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Background. Origins of Eigenvalue Problems

Structural Engineering [Ku = AMu] (Goal: fre-
guency response)

®m Electronic structure calculations [Schrodinger equa-
tion..]

m Stability analysis [e.g., electrical networks, mechanical
system,..]

m Bifurcation analysis [e.g., in fluid flow]

» Large eigenvalue problems in quantum chemistry use up
biggest portion of the time in supercomputer centers
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Background. New applications in data analytics

» Machine learning problems often require a (partial) Singular
Value Decomposition -

» Somewhat different issues in this case:
= \ery large matrices, update the SVD

= Compute dominant singular values/vectors

= Many problems of approximating a matrix (or a tensor)
by one of lower rank (Dimension reduction, ...)

» But: Methods for computing SVD often based on those for
standard eigenvalue problems
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Background. The Problem (s)

» Standard eigenvalue problem:

Ax = \x

Often: A is symmetric real (or Hermitian complex)

» (Generalized problem Az = ABx Often: B is sym-
metric positive definite, A is symmetric or nonsymmetric

» Quadratic problems: (A + AB + A?°C)u = 0

> Nonlinear n
eigenvalue problems| | A, 4+ AB, + Z fiMNA; | u=0
(NEVP) i=1
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» General form of NEVP ~A(A)xz = 0

» Nonlinear eigenvector problems:

[A 4+ AB + F(ui,ug,+++ ,ug)]u =0

What to compute: |

= Afew \; 's with smallest or largest real parts;
= All \;’s in a certain region of C;

= A few of the dominant eigenvalues;

m All \;’s (rare).
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Large eigenvalue problems in applications

» Some applications require the computation of a large
number of eigenvalues and vectors of very large matrices.

» Density Functional Theory in electronic structure calcula-
tions: ‘ground states’

» Excited states involve transitions and invariably lead to much
more complex computations. — Large matrices, "many” eigen-
pairs to compute
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Computing earth normal modes (J. Shi & M. V. De Hoop)
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e FEM model leads to a generalized eigenvalue problem
e Compute (a large number of) eigenvalues in an interval

e More on this later
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Background: The main tools

Projection process:

(a) Build a ‘good’ subspace K = span(V);

(b) get approximate eigenpairs by a Rayleigh-Ritz process:

A u € K osatisfy: (A —Al)u L K —
VH(A—-A)Vy =0

~

» A\ = Ritz value, u = Vy = Ritz vector

» Two common choices for K:
1) Power subspace K = span{A*X}; or span{ P, (A)X,};
2) Krylov subspace K = span{v, Av,--- , A* 1y}
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Background. The main tools (cont)

Shift-and-invert:

» |f we want eigenvalues near o, replace A by (A — o)~ L.

Example: | power method: v; = Aw,_;/scaling replaced by

Vi — (A—O'I)_I’Uj_l
J scaling

» Works well for computing a few eigenvalues near o/
» Used in commercial package NASTRAN (for decades!)

» Requires factoring (A — o) (or (A — o B) in generalized
case.) But convergence will be much faster.

» A solve each time - Factorization done once (ideally).
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Background. The main tools (cont)

Deflation:

» Once eigenvectors converge remove them from the picture

Restarting Strategies

» Restart projection process by using information gathered in
previous steps

» ALL available methods use some combination of these in-
gredients.

[e.g. ARPACK: Arnoldi/Lanczos + ‘implicit restarts’ + shift-and-
invert (option).]
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Solving large eigenvalue problems: Current state-of-the art

» Eigenvalues at one end of the spectrum:
® Subspace iteration + filtering [e.g. FEAST, Cheb,...]

®m | anczos+variants (no restart, thick restart, implicit
restart, Davidson,..), e.g., ARPACK code, PRIMME.

= Block Algorithms [Block Lanczos, TraceMin,
LOBPCG, SlepSc,...]

