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Background. Origins of Eigenvalue Problems

Structural Engineering [Ku = λMu] (Goal: fre-
quency response)

Electronic structure calculations [Schrödinger equa-
tion..]

Stability analysis [e.g., electrical networks, mechanical
system,..]

Bifurcation analysis [e.g., in fluid flow]

ä Large eigenvalue problems in quantum chemistry use up
biggest portion of the time in supercomputer centers
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Background. New applications in data analytics

ä Machine learning problems often require a (partial) Singular
Value Decomposition -

ä Somewhat different issues in this case:
Very large matrices, update the SVD

Compute dominant singular values/vectors

Many problems of approximating a matrix (or a tensor)
by one of lower rank (Dimension reduction, ...)

ä But: Methods for computing SVD often based on those for
standard eigenvalue problems
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Background. The Problem (s)

ä Standard eigenvalue problem:

Ax = λx

Often: A is symmetric real (or Hermitian complex)

ä Generalized problem Ax = λBx Often: B is sym-
metric positive definite, A is symmetric or nonsymmetric

ä Quadratic problems: (A+ λB + λ2C)u = 0

ä Nonlinear
eigenvalue problems
(NEVP)

[
A0 + λB0 +

n∑
i=1

fi(λ)Ai

]
u = 0
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ä General form of NEVP A(λ)x = 0

ä Nonlinear eigenvector problems:

[A+ λB + F (u1, u2, · · · , uk)]u = 0

What to compute:

A few λi ’s with smallest or largest real parts;

All λi’s in a certain region of C;

A few of the dominant eigenvalues;

All λi’s (rare).
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Large eigenvalue problems in applications

ä Some applications require the computation of a large
number of eigenvalues and vectors of very large matrices.

ä Density Functional Theory in electronic structure calcula-
tions: ‘ground states’

ä Excited states involve transitions and invariably lead to much
more complex computations.→ Large matrices, *many* eigen-
pairs to compute
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Computing earth normal modes (J. Shi & M. V. De Hoop)

• FEM model leads to a generalized eigenvalue problem

• Compute (a large number of) eigenvalues in an interval

• More on this later
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Background: The main tools

Projection process:

(a) Build a ‘good’ subspace K = span(V );

(b) get approximate eigenpairs by a Rayleigh-Ritz process:
λ̃, ũ ∈ K satisfy: (A− λ̃I)ũ ⊥ K −→

V H(A− λ̃I)V y = 0

ä λ̃ = Ritz value, ũ = V y = Ritz vector

ä Two common choices for K:
1) Power subspaceK = span{AkX0}; or span{Pk(A)X0};
2) Krylov subspace K = span{v,Av, · · · , Ak−1v}
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Background. The main tools (cont)

Shift-and-invert:

ä If we want eigenvalues near σ, replace A by (A− σI)−1.

Example: power method: vj = Avj−1/scaling replaced by

vj =
(A−σI)−1vj−1

scaling

ä Works well for computing a few eigenvalues near σ/

ä Used in commercial package NASTRAN (for decades!)

ä Requires factoring (A− σI) (or (A− σB) in generalized
case.) But convergence will be much faster.

ä A solve each time - Factorization done once (ideally).
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Background. The main tools (cont)

Deflation:

ä Once eigenvectors converge remove them from the picture

Restarting Strategies :

ä Restart projection process by using information gathered in
previous steps

ä ALL available methods use some combination of these in-
gredients.

[e.g. ARPACK: Arnoldi/Lanczos + ‘implicit restarts’ + shift-and-
invert (option).]
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Solving large eigenvalue problems: Current state-of-the art

ä Eigenvalues at one end of the spectrum:

Subspace iteration + filtering [e.g. FEAST, Cheb,...]

Lanczos+variants (no restart, thick restart, implicit
restart, Davidson,..), e.g., ARPACK code, PRIMME.

Block Algorithms [Block Lanczos, TraceMin,
LOBPCG, SlepSc,...]

