Linear and Nonlinear Methods for Data Science Applications
Yousef Saad
University of Minnesota

Spring School - Univ. M6, Benguerir, Morocco Feb 26-29, 2024

Focus of numerical linear algebra in past decades

1940s-1950s: Major issue: flutter problem in aerospace engineering \rightarrow eigenvalue problem [cf. Olga Taussky Todd] \rightarrow LR, QR, .. \rightarrow 'EISPACK' 1960s: Problems related to the power grid promoted what we would call today general sparse matrix techniques

1970s- Automotive, Aerospace, ..: Computational Fluid Dynamics (CFD)
Late 1980s: Thrust on parallel matrix computations.
Late 1990s: Spur of interest in "financial computing"
Current: Machine Learning and AI

First wave of computing (CSE). Example: Fluid flow

First Wave. Example: Eigenvalue Problems

> Many applications require the computation of a few eigenvalues + associated eigenvectors of a matrix \boldsymbol{A}

- Structural Engineering - (Goal: frequency response)
- Electronic structure calculations [Schrödinger equation..] Quantum chemistry
- Stability analysis [e.g., electrical networks, mechanical system,..]
-...

Second Wave (Data Mining). Example: Google Page Rank

Rank importance of nodes using random walks: visit web-pages following each link on a node at random with equal likelihood \rightarrow Markov chain
> Problem type: (homogeneous) Linear system. 'Eigenvector' problem.

> Many similar measures of 'centrality' of vertices in a graph -
> Applications: Network analysis, Social networks
$>$ Observation: lots of insight from Physics ('Estrada index')

Second Wave. Example: Graph embedding

Problem: In order to work with a graph we need to represent each vertex as a vector in \mathbb{R}^{d}. How can we map a graph with n nodes into an array of $\mathbb{R}^{d \times n}$?

Mapping: Graph \rightarrow Data

$$
\boldsymbol{Y}=\left[y_{1}, y_{2}, \cdots, y_{n}\right] \text { in } \mathbb{R}^{d \times n}
$$

> Many applications, e.g., visualization of a graph/ network

- Embedding is a key ingredient of many methods in deep learning (Graph Neural Networks, Graph Convolutional Networks)
> Key ingredient in manifold learning [illustration coming shortly]

TOPICS IN CLASSICAL DATA MINING: CLUSTERING

From graph partitioning to data clustering

- Problem: we are given n data items: $x_{1}, x_{2}, \cdots, x_{n}$. Would like to 'cluster' them, i.e., group them so that each group or cluster contains items that are similar in some sense.

$>$ Each group is a 'cluster' or a 'class'
> Example: Digits
PCA - digits : 5-- 7

> 'Unsupervised learning'

Methods based on similarity graphs: Nearest neighbor graphs

Data
$>$ For each node, get a few of the nearest neighbors \rightarrow Graph

Graph
> Problem: How to build a nearest-neighbor graph from given data?
> Divide and conquer approaches: e.g., H-r Fang, J. Chen, YS '08.

Edge cuts, ratio cuts, normalized cuts, ...

$>$ Assume now that we have a 'similarity graph'
> Want: partition vertex set into A and B

$$
A \cup B=V, \quad A \cap B=\emptyset
$$

> What criterion?

> Define:

$$
\operatorname{cut}(A, B)=\sum_{u \in A, v \in B} w(u, v)
$$

$>$ Naive idea 1: minimize $\operatorname{cut}(A, B)$. Problem: imbalance
> Naive idea 2: graph partitioning: $|\boldsymbol{A}|=|B|$. Problem: not meaningful
$>$ Many alternative objective functions defined in litterature
$>$ Ratio cuts: minimize $\operatorname{cut}(A, B) /(|A||B|)$ (Hagen-Kahng, '91)
> Normalized Cuts: (Shi-Malik, '00) minimize:

$$
\operatorname{cut}(A, B) / w(A, V)+\operatorname{cut}(A, B) / w(B, V)
$$

> If $L=D-W=$ graph Laplacian, then:
$>$ All methods lead to eigenvalue problem like: $L x=\lambda D x$,