= + Many others - more or less related to above

» ‘Interior’ eigenvalue problems (middle of spectrum):

B Combine shift-and-invert + Lanczos/block Lanczos.
Used in, e.g., NASTRAN

m Rational filtering [FEAST, Sakurai et al.,.. ]
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Solving large interior eigenvalue problems

1. Shift-invert: A — (A —oI)™!
2. Polynomial filtering: A — p(A)
3. Rationalfiltering: A — > a;(A—o;I)™!

Issues with shift-and invert | (and related approaches)

» Direct methods for the solves may be too expensive

Three broad
approaches:

e Why not use iterative methods?
» lterative techniques often fail —

e Reason: Highly indefinite problems.
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Filtering and “Spectrum Slicing”

» (Context: very large number of eigenvalues to be computed

» (Goal: compute spectrum by slices by applying filtering

Pol. of degree 32 approx 8(.5) in [-1 1]

» Apply Lanczos or Sub-

space iteration to problem:
0.3—¢(ki)_ __________
¢(A)u = pu =
¢(t) = a polynomial or .| .
rational function that en- e i —

hances wanted eigenvalues
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Compute slices separately

i

|

)

For each slice Do:

EndDo

[get *all* eigenpairs in a slice]

Y

Goal: Compute each slice independently from the others.
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Rationale. Eigenvectors associated with different slices need
not be orthogonalized against each other :
)

i i

» (Can get the spectrum by ‘slices’ or 'windows’ [e.g., a few
hundreds or thousands of pairs at a time]

» Note: Orthogonalization + RR cost can be very high if we
do not slice the spectrum
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Illustration: All eigenvalues in [0, 1] of a 49° Laplacean

Computing all 1,971 e.v.—s. in [0, 1]
600 T T T T

|
I \iatvec
[__]Orth
I Total
500 -
400 -
(O] - _
E 300
=
200+ ]
100
0 10 1 |1 .__ .__
1 2 3 4 5 6

Number of slices

1 This is a small pb. in a scalar environment. Effect

Note: likely much more pronounced in a fully parallel case.
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Polynomial filtering

» Apply Lanczos or Sub- 5 _ o(A) where ¢(t) is
space iteration to: a polynomial

» Each matvec y = Avisreplacedby y = ¢p(A)v
» Eigenvalues in high part of filter will be computed first

» Old (forgotten) idea. But new context is *very* favorable
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What polynomials?

» For end-intervals: use standard
Chebyshev polynomials (1st kind)

» For ‘interior case’ we need a
polynomial that has large values
for A € |a, bl small values
elsewhere

Deg. 6 Cheb. polynom., damped interv=[0.2, 2]

Pol. of degree 32 approxd(.5) in [-1 1]
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Simplest technique: d-Dirac function

) Obtaln the LS apprOXI_ Pol. of degree 32 approx§(.5) in [-1 1]

mation to the 6 — Dirac func- |
tion — Centered at some o
point (TBD) inside the inter- [T :
val. — s.. :
. Three filters using diferent smoothing N \
e R
——Lanczos o ooy o o5 o5 o7 o5 o
06l A
& o | <— Can use same damp-
T ing: Jackson, Lanczos o
T damping, or none.
A
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The Chebyshev expansion of 9, is

N | =

3=0

Px(t) = Z“jTj(t) with p; = {cos(j cos ' (vy)) 7 >0

3=0

» Recall: The delta Dirac function is not a function — we can't
properly approximate it in least-squares sense. However:

Proposition Let pg(t) be the polynomial that minimizes
|7 (£)|l., over all polynomials = of degree < k, such that
r(v) = 1, where ||.||., represents the Chebyshev L2-norm.

Then pi(t) = pr(t)/pPr(Y)-
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‘The soul of a new filter’ — A few technical details

Pm(t) = X707 T (t)

Hr =

{1/2 if kb ==

cos(k cos™1(«)) otherwise
'yj(-m) — Damping coefficients.

» quite simple...

» .. provided we handle a few practical issues
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Issue # one: | ‘balance the filter’

» To facilitate the selection of ‘wanted’ eigenvalues [Select A’s
such that ¢(\) > bar] we need to ...

