
Linear and Nonlinear Methods for Data Science
Applications
Yousef Saad

University of Minnesota

Spring School - Univ. M6, Benguerir, Morocco
Feb 26-29, 2024

Focus of numerical linear algebra in past decades

1940s–1950s: Major issue: flutter problem in aerospace engineering
→ eigenvalue problem [cf. Olga Taussky Todd]→ LR, QR, .. → ‘EISPACK’

1960s: Problems related to the power grid promoted what we would call
today general sparse matrix techniques

1970s– Automotive, Aerospace, ..: Computational Fluid Dynamics (CFD)

Late 1980s: Thrust on parallel matrix computations .

Late 1990s: Spur of interest in “financial computing”

Current: Machine Learning and AI

2 U. M6 Spring School Feb. 26-29 2024

First wave of computing (CSE). Example: Fluid flow

Physical Model
↓

Nonlinear PDEs
↓

Discretization
↓

Linearization (Newton)
↓

Sparse Linear Systems Ax = b
-1 -0.5 0 0.5 1 1.5 2 2.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

3 U. M6 Spring School Feb. 26-29 2024

First Wave. Example: Eigenvalue Problems

➤ Many applications require the computation of a few eigenvalues + asso-
ciated eigenvectors of a matrix A

• Structural Engineering – (Goal: fre-
quency response)

• Electronic structure calculations
[Schrödinger equation..] –
Quantum chemistry

• Stability analysis [e.g., electrical
networks, mechanical system,..]

• ...

4 U. M6 Spring School Feb. 26-29 2024

Second Wave (Data Mining). Example: Google Page Rank

Rank importance of nodes using random
walks: visit web-pages following each
link on a node at random with equal
likelihood→ Markov chain

➤ Problem type: (homogeneous) Linear
system. ‘Eigenvector’ problem.

➤ Many similar measures of ‘centrality’ of vertices in a graph -

➤ Applications: Network analysis, Social networks

➤ Observation: lots of insight from Physics (‘Estrada index’)

5 U. M6 Spring School Feb. 26-29 2024

Second Wave. Example: Graph embedding

Problem: In order to work with a graph we
need to represent each vertex as a vector in
Rd. How can we map a graph with n nodes
into an array of Rd×n?

Mapping: Graph→ Data

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

↓
Y = [y1, y2, · · · , yn] in Rd×n

➤ Many applications, e.g., visualization of a graph/ network

➤ Embedding is a key ingredient of many methods in deep learning (Graph
Neural Networks, Graph Convolutional Networks)

➤ Key ingredient in manifold learning [illustration coming shortly]

6 U. M6 Spring School Feb. 26-29 2024

TOPICS IN CLASSICAL DATA MINING: CLUSTERING

From graph partitioning to data clustering

• Problem: we are given n data items: x1, x2, · · · , xn. Would like to ‘cluster’
them, i.e., group them so that each group or cluster contains items that are
similar in some sense.

➤ Example: materials
Superhard

Photovoltaic

Superconductors

Catalytic

Ferromagnetic

Thermo−electricMulti−ferroics

➤ Example: Digits

−6 −4 −2 0 2 4 6 8
−5

−4

−3

−2

−1

0

1

2

3

4

5
PCA − digits : 5 −− 7

5
6
7

➤ Each group is a ‘cluster’ or a ‘class’ ➤ ‘Unsupervised learning’

8 U. M6 Spring School Feb. 26-29 2024

Methods based on similarity graphs: Nearest neighbor graphs

➤ For each node, get
a few of the nearest
neighbors→ Graph

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

Data

Graph

➤ Problem: How to build a nearest-neighbor graph from given data?

➤ Divide and conquer approaches: e.g., H-r Fang, J. Chen, YS ’08.

9 U. M6 Spring School Feb. 26-29 2024

Edge cuts, ratio cuts, normalized cuts, ...

➤ Assume now that we have a ‘similarity graph’
➤ Want: partition vertex set into A and B

A ∪B = V, A ∩B = ∅

➤ What criterion?

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

B

A

➤ Define: cut(A,B) =
∑

u ∈A,v∈B

w(u, v)

➤ Naive idea 1: minimize cut(A,B). Problem: imbalance

➤ Naive idea 2: graph partitioning: |A| = |B|. Problem: not meaningful
10 U. M6 Spring School Feb. 26-29 2024

➤ Many alternative objective functions defined in litterature

➤ Ratio cuts: minimize cut(A,B)/(|A||B|) (Hagen-Kahng, ’91)

➤ Normalized Cuts: (Shi-Malik, ’00) minimize:

cut(A,B)/w(A, V) + cut(A,B)/w(B, V)

➤

➤ If L = D −W = graph Laplacian, then :

➤ All methods lead to eigenvalue problem like: Lx = λDx,

11 U. M6 Spring School Feb. 26-29 2024

Example of application: Image segmentation

➤ Image segmentation = technique
for separating parts of a given image
➤ Example: remove background,
extract a face in photo, etc..

➤ First task: obtain a graph from pixels: Common to use “Heat kernels”:

wij = e

−∥Fi−Fj∥
2

σ2I ×

 e

−∥Xi−Xj∥
2

σ2X if∥Xi −Xj∥ < r

0 else

• Where Fj = feature value (e.g., brightness), and Let Xj = spatial position.