+ Many others - more or less related to above

ä ‘Interior’ eigenvalue problems (middle of spectrum):

Combine shift-and-invert + Lanczos/block Lanczos.
Used in, e.g., NASTRAN

Rational filtering [FEAST, Sakurai et al.,.. ]
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Solving large interior eigenvalue problems

Three broad
approaches:

1. Shift-invert: A −→ (A− σI)−1

2. Polynomial filtering: A −→ p(A)
3. Rational filtering: A →

∑
αi(A−σiI)−1

Issues with shift-and invert (and related approaches)

ä Direct methods for the solves may be too expensive

• Why not use iterative methods?

ä Iterative techniques often fail –

• Reason: Highly indefinite problems.

ACM 02/08/2019 p. 12



Filtering and “Spectrum Slicing”

ä Context: very large number of eigenvalues to be computed

ä Goal: compute spectrum by slices by applying filtering

ä Apply Lanczos or Sub-
space iteration to problem:

φ(A)u = µu

φ(t) ≡ a polynomial or
rational function that en-
hances wanted eigenvalues
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Compute slices separately

•
For each slice Do:

[get *all* eigenpairs in a slice]
EndDo

Goal: Compute each slice independently from the others.
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Rationale. Eigenvectors associated with different slices need
not be orthogonalized against each other :

ä Can get the spectrum by ‘slices’ or ’windows’ [e.g., a few
hundreds or thousands of pairs at a time]

ä Note: Orthogonalization + RR cost can be very high if we
do not slice the spectrum
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Illustration: All eigenvalues in [0, 1] of a 493 Laplacean
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Note: This is a small pb. in a scalar environment. Effect
likely much more pronounced in a fully parallel case.
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POLYNOMIAL FILTERS



Polynomial filtering

ä Apply Lanczos or Sub-
space iteration to:

M = φ(A) where φ(t) is
a polynomial

ä Each matvec y = Av is replaced by y = φ(A)v

ä Eigenvalues in high part of filter will be computed first

ä Old (forgotten) idea. But new context is *very* favorable
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What polynomials?

ä For end-intervals: use standard
Chebyshev polynomials (1st kind)
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ä For ‘interior case’ we need a
polynomial that has large values
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Simplest technique: δ-Dirac function

ä Obtain the LS approxi-
mation to the δ− Dirac func-
tion – Centered at some
point (TBD) inside the inter-
val. −→
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←− Can use same damp-
ing: Jackson, Lanczos σ
damping, or none.
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Theory

The Chebyshev expansion of δγ is

ρk(t) =
k∑
j=0

µjTj(t) with µj =

{ 1
2

j = 0
cos(j cos−1(γ)) j > 0

ä Recall: The delta Dirac function is not a function – we can’t
properly approximate it in least-squares sense. However:

Proposition Let ρ̂k(t) be the polynomial that minimizes
‖r(t)‖w over all polynomials r of degree ≤ k, such that
r(γ) = 1, where ‖.‖w represents the Chebyshev L2-norm.
Then ρ̂k(t) = ρk(t)/ρk(γ).
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‘The soul of a new filter’ – A few technical details

pm(t) =
∑m
j=0 γ

(m)
j µjTj(t)

µk =

{
1/2 if k == 0
cos(k cos−1(γ)) otherwise

γ
(m)
j = Damping coefficients.

ä quite simple...

ä .. provided we handle a few practical issues
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Issue # one: ‘balance the filter’

ä To facilitate the selection of ‘wanted’ eigenvalues [Select λ’s
such that φ(λ) > bar] we need to ...