» ... find ~ so that ¢(&) == ¢(n)

SRR

Procedure: Solve the equation ¢ (&) — ¢-(n) = 0 with re-
spect to ~, accurately. Use Newton or eigenvalue formulation.
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Issue # two: | Determine degree & polynomial (automatically)

Jackson Chebyshev on [-1, -0.95]; deg. =3:2: 15 1 Jackson Chebyshev on [0.3, 0.6]; deg. =5:5:25
l‘ 1
0.9 1§ - 0.9
‘ U
0.8 ‘\ B 0.8
0 0.7
_ osf : 4 o
< <
~ 05 1 — ~ 05
X '
< Q 0.4
0.3
0.2 B 0.2
]
01t ! N 01k
[ ]
0 ‘ — 0
9 -0.85 -0.8 -0.75 -0.7 -0.65 0.6 0.55 0.5
A

» 1) Start low (e.g. 2); 2) Increase degree until value (s) at the
boundary (ies) become small enough —

» (Can also use criterion based on derivatives at £ & 7y
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7; Sigma damping
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Degree = 23; Sigma damping

0.75 0.8 0.85 0.9 0.95

A zoom on the final polynomial found
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Issue # Three : | Gibbs oscillations

» Discontinuous ‘function’ approximated — Gibbs oscillations

Three filters using different smoothing
-- -No démpiné | | | | |
.l ——Jackson
“||——Lanczos ¢
» Three options:
e No damping =
e Jackson damping o2

e Lanczos o damping

\ 1
-0.2

-0.4
-1

» (Good compromise: Lanczos o damping
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Backround: The Lanczos Algorithm

» Algorithm builds orthonormal basis V,,, = [v1, v, ¢+ , V)]
for the Krylov subspace: = span{wv;, Avy,--- , A™ 'v;}

(Oﬂ1 B2 \

B2 aa B3
» ... such that: B3 ag B4

VHAV,, = T,, - with Tm =

\ B )

»  Note: three
term recurrence:

Bj+1vj41 = Avj — av; — B4

» Eigenvalues of A on both ends of spectrum are well approx-
imated by eigenvalues of T;,, (Ritz values).
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Which Projection: Lanczos,w/o restarts, Subspace iteration,..

Options:

» Subspace iteration: quite appealing in some applications
(e.g., electronic structure): | Can re-use previous subspace.

» Simplest: (+ most efficient) Lanczos without restarts

» Lanczos with Thick-Restarting [TR Lanczos, Stathopoulos
et al ‘98, Wu & Simon’00]

» Crucial tool in TR Lanczos: deflation ('Locking’)

Main idea: Keep extracting eigenvalues in interval [€, 1] un-
til none are lefft.

» |f filter is good: Can catch all eigenvalues in interval

ACM 02/08/2019 p. 30



Polynomial filtered Lanczos: No-Restart version

Degree = 23; Sigma damping

» Use Lanczos with full reortho-
gonalization on p(A). Eigenval-
ues of p(A): p(\;)

» Acceptif p(\;) > bar
» Ignore if p(N\;) < bar

08 1.0
| p(A)
+—0—0—0 ® ® *—o—@ | H—O—O—0+ P

Unwanted eigenvalues Wanted
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How do I slice a spectrum?

» Tools: Density of States (used in EVSL) or eigenvalue counts
(used in FEAST)

e L.Lin, YS, Chao Yang [Siam review '16] — E. Di Napoli, E.
Polizzi, YS ['16]

e KPM method — see, e.q., : [Weisse, Wellein, Alvermann,
Fehske, '06]

e | Interesting instance of a tool from physics used in linear
algebra.

» Misconception: ‘load balancing will be assured by just hav-
ing slices with roughly equal numbers of eigenvalues’

» In fact - will help mainly in balancing memory usage..
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Slice spectrum into 8 with the DOS

0.025

0.02 -

0.015

0.01F

0.005 -

—-0.005

/a | b(b)dt

1
Nslices

T (t)dt

t:

)

» We must have:

33
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Why use rational filters?

» (Consider a spectrum like this one:

» Polynomial filtering utterly ineffective for this case

» Second issue: situation when Matrix-vector products are
expensive

» Generalized eigenvalue problems.
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» Alternative is to H(z) =
use rational filters:

Jz 0']

P(A) = aj(A—o; )7 We now need to solve
linear systems

» Tool: Cauchy integral representations of spectral projectors

/\ | PEmi(A-sDTds
_/

e Numer. integr. P — 1—3
e Use Krylovor S.l.on P

»  Sakurai-Sugiura approach [Krylov]
» Polizzi [FEAST, Subsp. lter. ]
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What makes a good filter

25
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real(c) =[ 0.0]; imag(oc) =[ 1.1]; pow =3
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» Assume subspace iteration is used with above filters. Which
filter will give better convergence?