Example of application: Image segmentation

> Image segmentation = technique for separating parts of a given image

> First task: obtain a graph from pixels: Common to use "Heat kernels":

$$
w_{i j}=e^{\frac{-\left\|\boldsymbol{F}_{i}-F_{j}\right\|^{2}}{\sigma_{I}^{2}}} \times \begin{cases}e^{\frac{-\left\|X_{i}-X_{j}\right\|^{2}}{\sigma_{X}^{2}}} & \text { if }\left\|\boldsymbol{X}_{i}-X_{j}\right\|<r \\ 0 & \text { else }\end{cases}
$$

- Where $\boldsymbol{F}_{j}=$ feature value (e.g., brightness), and Let $\boldsymbol{X}_{j}=$ spatial position.
> Sparsity depends on parameters

Graph embeddings

> We have seen how to build a graph to represent data
> Graph embedding does the opposite: maps a graph to data
Vertex embedding: map every vertex x_{i} to a vector $y_{i} \in \mathbb{R}^{d}$

$$
\text { Data: } \boldsymbol{Y}=\left[y_{1}, y_{2}, \cdots, y_{n}\right] \text { in } \mathbb{R}^{d \times n}
$$

Want: preserve similarities in graph.
> Many methods do this: Eigenmaps and LLE are two of the best known

- Eigenmaps uses the graph Laplacean $L=D-W$

Example: The Laplacean eigenmaps approach

Laplacean Eigenmaps [Belkin-Niyogi '01] *minimizes*

$$
\mathcal{F}(\boldsymbol{Y})=\sum_{i, j=1}^{n} w_{i j}\left\|y_{i}-y_{j}\right\|^{2} \quad \text { subject to } \quad Y D Y^{\top}=I
$$

Motivation: if $\left\|x_{i}-x_{j}\right\|$ is small (orig. data), we want $\left\|\boldsymbol{y}_{i}-\boldsymbol{y}_{j}\right\|$ to be also small (low-Dim. data)
> Original data used indirectly through its graph
$>$ Objective function translated to a trace ratio
> Yields a sparse eigenvalue problem

"Manifold Learning" Example: projection of face images

■ Frey Dataset: 1,965 images of an individual - different expressions. Each image: 20×28 grey-scale pixels

Various projections [see H-R Fang, S. Sakellaridi, YS '10]

LLE, $\mathrm{k}=12, \mathrm{n}=1965$

multilevel-LLE, $k=12, r=2, n_{r}=267$

multilevel-LLE, $\mathrm{k}=12, \mathrm{r}=3, \mathrm{n}_{\mathrm{r}}=45$

2D mappings of Frey Face database using LLE and multilevel-LLE.

More recent methods

> Quite a bit of recent work - e.g., methods: node2vec, DeepWalk, GraRep, See the following papers ... among many others :
[1] William L. Hamilton, Rex Ying, and Jure Leskovec Representation Learning on Graphs: Methods and Applications arXiv:1709.05584v3 (2017)
[2] Shaosheng Cao, Wei Lu, and Qiongkai Xu GraRep: Learning Graph Representations with Global Structural Information, CIKM, ACM Conference on Information and Knowledge Management, 24, (2015)
[3] Amr Ahmed, Nino Shervashidze, and Shravan Narayanamurthy, Distributed Large-scale Natural Graph Factorization [Proc. WWW 2013, May 13-17, 2013, Rio de Janeiro, Brazil]

Supervised learning

> We now have data that is 'labeled' - eg. Message is 'Spam' or 'Not-Spam' Examples: Health Sciences ('malignant'- 'non malignant') ; Materials ('photovoltaic', 'hard', 'conductor', ...) ; Digit Recognition ('0', '1',, '9')

Supervised learning

> We now have data that is 'labeled'
Examples: Health Sciences ('malignant'- 'non malignant') ; Materials ('photovoltaic', 'hard', 'conductor', ...) ; Digit Recognition ('0', '1',, '9')

Supervised learning: classification

> Best illustration: written digits recognition example

Given: set of labeled samples (training set), and an (unlabeled) test image x. Problem: label of $x=$?