➤ Sparsity depends on parameters

12 U. M6 Spring School Feb. 26-29 2024

TOPICS IN CLASSICAL DATA MINING: EMBEDDING

Graph embeddings

➤ We have seen how to build a graph to represent data

➤ Graph embedding does the opposite: maps a graph to data

Vertex embedding: map every vertex xi to a vector yi ∈ Rd

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● −→
Data: Y = [y1, y2, · · · , yn] in Rd×n

Want: preserve similarities in graph.

➤ Many methods do this: Eigenmaps and LLE are two of the best known

➤ Eigenmaps uses the graph Laplacean L = D −W

14 U. M6 Spring School Feb. 26-29 2024

Example: The Laplacean eigenmaps approach

Laplacean Eigenmaps [Belkin-Niyogi ’01] *minimizes*

F(Y) =

n∑
i,j=1

wij∥yi − yj∥2 subject to Y DY ⊤ = I

Motivation: if ∥xi − xj∥ is small (orig. data), we

want ∥yi − yj∥ to be also small (low-Dim. data)

➤ Original data used indirectly through its graph

➤ Objective function translated to a trace ratio

➤ Yields a sparse eigenvalue problem

x

x
j

i

y
i

y
j

15 U. M6 Spring School Feb. 26-29 2024

“Manifold Learning” Example: projection of face images

Frey Dataset: 1,965 images of an individual – different expressions. Each
image: 20× 28 grey-scale pixels

Various projections [see H-R Fang, S. Sakellaridi, YS ’10]

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

LLE, k=12, n=1965

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

−0.1

−0.05

0

0.05

0.1

multilevel−LLE, k=12, r=2, n
r
=267

−0.2 −0.1 0 0.1 0.2 0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

multilevel−LLE, k=12, r=3, n
r
=45

2D mappings of Frey Face database using LLE and multilevel-LLE.

16 U. M6 Spring School Feb. 26-29 2024

More recent methods

➤ Quite a bit of recent work - e.g., methods: node2vec, DeepWalk, GraRep,
.... See the following papers ... among many others :

[1] William L. Hamilton, Rex Ying, and Jure Leskovec Representation Learn-
ing on Graphs: Methods and Applications arXiv:1709.05584v3 (2017)

[2] Shaosheng Cao, Wei Lu, and Qiongkai Xu GraRep: Learning Graph
Representations with Global Structural Information, CIKM, ACM Conference
on Information and Knowledge Management, 24, (2015)

[3] Amr Ahmed, Nino Shervashidze, and Shravan Narayanamurthy , Distributed
Large-scale Natural Graph Factorization [Proc. WWW 2013, May 13–17,
2013, Rio de Janeiro, Brazil]

17 U. M6 Spring School Feb. 26-29 2024

TOPICS IN CLASSICAL DATA MINING: CLASSIFICATION

Supervised learning

➤ We now have data that is ‘labeled’ - eg. Message is ’Spam’ or ’Not-Spam’

Examples: Health Sciences (‘malignant’- ’non malignant’) ; Materials (’pho-
tovoltaic’, ’hard’, ’conductor’, ...) ; Digit Recognition (’0’, ’1’,, ’9’)

c

e

f

d

a b g

19 U. M6 Spring School Feb. 26-29 2024

Supervised learning

➤ We now have data that is ‘labeled’

Examples: Health Sciences (‘malignant’- ’non malignant’) ; Materials (’pho-
tovoltaic’, ’hard’, ’conductor’, ...) ; Digit Recognition (’0’, ’1’,, ’9’)

c

e

f

d

a b g

c

e

f

d

a b g

??

20 U. M6 Spring School Feb. 26-29 2024

Supervised learning: classification

➤ Best illustration: written
digits recognition example

Given: set of labeled sam-
ples (training set), and an
(unlabeled) test image x.
Problem: label of x =?

��
��
��
��

�
�
�
�
��
��
��
��

������ ��

Training data Test data

D
im

en
sio

n
 red

u
ctio

n

D
ig

it
 0

D
ig

fi
t

1

D
ig

it
 2

D
ig

it
 9

D
ig

it
 ?

?

D
ig

it
 0

D
ig

fi
t

1

D
ig

it
 2

D
ig

it
 9

D
ig

it
 ?

?

➤ Roughly speaking: we seek dimension reduction so that recognition is
‘more effective’ in low-dim. space

21 U. M6 Spring School Feb. 26-29 2024

In Brief: Support Vector Machines (SVM) - [Vapnik,’92]

➤ Formally, SVM finds a hyperplane that best separates two training sets
belonging to two classes.

Hyperplane: wTx + b = 0 → Classifier: f(x) = sign(wTx + b)

➤ Normalize parameters w, b so that: hyperplane wTx + b ≥ 1 → set 1,
wTx + b ≤ −1→ set 2.

➤ With yi = +1 for one class and yi = −1 for the other, we can write the
constraints as yi(w

Txi + b) ≥ 1.

22 U. M6 Spring School Feb. 26-29 2024

➤ The margin == max. distance between
the two planes on ‘decision boundary’
➤ Goal: find w, b to maximize margin
➤ Maximize margin subject to the con-
straint yi(w

Txi + b) ≥ 1.