» Simplest and best indicator of performance of a filter is the
magnitude of its derivative at -1 (or 1)
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The Gauss viewpoint: Least-squares rational filters

» Given: poles 01,02, , 0p

» Related basis functions ' ¢;(z) =

1

Z—O'j

d(z) = Z?Zl aj¢;(z) that minimizes

JZoo w(t)|h(t) — o(t)|*dt

» h(t) = step function x(_1,1]-

» w(t)= weight function.
For example a = 10,
B = 0.2

w(t)

L 1 else

(0 if  |t| > a
Bit |t <1

ACM 02/08/2019
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How does this work?

» Small example : Laplacean on a 43 X 53 grid. (n = 2279)

» 4 poles obtained from mid-point rule
» Want: all (nev = 31) eigenvalues in [0, 0.2]

» Use 1) standard subspace iteration + Cauchy (FEAST) then
2) subspace iteration + LS Rat. Appox.
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- - -Cauchy fun.
—LSrat. fun. ||

—————

_____

-+ -Cauchy fun.
—e—LS rat. fun.

1 1 1
-5 -4 -3 -2

» LS Uses the same poles + same factorizations as Cauchy

b

ut

» ... much faster as expected from a look at the curves of the
functions
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» QOther advantages:

e Can select poles far away from real axis — faster iterative
solvers

e \ery flexible — can be adapted to many situations
e (Can repeat poles (!)
» Implemented in EVSL.. [Interfaced to UMFPACK as a solver]
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Spectrum Slicing and the EVSL project

» EVSL package now at version 1.1.x

» Uses polynomial and rational filtering: Each can be appeal-
Ing in different situations.

Spectrum slicing: Invokes Kernel Polynomial Method or Lanc-

Z0S quadrature to cut the overall interval containing the spec-
trum into small sub-intervals.
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Levels of parallelism |

Slice 1

JL

Macro-task 1

Domain 1

Slice 2

JL

Domain 2

Slice 3

JU

Domain 3

Domain 4

The two main levels of parallelism in EVSL
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EVSL Main Contributors (version 1.1.0+) & Support

R AR s £3
e Ruipeng Li e Yuanzhe Xi e Luke Erlandson

LLNL Asst. Prof. Emory  PhD Student, GTech.

» Work supported by NSF (past work: DOE)

» See web-site for details:
http://www—users.cs.umn.edu/~saad/software/EVSL/
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EVSL: current status & plans

Version 1.0 | Released in Sept. 2016

Matrices in CSR format (only)

Standard Hermitian problems (no generalized)
Spectrum slicing with KPM (Kernel Polynomial Meth.)
Trivial parallelism across slices with OpenMP

Methods:
e Non-restart Lanczos — polynomial & rational filters
e Thick-Restart Lanczos — polynomial & rational filters

e Subspace iteration — polynomial & rational filters
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Version 1.1.x |V_1 .1.0 Released back in August 2017.

® general matvec [passed as function pointer]
" Ax = ABx

= Fortran (03) interface.

® Spectrum slicing by Lanczos and KPM

m Efficient Spectrum slicing for Az = ABx (no solves
with B).

Version 1.2.x | PEVSL — In progress

= Fully parallel version [MPI + openMP]
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Spectrum slicing and the EVSL package

e All eigenvalues in [0, 1] of of a 49° discretized Laplacian
e cigs(A,1971,sa’): 14830.66 sec
e Solution: Use DOS to partition [0, 1] into 5 slices

e Polynomial filtering from EVSL on Mesabi MSI, 23 threads/slice

(a;y a;iq] # eigs mact;vPeLcJ: tgrr];.(setg)tal max residual
0.00000,0.37688] 386 @ 1.31 18.26/28.66 2.5x 10~
0.37688,0.57428] 401 | 3.28 38.2556.75 8.7x 10713
0.57428,0.73422] 399 | 4.69 36.47 56.73 1.7 x 10712
0.73422,0.87389] 400 | 597 38.6061.40 6.6x10 12
0.87389,1.00000] 385 @ 6.84 36.1659.45 4.3x 10712

» Grand tot. = 263 s. Time for slicing the spectrum: 1.22 sec.
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Computing the Earth normal modes

surface —>

_;_.—- a0 bR
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At )
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)
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core-mantle boundary l
12
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la
6.80

inner core boundary

e Collaborative effort: Rice-UMN:
J. Shi, R. Li, Y. Xi, YS, and M. V. De Hoop

e FEM model leads to a generalized eigenvalue problem:

