ)]

Tr [V (ρ)TBV (ρ)]

ä Newton’s method to find the zero of f ≡ a fixed point

iteration with g(ρ) =
Tr [V T(ρ)AV (ρ)]

Tr [V T(ρ)BV (ρ)]
,

ä Idea: Compute V (ρ) by a Lanczos-type procedure

ä Note: Standard problem - [not generalized]→ inexpensive!

ä See T. Ngo, M. Bellalij, and Y.S. 2010 for details
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ä Recent papers advocated similar or related techniques

[1] C. Shen, H. Li, and M. J. Brooks, A convex programming
approach to the trace quotient problem. In ACCV (2) – 2007.

[2] H. Wang, S.C. Yan, D.Xu, X.O. Tang, and T. Huang. Trace
ratio vs. ratio trace for dimensionality reduction. In IEEE
Conference on Computer Vision and Pattern Recognition, 2007

[3] S. Yan and X. O. Tang, “Trace ratio revisited” Proceedings of
the European Conference on Computer Vision, 2006.

...
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Graph-based methods

ä Start with a graph of data. e.g.: graph
of k nearest neighbors (k-NN graph)
Want: Perform a projection which pre-

serves the graph in some sense

ä Define a graph Laplacean:

L = D −W

x

x
j

i

y
i

y
j

e.g.,: wij =

{
1 if j ∈ Ni

0 else D = diag

dii =
∑
j 6=i

wij


with Ni = neighborhood of i (excluding i)
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Example: The Laplacean eigenmaps approach

Laplacean Eigenmaps [Belkin-Niyogi ’01] *minimizes*

F(Y ) =
n∑

i,j=1

wij‖yi − yj‖2 subject to Y DY > = I

Motivation: if ‖xi − xj‖ is small
(orig. data), we want ‖yi − yj‖ to be
also small (low-Dim. data)
ä Original data used indirectly
through its graph
ä Leads to n× n sparse eigenvalue
problem [In ‘sample’ space]

x

x
j

i

y
i

y
j
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Locally Linear Embedding (Roweis-Saul-00)

ä Very similar to Eigenmaps.

ä Graph Laplacean matrix is replaced by an ‘affinity’ graph

Graph: Each xi written as a convex
combination of its k nearest neighbors:
xi ≈ Σwijxj,

∑
j∈Ni

wij = 1
ä Optimal weights computed
(’local calculation’) by minimizing
‖xi − Σwijxj‖ for i = 1, · · · , n

x

x
j

i

ä Mapped data (Y ) computed by minimizing∑
‖yi − Σwijyj‖2
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ONPP (Kokiopoulou and YS ’05)

ä Orthogonal Neighborhood Preserving Projections

ä A linear (orthogonoal) version of LLE obtained by writing Y
in the form Y = V >X

ä Same graph as LLE. Objective: preserve the affinity graph
(as in LEE) *but* with the constraint Y = V >X

ä Problem solved to obtain mapping:

min
V

Tr
[
V >X(I −W>)(I −W )X>V

]
s.t. V TV = I

ä In LLE replace V >X by Y
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Face Recognition – background

Problem: We are given a database of images: [arrays of pixel
values]. And a test (new) image.

↖ ↑ ↗

Question: Does this new image correspond to one of those
in the database?
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Example: Eigenfaces [Turk-Pentland, ’91]

ä Idea identical with the one we saw for digits:

– Consider each picture as a (1-D) column of all pixels
– Put together into an array A of size # pixels×# images.

. . . =:
. . .

︸ ︷︷ ︸
A

– Do an SVD of A and perform comparison with any test image
in low-dim. space

– Similar to LSI in spirit – but data is not sparse.
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Graph-based methods in a supervised setting

Graph-based methods can be adapted to supervised mode.
Idea: Build G so that nodes in the same class are neighbors.
If c = # classes, G consists of c cliques.

ä Weight matrix W =block-diagonal
ä Note: rank(W ) = n− c.
ä As before, graph Laplacean:

Lc = D −W

W =


W1

W2
. . .