ä ... find γ so that φ(ξ) == φ(η)
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Procedure: Solve the equation φγ(ξ) − φγ(η) = 0 with re-
spect to γ, accurately. Use Newton or eigenvalue formulation.
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Issue # two: Determine degree & polynomial (automatically)
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Jackson Chebyshev on [−1, −0.95]; deg. = 3 : 2 : 15
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Jackson Chebyshev on [0.3, 0.6]; deg. = 5 : 5 : 25

ä 1) Start low (e.g. 2); 2) Increase degree until value (s) at the
boundary (ies) become small enough –

ä Can also use criterion based on derivatives at ξ & η

ACM 02/08/2019 p. 24



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Degree = 3; Sigma damping

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Degree = 4; Sigma damping

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Degree = 7; Sigma damping

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Degree = 13; Sigma damping

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Degree = 20; Sigma damping

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Degree = 23; Sigma damping

ACM 02/08/2019 p. 25



0.75 0.8 0.85 0.9 0.95

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Degree = 23; Sigma damping

A zoom on the final polynomial found

ACM 02/08/2019 p. 26



Issue # Three : Gibbs oscillations

ä Discontinuous ‘function’ approximated→ Gibbs oscillations

ä Three options:

• No damping

• Jackson damping

• Lanczos σ damping
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ä Good compromise: Lanczos σ damping
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COMBINING FILTERING WITH A PROJECTION METHOD



Backround: The Lanczos Algorithm

ä Algorithm builds orthonormal basis Vm = [v1, v2, · · · , vm]
for the Krylov subspace: span{v1, Av1, · · · , Am−1v1}

ä ... such that:
V H
m AVm = Tm - with Tm =



α1 β2

β2 α2 β3

β3 α3 β4

. . .
. . .
βm αm


ä Note: three
term recurrence:

βj+1vj+1 = Avj − αjvj − βjvj−1

ä Eigenvalues ofA on both ends of spectrum are well approx-
imated by eigenvalues of Tm (Ritz values).
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Which Projection: Lanczos,w/o restarts, Subspace iteration,..

Options:

ä Subspace iteration: quite appealing in some applications
(e.g., electronic structure): Can re-use previous subspace.

ä Simplest: (+ most efficient) Lanczos without restarts

ä Lanczos with Thick-Restarting [TR Lanczos, Stathopoulos
et al ’98, Wu & Simon’00]

ä Crucial tool in TR Lanczos: deflation (’Locking’)

Main idea: Keep extracting eigenvalues in interval [ξ, η] un-
til none are left.

ä If filter is good: Can catch all eigenvalues in interval
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Polynomial filtered Lanczos: No-Restart version
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How do I slice a spectrum?

ä Tools: Density of States (used in EVSL) or eigenvalue counts
(used in FEAST)

• L. Lin, YS, Chao Yang [Siam review ’16] – E. Di Napoli, E.
Polizzi, YS [’16]

• KPM method – see, e.g., : [Weisse, Wellein, Alvermann,
Fehske, ’06]

• Interesting instance of a tool from physics used in linear
algebra.

ä Misconception: ‘load balancing will be assured by just hav-
ing slices with roughly equal numbers of eigenvalues’

ä In fact - will help mainly in balancing memory usage..
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RATIONAL FILTERS



Why use rational filters?

ä Consider a spectrum like this one:

10
9

ä Polynomial filtering utterly ineffective for this case

ä Second issue: situation when Matrix-vector products are
expensive

ä Generalized eigenvalue problems.
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ä Alternative is to
use rational filters:

φ(z) =
∑
j

αj
z−σj

φ(A) =
∑
j αj(A− σjI)−1 → We now need to solve

linear systems

ä Tool: Cauchy integral representations of spectral projectors

P = −1
2iπ

∫
Γ(A− sI)−1ds

• Numer. integr. P → P̃
• Use Krylov or S.I. on P̃

ä Sakurai-Sugiura approach [Krylov]

ä Polizzi [FEAST, Subsp. Iter. ]
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What makes a good filter
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ä Assume subspace iteration is used with above filters. Which
filter will give better convergence?

ä Simplest and best indicator of performance of a filter is the
magnitude of its derivative at -1 (or 1)
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The Gauss viewpoint: Least-squares rational filters

ä Given: poles σ1, σ2, · · · , σp

ä Related basis functions φj(z) = 1
z−σj

Find φ(z) =
∑p
j=1αjφj(z) that minimizes∫∞
−∞w(t)|h(t)− φ(t)|2dt

ä h(t) = step function χ[−1,1].