ACM 02/08/2019 p. 48



A, Ep [w” M, T [u
0 Ad ’U,f = w2 Mf ’U,f
_Efil:s ACCZ; AP _pe_ _ O_ _pe_

e Want all eigen-values/vectors inside a given interval
e Issue 1: ‘mass’ matrix has a large null space..
e Issue 2: interior eigenvalue problem

e Solution for 1: change formulation of matrix problem [elimi-
nate p® ...]
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» New formulation :

(00) ~ () 40" (27 40) (2) =

A\ 7

A

» Use polynomial filtering — need to solve with M but ...
e ... severe scaling problems if direct solvers are used
Hence:

» Replace action of M ~! by a low-deg. polynomial in M [to
avoid direct solvers]
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» Memory : parallel shift-invert and polynomial filtering

Machine: | Comet, SDSC

Matrix size |# Proc.s
591,303 32
1,157,131 64
2,425,349 128
4,778,004 256
9,037,671 512

2
1.8 -

—

o
EE,LB F

memory consumption
R o ® o~ &

x10*

BWlshift-invert (pleak) |
WMl shift-invert (avg)
"I poly. filtering

64 128 256 512
number of processors

ACM 02/08/2019
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Recent: weak calability test for different solid (Mars-like)
models on TACC Stampede?2

nn/np Mat-size | Av (ms) |+ Eff. | Mv (ms) |« Eff. | M~'v (us) |« Eff.
2/96 1,038,084 | 1760 @ 1.0 495 1.0 | 0.01044 | 1.0

4/192 2,060,190 | 1819 |0.960, 568 |0.865| 0.0119 |0.870
8/384 3,894,783 @ 1741 1 0.948| 571 10.813 0.0119 |0.825
16/768 | 7,954,392 | 1758 |0.959 621 |0.763 0.0129 |0.774
32/1536 | 15,809,076 | 1660 |1.009, 572 [0.824 0.0119 0.834
64/3072 | 31,138,518 1582 [1.043| 566 0.820| 0.0117 | 0.837
128/6144 | 61,381,362 | 1435 1.133| 546 |0.838| 0.0113 |0.851
256/12288|120,336,519| 1359 |1.173| 592 0.757 0.01221 |0.774

ACM 02/08/2019 p.
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Nonlinear eigenvalue problems

» Joint work work with A. Miedlar and M. Elguide

T(z)u=0 2 5 T(z) maps C to C"*"
» (Classical (well-understood) case: Polynomial:
T(z)=Ao+ zA; +---+ 2PA,

» Often treated with linearization, e.g., when p = 2
(Ag + zA; + 2°As)u = 0 — (among other forms)

()= a)] ()

» General case can be very different from linear case.
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Restrict slightly the class of problems we consider:

T(Z) — —BO —|— ZAO —|— fl(Z)Al —|— oo —I— fp(Z)Ap

» Main assumption: each of the analytic functions f; : 2 —
C well approximated by a rational function.

» Write (Cauchy integral representation of f;):

£ (t)
fJ( ) — _2— g
17T
» Then use numerical quadrature with quadrature points o;’s
on contour I' —

z € Q).

m

fi(z) mri(z) = >

1=1

Oéz'j

<z — Oy
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» Consequence: T'(z) approximated by

T(Z) = _BO —+ ZAO —+ ZZ

glzl

B;
—Bg+ 2zA+ Z : where:

Z_O-Z

z —

Bi:ZaijAj, iZl,...,m.

B;
BO_I_ZAO_I_Z u =20

Z—O-z

» ‘Surrogate’ for original problem T'(z)u = 0
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Linearization

v; = % — T(2)u = (—=By + zA¢)u — Y., Byv;,

O,—=z

> T(A)u =0 iff Aw = AMw  here:
I o1 —I
I ool —I
M = - , A= a
. omd —1
Ao B: B ... B, B

» Eigenvalue problem of size n(m + 1)

»  Special form: matrix need not be stored explicitly.
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Approaches

1. Can use a shift-and-invert Arnlodi on whole system [Pb:
memory when m >> 1]

» Block structure exploited.