➤ It turns out that: margin == γ = 2
∥w∥2

γ

➤ Need to solve the constrained
quadratic programming problem:

min
w.b

1

2
∥w∥22

s.t. yi(w
Txi + b) ≥ 1, ∀xi.

Modifications: 1) Soft margin; 2) Use kernel;

23 U. M6 Spring School Feb. 26-29 2024

Deep Neural Networks (DNNs)

➤ Training a neural network can be viewed as a problem of approximating
a function ϕ which is defined via sets of parameters:

Input: x, Output: y

Set: z0 = x

For l = 1 : L+1 Do:
zl = σ(W T

l zl−1 + bl)

End
Set: y = ϕ(x) := zL+1

Layer

Input

Layer

OutputHidden

Layer

layer # 0 = input layer

layer # (L+1) = output
layer

Matrix Wl associated
with layers 1,2, L + 1.

➤ Problem: Find ϕ (i.e., matrices Wl) s.t. ϕ(x) ≈ y

24 U. M6 Spring School Feb. 26-29 2024

DNN (continued)

➤ Problem is not convex + it is highly parameterized→ hard to solve

➤ Basic method used: Stochastic gradient descent + momemtum variants

➤ Training is very expensive – GPUs help

➤ Starting in 2017, huge development in Large Language Models (LLMs)

➤ BERT (’18), GPT-1 (’18), GPT2(’19), GPT3 (’20), ... →

➤ ... ChatGPT (3.5, 4), Copilot , PaLM/Gemini (Google), BLOOM ...

➤ This brings us to ...

25 U. M6 Spring School Feb. 26-29 2024

THE ML/AI WAVE

New BIG wave: AI

➤ Recommended reading (non-technical)→

➤ Author: co-founder of Deep-Mind

In summary:

AI is making astounding progress ...

... with huge acceleration in past ≈ 6-7 years

Synergetic forces: Hardware, openness, focus, ...

Biggest issue now: Containment

27 U. M6 Spring School Feb. 26-29 2024

A new Moore’s law? Compare with progress in microchips

➤ Useful to compare with progress made in hardware

➤ Moore’s law has been incredibly accurate in predicting advances in mi-
crochips. Note: stipulated in 1965! [actual ratio corrected in 1975.. still....]

Moore’s Law: Number of transistors
placed on a chip doubles every 2 years

➤ One can see similar laws in progress of technology ... including AI.

➤ Technology progresses in exponential bursts

28 U. M6 Spring School Feb. 26-29 2024

*T
ha

nk
s:

M
ax

R
os

er
,C

C
B

Y
-S

A
4.

0,
W

ik
im

ed
ia

C
om

m
on

s

What about AI?

➤ Look at: Number of parameters in
Large Language Models (LLMs)
➤ Only 5 reference points so far
➤ What we can say now:

Doubling every ≈ 4.3 months

Factor of 10 every ≈ 14 months

2018 2019 2020 2021 2022 2023 2024

 Year

28

30

32

34

36

38

40

42

44

46

48

L
o

g
2
 (

n
p

a
ra

m
s

)

2
cst+2.7843*t

➤ Trend - so far (!): advance is much faster than that of Moore’s law.

➤ Last point in curve (Chat-GPT-4 estimate): 100 trillion parameters!

30 U. M6 Spring School Feb. 26-29 2024

Other factors:

Chipmaking is very competitive – Technology highly
protected

In contrast: AI is basically 100 % open.

Bazaar (bottom-up) won vs. Cathedral (top-down)

A blessing for research/science but ...

... also a curse: containment issues

31 U. M6 Spring School Feb. 26-29 2024

Containment: An old problem

From The Hitchhiker’s Guide to the Galaxy:

“ ... many elevators imbued with intelligence and precognition became
terribly frustrated with the mindless business of going up and down, up
and down, experimented briefly with the notion of going sideways, as a
sort of existential protest, demanded participation in the decision-making
process and finally took to squatting in basements sulking.”

32 U. M6 Spring School Feb. 26-29 2024

How should we in Numerical Linear Algebra react?

➤ AI is *very* disruptive:

Students: only interested in AI-related work

Education side: Homeworks can now easily be solved by Chat-GPT4.

Research: labs (national, academic, corporate, ..) are pushing AI

➤ Danger: can NLA become irrelevant? [just used for its software?]

➤ Reasonable goal: Continue to seek innovation in Linear Algebra while also
participating actively in Deep Learning research

➤ Difficulty: Culture, *Huge* community, different (unfamiliar) world

33 U. M6 Spring School Feb. 26-29 2024

AI thinking vs. numerical analysis thinking: all about data

Trivial example: Given very noisy ‘training points’

xi, yi to an unknown function f , recover f

NA : Interpolate in Least-Squares sense

➤ Need to select interpolant type, e.g., cubic

ML : use data points + some form of averaging with ’attention’.