ä w(t)= weight function.
For example a = 10,
β = 0.2

w(t) =


0 if |t| > a
β if |t| ≤ 1
1 else
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How does this work?

ä Small example : Laplacean on a 43× 53 grid. (n = 2279)

ä 4 poles obtained from mid-point rule

ä Want: all (nev = 31) eigenvalues in [0, 0.2]

ä Use 1) standard subspace iteration + Cauchy (FEAST) then
2) subspace iteration + LS Rat. Appox.
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ä LS Uses the same poles + same factorizations as Cauchy
but

ä ... much faster as expected from a look at the curves of the
functions
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ä Other advantages:

• Can select poles far away from real axis→ faster iterative
solvers

• Very flexible – can be adapted to many situations

• Can repeat poles (!)

ä Implemented in EVSL.. [Interfaced to UMFPACK as a solver]
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Spectrum Slicing and the EVSL project

ä EVSL package now at version 1.1.x

ä Uses polynomial and rational filtering: Each can be appeal-
ing in different situations.

Spectrum slicing: Invokes Kernel Polynomial Method or Lanc-
zos quadrature to cut the overall interval containing the spec-
trum into small sub-intervals.
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Levels of parallelism
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EVSL Main Contributors (version 1.1.0+) & Support

• Ruipeng Li
LLNL

• Yuanzhe Xi
Asst. Prof. Emory

• Luke Erlandson
PhD Student, GTech.

ä Work supported by NSF (past work: DOE)

ä See web-site for details:
http://www-users.cs.umn.edu/~saad/software/EVSL/
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EVSL: current status & plans

Version _1.0 Released in Sept. 2016

Matrices in CSR format (only)

Standard Hermitian problems (no generalized)

Spectrum slicing with KPM (Kernel Polynomial Meth.)

Trivial parallelism across slices with OpenMP

Methods:
• Non-restart Lanczos – polynomial & rational filters
• Thick-Restart Lanczos – polynomial & rational filters
• Subspace iteration – polynomial & rational filters
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Version _1.1.x V_1.1.0 Released back in August 2017.

general matvec [passed as function pointer]

Ax = λBx

Fortran (03) interface.

Spectrum slicing by Lanczos and KPM

Efficient Spectrum slicing for Ax = λBx (no solves
with B).

Version _1.2.x pEVSL – In progress

Fully parallel version [MPI + openMP]
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Spectrum slicing and the EVSL package

• All eigenvalues in [0, 1] of of a 493 discretized Laplacian

• eigs(A,1971,’sa’): 14830.66 sec

• Solution: Use DOS to partition [0, 1] into 5 slices

• Polynomial filtering from EVSL on Mesabi MSI, 23 threads/slice

[ai, ai+1] # eigs
CPU time (sec)

max residual
matvec orth. total

[0.00000, 0.37688] 386 1.31 18.26 28.66 2.5×10−14

[0.37688, 0.57428] 401 3.28 38.25 56.75 8.7×10−13

[0.57428, 0.73422] 399 4.69 36.47 56.73 1.7×10−12

[0.73422, 0.87389] 400 5.97 38.60 61.40 6.6×10−12

[0.87389, 1.00000] 385 6.84 36.16 59.45 4.3×10−12

ä Grand tot. = 263 s. Time for slicing the spectrum: 1.22 sec.
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Computing the Earth normal modes

• Collaborative effort: Rice-UMN:
J. Shi, R. Li, Y. Xi, YS, and M. V. De Hoop

• FEM model leads to a generalized eigenvalue problem:
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As Efs
0 Ad

ET
fs A

T
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 = ω2

Ms
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0

usuf
pe


• Want all eigen-values/vectors inside a given interval

• Issue 1: ‘mass’ matrix has a large null space..

• Issue 2: interior eigenvalue problem

• Solution for 1: change formulation of matrix problem [elimi-
nate pe ...]
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ä New formulation :

{(
As 0
0 0

)
−
(
Efs
Ad

)
A−1
p

(
ET
fs A

T
d

)}
︸ ︷︷ ︸

Â

(
us

uf

)
=

ω2

(
Ms 0
0 Mf

)
︸ ︷︷ ︸

M̂

(
us

uf

)

ä Use polynomial filtering – need to solve with M̂ but ...