Wc


ä Can be used for ONPP and other graph based methods

ä Improvement: add repulsion Laplacean [Kokiopoulou, YS
09]
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Class 1 Class 2

Class 3

Leads to eigenvalue problem
with matrix:

Lc − ρLR

• Lc = class-Laplacean,
• LR = repulsion Laplacean,
• ρ = parameter

Test: ORL 40 subjects, 10 sample images each – example:

# of pixels : 112× 92; TOT. # images : 400
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ä Remarkable: there are values of ρ which give better results
than using the optimum ρ obtained from maximizing trace ratio
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Data mining for materials: Materials Informatics

*Collabor.: J. Chelikowsky (UT Austin), & Da Gao (U. of M)

ä Huge potential in exploiting two trends:

1 Improvements in efficiency and capabilities in computa-
tional methods for materials

2 Recent progress in data mining techniques

ä Current practice: “One student, one alloy, one PhD” [see
special MRS issue on materials informatics]→ Slow ..

ä Data Mining: can help speed-up process, e.g., by exploring
in smarter ways

Issue 1: Who will do the work? Few researchers are familiar
with both worlds
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Issue 2: databases, and more generally sharing, not too com-
mon in materials

The inherently fragmented and multidisciplinary nature of
the materials community poses barriers to establishing
the required networks for sharing results and information.
One of the largest challenges will be encouraging scien-
tists to think of themselves not as individual researchers
but as part of a powerful network collectively analyzing
and using data generated by the larger community.
These barriers must be overcome.

NSTC report to the White House, June 2011.

ä Materials genome initiative [NSF]
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Unsupervised learning

ä 1970s: Data Mining “by
hand”: Find coordinates
that will cluster materials
according to structure
ä 2-D projection from
physical knowledge
ä ‘Anomaly Detection’:
helped find that compound
Cu F does not exist

see: J. R. Chelikowsky, J. C. Phillips, Phys Rev. B 19 (1978).
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Question: Can modern data mining achieve a similar dia-
grammatic separation of structures?

ä Should use only information from the two constituent atoms

ä Experiment: 67 binary ‘octets’.

ä Use PCA – exploit only data from 2 constituent atoms:

1. Number of valence electrons;

2. Ionization energies of the s-states of the ion core;

3. Ionization energies of the p-states of the ion core;

4. Radii for the s-states as determined from model potentials;

5. Radii for the p-states as determined from model potentials.
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ä Result:
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Supervised learning: classification

ä Problem: classify an unknown binary compound into its
crystal structure class
ä 55 compounds, 6 crystal structure classes
ä “leave-one-out” experiment

Case 1: Use features 1:5 for atom A and 2:5 for atom B. No
scaling is applied.

Case 2: Features 2:5 from each atom + scale features 2 to 4
by square root of # valence electrons (feature 1)

Case 3: Features 1:5 for atom A and 2:5 for atom B. Scale
features 2 and 3 by square root of # valence electrons.
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Three methods tested

1. PCA classification. Project and do identification in space of
reduced dimension (Euclidean distance in low-dim space).

2. KNN K-nearest neighbor classification –

3. Orthogonal Neighborhood Preserving Projection (ONPP) - a
graph based method - [see Kokiopoulou, YS, 2005]

Recognition rates for 3
different methods using
different features

Case KNN ONPP PCA
Case 1 0.909 0.945 0.945
Case 2 0.945 0.945 1.000
Case 3 0.945 0.945 0.982
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A few experiments with a larger database

ä 529 AxBy compounds - Extract ‘valid’ entries

ä Source: Semiconductors, Data Handbook Otfried Madelung,
Springer; 3rd edition (January 22, 2004)

ä Band-gap information available -

ä Experiments : [unsupervised learning]

• 2-D projection using SPDF blocks

• 2-D projection showing Insulator - Semi-conductor property
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Results for SDP 2-D visualization
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sity; ionic rad.; chemical scale; + band-gap.
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Results for 2-D Semiconductor/Insulator visualization

ä Had to consider AB only compounds [119 of them]
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Conclusion

ä Many, interesting new matrix problems in areas that involve
the effective mining of data

ä Among the most pressing issues is that of reducing compu-
tational cost - [SVD, SDP, ... too costly]

ä Many online resources available in computer science/ ap-
plied math...

ä .. but there is an inertia to overcome. In particular ...

ä ... data-sharing is not as widespread in materials science

ä Plus side: Materials informatics will likely be energized by
the materials genome project.
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When one door closes, another opens; but we often look so
long and so regretfully upon the closed door that we do not
see the one which has opened for us.

Alexander Graham Bell (1847-1922)

Thank you !

ä Visit my web-site at www.cs.umn.edu/˜saad
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