34 U. M6 Spring School Feb. 26-29 2024

➤ Given {ki, vi} keys, values (NA: xtrain
i , ytrain

i })
➤ ... a query q (NA: The x where we want f(x))
➤ ... and a Kernel a(q, k). Approximation at q:

A(q) =
∑
i

a(q, ki)vi

➤ “Attention” mechanism aver-
ages by giving more importance to
points near q
➤ Nadaraya-Watson attention
[Kernel Regression]

average with a(q,k)i

k kk q
1 2

v
1

v 2

n

35 U. M6 Spring School Feb. 26-29 2024

Example: A pure LA idea that is very successful

“Transformers are RNNs: Fast Autoregressive Transformers with Linear
Attention”, A. Katharopoulos, A. Vyas, N. Pappas, F. Fleuret (’21)

➤ Scaled Dot-product Attention :
➤ Softmax applied row-wise
➤ Q: n× d, K: n× d, V : n× v

Al = softmax
(
QKT

√
d

)
V

Q V

K
T

d x n

n x d n x v

➤ Cost: O(n2) – But without the softmax term:

➤ Do KTV first – then Q× result: → O(n) cost

➤ Idea: replace softmax(QKT) by ϕ(Q)ϕ(KT)

(Judicious func. ϕ applied rowwise to Q,K)

➤ Very simple idea. Very impactful paper [Huge gain in training time]

36 U. M6 Spring School Feb. 26-29 2024

Example: Low-rank structure in DNN

“LoRa: Low-Rank Adaptation of Large Language Models” E. Hu, Y. Shen,
P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen (’21)

➤ LoRa able to reduce number of parameters in Chat-GPT3 from 175B to
17M - (i.e., / by 10,000)

➤ Observation: Depth on DNN leads to low-dimension in paramaters (“Law
of parsimony”) Over-parameterization→ Low-Dim.

➤ Many other papers, e.g., on analysis - example:

“The Low-Rank Simplicity Bias in Deep Networks” M. Huh, H. Mobahi, R.
Zhang, B. Cheung, P. Agrawal, P. Isola (’22)

➤ Main ingredient in analysis: “Random Matrix Theory”

37 U. M6 Spring School Feb. 26-29 2024

PART 2: ACCELERATION METHODS

Introduction & Background

➤ Accelerators for linear systems: Conjugate Gradient, Conjugate Residual,
GCR, ORTHOMIN, GMRES, BiCGSTAB, IDR, ... (Krylov subspace methods)

➤ Picture for nonlinear equations is more complex:

(a) Linear accelerators invoked when solving Jacobian systems iteratively
in Newton→ Inexact Newton methods

(b) Quasi-Newton methods, BFGS, LBFGS, ..., : approximate Jacobian or
its inverse with Low-rank updates

(c) Anderson acceleration, Pulay mixing, ... nonlinear acceleration view-
point + a (rough) linear model.

39 U. M6 Spring School Feb. 26-29 2024

Acceleration of fixed point iterations

➤ Common situation: A (complex) physical simulation leading to a sequence
of a physical quantity (charge densities, potentials, pressures, ...)

➤ Common approach: fixed point iteration xk+1 = g(xk)

• Acceleration: combine g(xk) with previous iterates→ faster convergence

• These methods try to solve: f(x) = 0 where f(x) ≡ x− g(x)

➤ Restriction: Use only function evaluations and lin. combinations

• To solve f(x) = 0 can apply an acceleration
method for:

g(x) = x− µf(x)

• (i.e., f(x) viewed as the gradient in gradient descent for optimization)

40 U. M6 Spring School Feb. 26-29 2024

Inexact Newton

We now focus on solving f(x) = 0 (f : Rn→ Rn). Newton Approach

Set x0 = an initial guess.
For n = 0, 1, 2, · · · until conv. do:

Solve: J(xj)δj = −f(xj) (*)
Set: xj+1 = xj + δj

← f(xj + δ) ≈ f(xj) + J(xj)δ

with J(xj) = f ′(xj) = Jacobian at xj

Standard Newton: solve (*) exactly

Inexact Newton methods: solve system (*) approximately.

Quasi-Newton methods: solve system (*) in which Jacobian is replaced by
an estimate obtained from previous iterates.

Newton-Krylov methods: solve system (*) by a Krylov subspace method

41 U. M6 Spring School Feb. 26-29 2024

Inexact Newton with Krylov methods

In Newton Krylov: xj+1 = xj + δj where δj ≡ approx. solution of
Jδ + f(xj) = 0 by a Krylov subspace method

➤ Approximate sol. == δj = Vlyl where Vl is an orthonormal basis of

the Krylov subspace: Kl = span{v, Jv, · · · , J l−1v} with v ≡ −f(xj)

➤ For example, if the method
invoked is FOM, then:

δj = Vl(V
T
l JVl)

−1V T
l (−f(xj))

➤ In essence: inverse Jacobian
approximated by the matrix Bj,IOM = Vl(V

T
l JVl)

−1V T
l

Note: approximation for step j only – discarded in next step.

42 U. M6 Spring School Feb. 26-29 2024

Quasi-Newton

➤ Quasi-Newton (QN) methods: build approximations to J(xj) or J(xj)
−1,

progressively using previous iterates

➤ Notation: ∆xj ≡ xj+1 − xj , ∆fj ≡ f(xj+1)− f(xj),

➤ Secant condition:

Jj+1∆xj = ∆fj,

➤ No-change condition:

Jj+1q = Jjq, ∀q such that qT∆xj = 0.

➤ Broyden: ∃! Jj+1 that satisfies both conditions. Calculated as:

Jj+1 = Jj + (∆fj − Jj∆xj)
∆xT

j

∆xT
j ∆xj

.