• ... severe scaling problems if direct solvers are used

Hence:

ä Replace action of M−1 by a low-deg. polynomial in M [to
avoid direct solvers]
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ä Memory : parallel shift-invert and polynomial filtering
Machine: Comet, SDSC

Matrix size # Proc.s

591, 303 32
1, 157, 131 64
2, 425, 349 128
4, 778, 004 256
9, 037, 671 512
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Recent: weak calability test for different solid (Mars-like)
models on TACC Stampede2

nn/np Mat-size Av (ms) ← Eff. Mv (ms) ← Eff. M−1v (µs) ← Eff.

2/96 1,038,084 1760 1.0 495 1.0 0.01044 1.0

4/192 2,060,190 1819 0.960 568 0.865 0.0119 0.870

8/384 3,894,783 1741 0.948 571 0.813 0.0119 0.825

16/768 7,954,392 1758 0.959 621 0.763 0.0129 0.774

32/1536 15,809,076 1660 1.009 572 0.824 0.0119 0.834

64/3072 31,138,518 1582 1.043 566 0.820 0.0117 0.837

128/6144 61,381,362 1435 1.133 546 0.838 0.0113 0.851

256/12288 120,336,519 1359 1.173 592 0.757 0.01221 0.774
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Nonlinear eigenvalue problems

ä Joint work work with A. Miedlar and M. Elguide

T (z)u = 0 z → T (z) maps C to Cn×n

ä Classical (well-understood) case: Polynomial:

T (z) = A0 + zA1 + · · ·+ zpAp

ä Often treated with linearization, e.g., when p = 2
(A0 + zA1 + z2A2)u = 0 → (among other forms)[(

0 I
−A0 −A1

)
− z

(
I 0
0 A2

)](
u
zu

)
= 0

ä General case can be very different from linear case.

ACM 02/08/2019 p. 53



Restrict slightly the class of problems we consider:

T (z) = −B0 + zA0 + f1(z)A1 + . . .+ fp(z)Ap

ä Main assumption: each of the analytic functions fj : Ω →
C well approximated by a rational function.

ä Write (Cauchy integral representation of fj):

fj(z) = −
1

2iπ

∫
Γ

fj(t)

z − t
dt, z ∈ Ω.

ä Then use numerical quadrature with quadrature points σi’s
on contour Γ→

fj(z) ≈ rj(z) ≡
m∑
i=1

αij

z − σi
.
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ä Consequence: T (z) approximated by

T̃ (z) = −B0 + zA0 +

p∑
j=1

m∑
i=1

αij

z − σi
Aj = ...

≡ −B0 + zA0 +
m∑
i=1

Bi

z − σi
, where:

Bi =

p∑
j=0

αijAj, i = 1, . . . ,m.

[
−B0 + zA0 +

m∑
i=1

Bi

z − σi

]
u = 0

ä ‘Surrogate’ for original problem T (z)u = 0
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Linearization

vi = u
σi−z
→ T̃ (z)u = (−B0 + zA0)u−

∑m
i=1Bivi,

ä T̃ (λ)u = 0 iff Aw = λMw where:

M =


I
I

. . .
. . .

A0

 , A =


σ1I −I

σ2I −I
. . . ...

σmI −I
B1 B2 . . . Bm B0

 .

ä Eigenvalue problem of size n(m+ 1)

ä Special form: matrix need not be stored explicitly.
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Approaches

1. Can use a shift-and-invert Arnlodi on whole system [Pb:
memory when m >> 1]

ä Block structure exploited.