2. Can use a shift-and-invert Subspace iteration [memory:
similar pb.]

» Advantages: Less memory, ‘one-shot-method’ can be very
efficient (memory)

3. Addrestartto 2 but work only with vectors of length n.



Reduced Subspace Iteration: | (Case when M = 1)

1. While Convergence not yet reached

2 For  =1:v

3 Select w = [v; u] /| See below

4. Do q steps of inverse iteration: w := (A — o) !w
5. If w = [v; u] = lastiterate, setU(:,3) = u

6 EndFor

7. Use U to perform Rayleigh-Ritz procedure

8. EndWhile

Step 2:| (1) Very first outer loop: take random vectors.

(2) Other outer iterations: If (A, u) is an eigenpair
from step 7, define v-part as v; = u/(o; — A) - then:

w = vy v9; + -+ 5 Uy w| (Matlab notation)
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Accuracy of computed eigenvalues

Proposition Let us assume that || f;(z) — rj(2)||le, < €

fory = 1,---,p and let (X, u) be an exact eigenpair of the

surrogate problem with X located inside €2; and ||u|| = 1 for a
p
certain vector norm || - ||. Let e = > ||A,]||. Then,
j=1
[T(Nu|| < pe.

Proposition Let us assume that || fi(z) — rj(2)||a, < € for

j =1,---,pandlet (A, u) be an exact eigenpair for T'(z)

with A Iocated inside Q; and ||u|]| = 1. Then, (A, u) is an
approximate eigenpair of the surrogate problem, i.e.,
[T (M ul| < pe,

where pu is defined above.
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The halo of extraneous eigenvalues

» Observed behavior: many ‘extraneous’ or ‘spurious’ eigen-
values congregate around the contour of integration..

Example: | T(z) = —Bo+AAy+A?A, where [Matlab] (n=4)

BO0=-2*eye (n) tdiag(ones(n-1,1),1)+diag(ones(n-1,1),-1);
AO=eye (n) ;

A2=0.5* (nxeye (n) —eye (n, 1) xones (1,n)-ones (n, 1) xeye (1,n));

» Spectrum inside rectangle with bottom-left and top-right
corners (—1, —1.52), (0, 1.52)

» Use this for integration contour.
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Left: The 8 eigenvalues of original problem (circle); the 4
eigenvalues of the linear part (square); contour and quadrature
points along it.

Right: Eigenvalues computed with m = 20 quadrature points
(plus) along with contour, original eigenvalues (circle), and eigen-
values of linear part (square).
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-4 -35 -3 -2.5 2 -15 -1 -0.5 0 0.5 -4 -3.5 -3 25 -2 -1.5 -1 -0.5 0 0.5

Using a total of m = 32 quadrature points (left) and m = 60
quadrature points (right).

(i) Spectrum of Linear part outside contour APPROXIMATED
(i) Spectrum of Linear part inside contour IGNORED

(i) Spectrum of T'(z) inside contour APPROXIMATED

(iv) Other eigenvalues populate the contour
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Hadeler problem of dimension n = 200:
T(\) = (e* —1)B; + A\’B, — By with:
By = bgl, by = 100
b\y = (n+ 1 — max(j, k))jk,
b\ = ndji + 1/(j + k),

| Eigenvalues e
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o S+~ = | Eigenvalues of Hadeler Pb.
. . | inside a circle of radius
’«’ . | r = 10 and center ¢ =
5@ o 0 06ococsed | S0 obtained by the re-
. s | duced subspace iteration
", S 1 ('+), and by Beyn’s method
. | (O). Quadrature: Gauss-
e o=t | | agendre with 50 points.

| A A |
@ o &~ » Q0 H O @

» Current work: Helmholtz equation (in 3-D):
Au+ k*u=0 <+ B.C.

Using the Boundary Element Method (BEM) produces a nonlin-
ear eigenvalue problem.
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Conclusion

» EVSL code available here: [Current version: version 1.1.1]

www.cs.umn.edu/~saad/software/EVSL

» EVSL Also on github (development)

Plans: (1) Release fully parallel code; (2) Block versions;
(3) lterative solvers for rational filt.; (4) Nonhermitian case;

» Earth modes calculations done with fully parallel code
» Scalability issues with parallel direct solvers ...
» ... Needed: iterative solvers for the highly indefinite case

» Frontier in eigenvalue problem: ' Nonlinear case
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