43 U. M6 Spring School Feb. 26-29 2024

➤ Type II Broyden: Inverse Jacobian approximated by Gj at step j

➤ Secant condition:

Gj+1∆fj = ∆xj,

➤ No-change condition:

Gj+1q = Gjq, ∀q such that qT∆fj = 0.

➤ Broyden (II): ∃! Gj+1 that satisfies both conditions. Calculated as:

Gj+1 = Gj + (∆xj −Gj∆fj)
∆fT

j

∆fT
j ∆fj

,

Note: Common feature of QN methods: The sequence of pairs of ∆xi,∆fi

used to update previous approximation to J(xj) or J(xj)
−1.

➤ Progressive low-rank approximation ...

➤ ... ‘One rank at a time’
44 U. M6 Spring School Feb. 26-29 2024

Anderson Acceleration

➤ Want fixed point of g(x) : Rn→ Rn. Let f(x) = g(x)− x.

➤ Select x0 and define x1 = x0 + βf0 [β is a parameter]

Given: xi and fi = f(xi) for i = j −m, · · · , j
Let: ∆xi = xi+1 − xi, ∆fi = fi+1 − fi for i = 0, 1, · · · , j −m

Pj = [∆xj−m · · · ∆xj−1], Vj = [∆fj−m · · · ∆fj−1].

Compute: xj+1 = x̄j + βf̄j where: x̄j = xj − Pj θ
(j), f̄j = fj − Vj θ

(j)

And: θ(j) = argminθ∈Rm∥fj − Vj θ∥2

45 U. M6 Spring School Feb. 26-29 2024

Note: Original article formulated problem in the standard ‘acceleration’ form

x̄j =

j∑
i=j−k

µ
(j)
i xi with

∑
µ

(j)
i = 1

➤ The µ
(j)
i ’s must now minimize

∥∥∥∑j
i=j−k µ

(j)
i fi

∥∥∥2

2

➤ Mathematically equivalent to previous formulation

Relation with other methods

AA is a multisecant method [Eyert ’96, Fang-YS ’09]

Detailed study of relation with GMRES in linear case [Walker and Ni’11]

Several other methods discovered independently turned out equivalent (or
very close) to AA

46 U. M6 Spring School Feb. 26-29 2024

Revisiting old friends: The GCR method

Goal: start with accelerators for linear problems - then see how to extend
them to nonlinear case

Class of Krylov subspace methods:

Conjugate gradient (Hestenes and Stiefel, ’51), Conjugate Residual (Stiefel
’55), Lanczos (51), Bi-CG (Fletcher 76)

Accelerators developed in 1980s, 1990s:
GCR, ORTHOMIN, GMRES, BiCGSTAB, IDR, ..

➤ We consider the Generalized Conjugate Residual (GCR) [Eisenstat, El-
man, Schultz, ’83]

47 U. M6 Spring School Feb. 26-29 2024

GCR for linear case: Ax = b

ALGORITHM : 1 GCR

1: Input: Matrix A, RHS b, initial x0.
2: Set p0 = r0 ≡ b−Ax0.
3: for j = 0, 1, 2, · · · , Until convergence do
4: αj = (rj, Apj)/(Apj, Apj)

5: xj+1 = xj + αjpj

6: rj+1 = rj − αjApj

7: pj+1 = rj+1 −
∑j

i=0 βijpi where βij := (Arj+1, Api)/(Api, Api)

8: end for

➤ Recall: the set {Api}i=0,··· ,j is orthogonal

48 U. M6 Spring School Feb. 26-29 2024

➤ Two practical variants

Restarting GCR(k) - restart every k steps

Truncation TGCR(m,k) - Truncated GCR: Orthogonalize against m

most recent vectors only + restart dimension of k

➤ In TGCR(m,k) Line 7 becomes: [Notation: jm = max{0, j −m + 1}]

pj+1 = rj+1 −
j∑

i=jm

βijpi where βij := (Arj+1, Api)/(Api, Api)

➤ GCR(k): Eisenstat, Elman and Schultz [83] - equivalent to GMRES(k)

➤ TGCR initially developed by Vinsome ’76 (as ORTHOMIN), analyzed in
1983 GCR paper

49 U. M6 Spring School Feb. 26-29 2024

A few properties of (full) GCR in linear case

Notation: Pk = [p0, p1, · · · , pk] Rk = [r0, r1, · · · , rk], Vk = APk

Property: (Eisenstat-Elman-Schultz) The residual vectors produced by (full)
GCR are semi-conjugate, i.e., (rj, Ari) = 0 for i < j.

Corollary: When A = AT residuals are conjugate

Property: When A is nonsingular, (full) GCR breaks down iff it produces an
exact solution.

breakdown↔ ’lucky breakdown’

50 U. M6 Spring School Feb. 26-29 2024

Property: Approximate solution at k-th step is xk+1 = x0 + PkV
T
k r0

➤ We say that the algorithm induces the ’approximate inverse’ Bk = PkV
T
k

- a rank-k matrix. Let Lk = Span(Vk) and π = VkV
T
k . Then

Bk = A−1π → Bk inverts A exactly in Lk, i.e., Bkπ = A−1π.