2. Can use a shift-and-invert Subspace iteration [memory:
similar pb.]

ä Advantages: Less memory, ‘one-shot-method’ can be very
efficient (memory)

3. Add restart to 2 but work only with vectors of length n.



Reduced Subspace Iteration: (Case whenM = I)

1. While Convergence not yet reached
2. For j = 1 : ν
3. Select w = [v; u] / / See below
4. Do q steps of inverse iteration: w := (A− σI)−1w
5. If w = [v; u] ≡ last iterate, set U(:, j) = u
6. EndFor
7. Use U to perform Rayleigh-Ritz procedure
8. EndWhile

Step 2: (1) Very first outer loop: take random vectors.
(2) Other outer iterations: If (λ, u) is an eigenpair
from step 7, define v-part as vi = u/(σi−λ) - then:

w = [v1; v2; · · · ; vm; u] (Matlab notation)
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Accuracy of computed eigenvalues

Proposition Let us assume that ‖fj(z) − rj(z)‖Ω1
≤ ε

for j = 1, · · · , p and let (λ̃, ũ) be an exact eigenpair of the
surrogate problem with λ̃ located inside Ω1 and ‖ũ‖ = 1 for a

certain vector norm ‖ · ‖. Let µ =
p∑
j=1

‖Aj‖. Then,

‖T (λ̃)ũ‖ ≤ µε.

Proposition Let us assume that ‖fj(z) − rj(z)‖Ω1
≤ ε for

j = 1, · · · , p and let (λ, u) be an exact eigenpair for T (z)
with λ located inside Ω1 and ‖u‖ = 1. Then, (λ, u) is an
approximate eigenpair of the surrogate problem, i.e.,

‖T̃ (λ)u‖ ≤ µε,
where µ is defined above.
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The halo of extraneous eigenvalues

ä Observed behavior: many ‘extraneous’ or ‘spurious’ eigen-
values congregate around the contour of integration..

Example: T (z) = −B0+λA0+λ
2A2 where [Matlab] (n=4)

B0=-2*eye(n)+diag(ones(n-1,1),1)+diag(ones(n-1,1),-1);

A0=eye(n);

A2=0.5*(n*eye(n)-eye(n,1)*ones(1,n)-ones(n,1)*eye(1,n));

ä Spectrum inside rectangle with bottom-left and top-right
corners (−1,−1.5i), (0, 1.5i)

ä Use this for integration contour.
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Left: The 8 eigenvalues of original problem (circle); the 4
eigenvalues of the linear part (square); contour and quadrature
points along it.

Right: Eigenvalues computed withm = 20 quadrature points
(plus) along with contour, original eigenvalues (circle), and eigen-
values of linear part (square).
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Using a total of m = 32 quadrature points (left) and m = 60
quadrature points (right).

(i) Spectrum of Linear part outside contour APPROXIMATED
(ii) Spectrum of Linear part inside contour IGNORED
(iii) Spectrum of T (z) inside contour APPROXIMATED
(iv) Other eigenvalues populate the contour
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Example

Hadeler problem of dimension n = 200:

T (λ) = (eλ − 1)B1 + λ2B2 −B0 with:
B0 = b0I, b0 = 100

b
(1)
jk = (n+ 1−max(j, k))jk,

b
(2)
jk = nδjk + 1/(j + k),
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 Eigenvalues of Hadeler Pb.
inside a circle of radius
r = 10 and center c =
−30 obtained by the re-
duced subspace iteration
(’+’), and by Beyn’s method
(’O’). Quadrature: Gauss-
Legendre with 50 points.

ä Current work: Helmholtz equation (in 3-D):

∆u+ k2u = 0 +B.C.

Using the Boundary Element Method (BEM) produces a nonlin-
ear eigenvalue problem.
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Conclusion

ä EVSL code available here: [Current version: version 1.1.1]
www.cs.umn.edu/~saad/software/EVSL

ä EVSL Also on github (development)

Plans: (1) Release fully parallel code; (2) Block versions;
(3) Iterative solvers for rational filt.; (4) Nonhermitian case;

ä Earth modes calculations done with fully parallel code

ä Scalability issues with parallel direct solvers ...

ä ... Needed: iterative solvers for the highly indefinite case

ä Frontier in eigenvalue problem: Nonlinear case
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