ABk = π.

When A is symmetric then Bk is self-adjoint when restricted to Lk.

BkAx = x for any x ∈ Span{Pk}, i.e., Bk inverts A exactly from
the left when A is restricted to the range of Pk.

BkA is the projector onto Span{Pk} and orthogonally to ATLk.

51 U. M6 Spring School Feb. 26-29 2024

Nonlinear case: Exploit a multisecant viewpoint with GCR

➤ 1st approach: Inexact Newton. Well-known but has disadvantages.

➤ Instead we will develop a multisecant approach.

➤ Linear TGCR builds m

directions such that:
{Apjm, · · ·Apj} is orthogonal

➤ In nonlinear case we can still use this basis– where A is ‘some’ Jacobian

➤ Assume that at step j we have a set of (at most) m current ‘search’
directions {pi} for i = jm, jm + 1, · · · , j

➤ Along with vi ≈ J(xi)pi, i = jm, jm + 1, · · · , j

➤ Set: Pj = [pjm, pjm+1, · · · , pj], Vj = [vjm, vjm+1, · · · , vj].

52 U. M6 Spring School Feb. 26-29 2024

➤ Note: In Linear case or Inexact Newton case vi = Jpi (J is fixed)

➤ pi and vi are ‘paired’ much like the vectors ∆fi and ∆xi of QN and AA

➤ Notation Vj ≈ [J]Pj

Main Idea of Nonlinear Extension:

➤ Just build orthonormal basis Vj as in TGCR

➤ Do usual projection step to minimize ‘linear residual’ - i.e.,

xj+1 = xj + Pjyj where yj = argminy∥f(xj) + Vjy∥

➤ Note: Vj orthonormal→ yj = V T
j (−f(xj)) ≡ V T

j rj

53 U. M6 Spring School Feb. 26-29 2024

ALGORITHM : 2 nlTGCR(m)
1: Input: f(x), initial x0.
2: Set r0 = −f(x0).
3: Compute v = J(x0)r0; ▷ Use Frechet
4: v0 = v/∥v∥, p0 = r0/∥v∥2;
5: for j = 0, 1, 2, · · · , do
6: yj = V T

j rj
7: xj+1 = xj + Pjyj ▷ Scalar αj becomes vector yj

8: rj+1 = −f(xj+1) ▷ Replaces linear update: rj+1 = rj − Vjyj

9: Set: p := rj+1;
10: Compute v = J(xj+1)p ▷ Use Frechet
11: for i = jm : j do
12: βij := ⟨v, vi⟩
13: p := p− βijpi; v := v − βijvi;
14: end for
15: pj+1 := p/∥v∥2 ; vj+1 := v/∥v∥2 ;
16: end for

54 U. M6 Spring School Feb. 26-29 2024

A few properties

➤ Notation: r̃j+1 = rj − Vjyj (Linear Residual) ; zj = r̃j − rj

The following properties are satisfied by the vectors produced by nlTGCR:

1. The system [vjm, vjm+1, · · · , vj+1] is orthonormal.

2. (r̃j+1, vi) = 0 for jm ≤ i ≤ j, i.e., V T
j r̃j+1 = 0.

3. ∥r̃j+1∥2 = miny ∥f(xj) + Vjy∥2
4. (vj+1, r̃j+1) = (vj+1 , rj)

5. V T
j rj = (vj, r̃j)e1 − V T

j zj where e1 = [1, 0, · · · , 0]T ∈ Rmj with mj ≡
min{m, j + 1}.

➤ What can we say about the deviation zj?

55 U. M6 Spring School Feb. 26-29 2024

A few properties (cont.)

➤ Can show: the difference r̃j+1 − rj+1 is of “second order”

➤ Hence: can switch to linear form of residual at some point

➤ Saves one fun. eval

56 U. M6 Spring School Feb. 26-29 2024

➤ Multisecant property

➤ Observe that the update at step j takes the form:

xj+1 = xj + PjV
T
j rj = xj + PjV

T
j (−f(xj))

➤ Thus, we are in effect using a secant-type method
with the Approximate inverse Jacobien:

Gj+1 = PjV
T
j

➤ In addition:

The unique solution to the problem

min{∥B∥F subject to: BVj = Pj}

is achieved by the matrix Gj+1 = PjV
T
j .

➤ Yet another multi-secant type method, but ...
57 U. M6 Spring School Feb. 26-29 2024

➤ The method shares also characteristics of inexact Newton, e.g., ..

➤ .. can add global convergence strategies like backtracking

➤ The relation vj ≈ J(xj)pj should be fairly accurate [Frechet diff.]

➤ Contrast with the relation ∆fj ≈ J∆xj (Anderson, QN)

➤ Two function evaluations per iteration but ...

➤ ... can be reduced to one as soon as rj becomes close to r̃j (∼ linear)

58 U. M6 Spring School Feb. 26-29 2024

General GCR framework

➤ There are known situations where Anderson does quite well..

➤ e.g., Picard iteration for Navier Stokes

Q: Can we implement Anderson acceleration in the form of GCR?

A: Yes -

General Framework:
At step j: define a new pair of vectors: pj+1 and
vj+1 - with the requirement that vj+1 ≈ Jpj+1 -
Where J = Jacobian at xj

➤ As before, orthonormalize to get pj+1, vj+1

➤ Same update as before: xj+1 = xj + Pjyj

59 U. M6 Spring School Feb. 26-29 2024

General GCR framework: A matter of pairing

➤ In nlTGCR: [before orthogonalization] – Pair:

1. pj+1 = rj+1 and ...
2. vj+1 = Jrj+1 == explicitly computed.

➤ Recall Notation: r̃j = rj − Vjyj = ‘Linear’ residual ➤ Then nlTGCR will
give the exact same iterates as (full) Anderson if:

1. pj+1 = Pjyj + βr̃j and xj+1 = xj + pj+1 ≡ (xj + Pjyj)︸ ︷︷ ︸
nlTGCR

+βr̃j

2. vj+1 = rj+1 − rj where rj+1 = f(xj+1)

➤ Subtle point: Truncated versions are not the same.

➤ Let us explore this a little further

60 U. M6 Spring School Feb. 26-29 2024

General GCR framework: Exploring AA from GCR angle

We can implement 3 different versions of AA which are all mathematically
equivalent in the full window case (m =∞).

1. Standard AA where LS problem is solved via downdating QR [or just NE]
2. nlTGCR with the pairing just given. We call this nlTGCR AA
3. Anderson acceleration where a (Truncated) Gram-Schmidt process is ap-

plied to the columns of Vj and and same linear mixing is applied to Pj.
We call this AA TGS

➤ Vj −→ Vj = QjSj (Gram-Schmidt QR); qj = vj −
∑

sijqi

➤ Pj −→ Pj = UjSj (same transf. as Vj) uj = pj −
∑

sijui

61 U. M6 Spring School Feb. 26-29 2024

An
de

rs
on

-T
G

S

1: Input: x0, f, β..
2: f0 = f(x0);
3: x1 = x0 + βf0 Compute f1 = f(x1)

4: for j = 1, 2, · · · , until convergence do
5: q = fj − fj−1; u = xj − xj−1

6: for i = jm, · · · , j − 1 do
7: sij = qT

i q

8: q := q − sijqi; u := u− sijui

9: end for
10: qj = q/sjj, uj = u/sjj where sjj = ∥q∥
11: xj+1 = (xj − Ujθ) + β(fj −Qjθ) where θ = QT

j fj

12: fj+1 = f(xj+1)

13: end for

62 U. M6 Spring School Feb. 26-29 2024

➤ Assume: f(x) = Ax− b, A = AT , and m =∞

➤ Then something
remarkable happens:

S =

⋆ ⋆ ⋆ 0 0 0

⋆ ⋆ ⋆ 0 0

⋆ ⋆ ⋆ 0

⋆ ⋆ ⋆

⋆ ⋆

⋆

θ =

0

0

0

0

⋆

⋆

1. The upper triangular matrix S is tridiagonal : sij = 0 for i < j − 2

2. θ = QT
j fj has only 2 nonzero components (last 2).

➤ In other words: the algorithm simplifies in the linear symmetric case.

63 U. M6 Spring School Feb. 26-29 2024

➤ Let us go back to the general case

➤ Any relation between: AA, nlTGCR AA, and AA TGS?

➤ It is (very) easy to see that:

1. AA TGS and nlTGCR AA are mathematically equivalent
2. AA TGS, nlTGCR AA and AA are equivalent when m =∞

64 U. M6 Spring School Feb. 26-29 2024

➤ Expl: 30 iterations of the 3 methods on a linear system of size 100

0 5 10 15 20 25 30 35
10 -3

10 -2

10 -1

10 0

10 1

10 2

nltgcr_AA
AA Class

AA_TGS

m = 5

0 5 10 15 20 25 30 35
10 -3

10 -2

10 -1

10 0

10 1

10 2

nltgcr_AA
AA Class

AA_TGS

m =∞
➤ Note: system is symmetric

65 U. M6 Spring School Feb. 26-29 2024

➤ Similar example: a Small nonlinear problem (n = 2242): Navier Stokes
equations [back-step] using ifiss

0 10 20 30 40 50 60
10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 2

Picard

nlTGCR_AA

AA Class.

AA_TGS

m = 10

0 10 20 30 40 50 60
10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 2

Picard

nlTGCR_AA

AA Class.

AA_TGS

m =∞
➤ Note: Problem is nonlinear + no obvious symmetry

66 U. M6 Spring School Feb. 26-29 2024

• In effect AA TGS is a ‘symmetric’ variant of AA which is ...
• ... equivalent to standard AA in case m =∞.

➤ Obtained by using formalism of nlTGCR

Consequence: For optimization problems - Hessian is symmetric → a
window of m = 3 is enough and optimal.

➤ Further studies needed [Experimentation + Theory]

➤ Experiments to be discussed next are not concerned these variants

67 U. M6 Spring School Feb. 26-29 2024

Experiments - Bratu problem

➤ Illustrates the importance of exploiting symmetry [Recall: in linear sym-
metric case GCR becomes CR, requires window-size of 2]

➤ .. and importance of adaptive version

Nonlinear eigenvalue
problem (Bratu)
➤ Take λ = 0.5.

−∆u = λeu in Ω = (0, 1)× (0, 1)

u(x, y) = 0, for (x, y) ∈ ∂Ω

➤ FD discretization with grid of size 100×100→ Problem size = n = 10, 000

68 U. M6 Spring School Feb. 26-29 2024

The Adaptive update version

➤ Bratu problem is almost linear – true in general when nearing convergence

➤ Idea: exploit the linearized update version of nlTGCR to cut number of
func. evals. by ≈ half

➤ Need an adaptive mechanism: switch from the nonlinear to linear updates
- [≈ linear regime]

➤ and switch back when needed

➤ Define the nonlinear and
nonlinear res. at step j:

rnl
j+1 = −f(xj+1),

rlin
j+1 = rnl

j − Vjyj.

69 U. M6 Spring School Feb. 26-29 2024

➤ Criterion will use the angular
distance between the two vectors:

dj := 1− (rnlj)Trlinj

∥rnlj ∥2·∥r
lin
j ∥2

➤ Linear updates turned on when dj < τ , where τ is a threshold

➤ Check dj regurlarly, for example, every 10 iterations,

➤ Switch back to nonlinear updates when dj ≥ τ

➤ In experiments: τ = 0.01

70 U. M6 Spring School Feb. 26-29 2024

➤ Window size m = 1,

0 200 400 600 800 1000 1200

Function evaluation

10
-15

10
-10

10
-5

10
0

C
o

s
t:

 |
|f
(x

)|
| 2

/|
|f
(x

0
)|

| 2

nlTGCR

nlTGCR linear

nlTGCR adaptive

Function evaluations.

0 100 200 300 400 500 600

Iteration

10
-15

10
-10

10
-5

10
0

C
o

s
t:

 |
|f
(x

)|
| 2

/|
|f
(x

0
)|

| 2

nlTGCR

nlTGCR linear

nlTGCR adaptive

Iterations

71 U. M6 Spring School Feb. 26-29 2024

Exploiting symmetry

Bratu problem with:
AA, L-BFGS, Nonlinear CG
(NCG), [fletcher reeves], and
Inexact Newton with CG
(Newton-CG).

0 50 100 150 200 250 300

Function evaluation

10
-8

10
-6

10
-4

10
-2

10
0

C
o
s
t:
 |
|f
(x

)|
| 2

/|
|f
(x

0
)|

| 2

nlTGCR (m=1)

Nesterov

L-BFGS

AA

NCG

Newton-CG

72 U. M6 Spring School Feb. 26-29 2024

Molecular optimization with Lennard-Jones potential(∗)

➤ Illustrates the importance of a global strategy - linesearch / backtracking
+ exploiting the Jacobian at multiple points

➤ Goal: find atom positions that minimize total potential enery:

Lennard-Jones Poten-
tial (xi = position of
atom i)

E =

Nat∑
i=1

i−1∑
j=1

4×
[

1

∥xi − xj∥12
−

1

∥xi − xj∥6

]

Initial Config → Iterate to mininmize ∥∇E∥2 → Final Config
➤ Difficult problem due to high powers→ Backtracking essential

(*) Thanks: Stefan Goedecker’s course site - Basel Univ.

73 U. M6 Spring School Feb. 26-29 2024

−→

➤ Initial geometry: ’Face-Centered Cube’ + perturbation

➤ Adaptive gradient method: xj+1 = xj − tj∇E(xj) – with tj adapted –
can be made to work fairly well.

➤ AA will fail unless underlying fixed point iteration selected carefully:
xj+1 = xj − µ∇E(xj) where µ ∼ 10−3. Also must take β ∼ 10−2.

74 U. M6 Spring School Feb. 26-29 2024

0 50 100 150 200

Function evaluation

10
-10

10
-5

10
0

C
o

s
t:

 E
 -

 E
m

in

nlTGCR (m=1)

nlTGCR (m=10)

Nesterov

AA

Newton-GMRES

Lennard-Jones problem.)

100 120 140 160 180 200 220

Func. evaluation: n

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

C
o
s
t:
 E

j -
 E

m
in

nlTGCR (1)

nlTGCR (10)

Nesterov

AA (10, 40)

Newton-GMRES (20, 40)

Zoom near convergence

75 U. M6 Spring School Feb. 26-29 2024

Graph Convolutional Network

Dataset: Cora [2708 scientific pubs., 5429 links, 7 classes]. Goal: node
classification [topic of paper from words and links]

nlTGCR vs. Adam: training loss and validation accuracy

76 U. M6 Spring School Feb. 26-29 2024

Image classification with CIFAR10 dataset

➤ Test using ResNet-18 architecture. Implemented with PyTorch -

➤ Compared nlTGCR with Adam and Momentum (Nesterov)

➤ Accuracies achieved: nlTGCR: 91.56, Adam: 90.13; Momemtum: 89.53

77 U. M6 Spring School Feb. 26-29 2024

Concluding remarks

➤ Method can be adapted to context of stochastic gradient-type methods

➤ In deep learning: build Pj, Vj across different batches [i.e., ignore change
of objective function with each batch]

➤ Challenge: QN-type methods exploit smoothness but ...

➤ ... Stochastic character limits smoothness.

➤ A lot more remains to be done to answer the question:

Can 2nd-order type methods be adapted to become *generally*
superior to existing approaches in stochastic context?

78 U. M6 Spring School Feb. 26-29 2024