R Roughly speaking: we seek dimension reduction so that recognition is 'more effective' in low-dim. space

In Brief: Support Vector Machines (SVM) - [Vapnik,'92]

> Formally, SVM finds a hyperplane that best separates two training sets belonging to two classes.

Hyperplane:

$$
\boldsymbol{w}^{T} x+b=0 \quad \rightarrow \text { Classifier: } f(x)=\operatorname{sign}\left(w^{T} x+b\right)
$$

$>$ Normalize parameters w, b so that: hyperplane $w^{T} x+b \geq 1 \rightarrow$ set 1 , $\boldsymbol{w}^{T} x+b \leq-1 \rightarrow$ set 2 .
$>$ With $y_{i}=+1$ for one class and $y_{i}=-1$ for the other, we can write the constraints as $y_{i}\left(\boldsymbol{w}^{T} x_{i}+b\right) \geq 1$.
> The margin == max. distance between the two planes on 'decision boundary'
$>$ Goal: find w, b to maximize margin
$>$ Maximize margin subject to the constraint $y_{i}\left(w^{T} x_{i}+b\right) \geq 1$.
$>$ It turns out that: margin $==\gamma=\frac{2}{\|w\|_{2}}$

Modifications: 1) Soft margin; 2) Use kernel;

Deep Neural Networks (DNNs)

$>$ Training a neural network can be viewed as a problem of approximating a function ϕ which is defined via sets of parameters:

Input: x, Output: y
Set: $z_{0}=x$
For $l=1: \mathrm{L}+1$ Do:
$z_{l}=\sigma\left(W_{l}^{T} z_{l-1}+b_{l}\right)$
End
Set: $y=\phi(x):=z_{L+1}$

- layer \# 0 = input layer
- layer \# ($L+1$) = output layer

■ Matrix W_{l} associated with layers $1,2, L+1$.
> Problem:
Find ϕ (i.e., matrices W_{l}) s.t. $\phi(x) \approx y$

DNN (continued)

$>$ Problem is not convex + it is highly parameterized \rightarrow hard to solve
> Basic method used: Stochastic gradient descent + momemtum variants
> Training is very expensive - GPUs help
> Starting in 2017, huge development in Large Language Models (LLMs)
$>$ BERT ('18), GPT-1 ('18), GPT2('19), GPT3 ('20), $\ldots \rightarrow$
> ... ChatGPT (3.5, 4), Copilot, PaLM/Gemini (Google), BLOOM ...
$>$ This brings us to ...

THE ML/AI WAVE

New BIG wave: AI

$>$ Recommended reading (non-technical) \rightarrow
> Author: co-founder of Deep-Mind

In summary:

- AI is making astounding progress ...
- ... with huge acceleration in past $\approx 6-7$ years

■ Synergetic forces: Hardware, openness, focus, ...

- Biggest issue now: Containment
"A fascinating, well-written, and important book." - YuvaL NOAH HARARI
TECHNOLOGY, POWER, and the 21 SI CENTURY'S GREATEST DILEMMA

MUSTAFA SULEYMAN
co-founder of
WITH
DEEPMIND and INFLECTION AI MICHAEL BHASKAR

A new Moore's law? Compare with progress in microchips

> Useful to compare with progress made in hardware
> Moore's law has been incredibly accurate in predicting advances in microchips. Note: stipulated in 1965! [actual ratio corrected in 1975.. still....]

> Moore's Law: Number of transistors placed on a chip doubles every 2 years
> One can see similar laws in progress of technology ... including AI.
> Technology progresses in exponential bursts

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important as other aspects of technological progress - such as processing speed or the price of electronic products - are linked to Moore's law.

What about AI?

> Look at: Number of parameters in Large Language Models (LLMs)
$>$ Only 5 reference points so far
> What we can say now:

- Doubling every ≈ 4.3 months
- Factor of 10 every ≈ 14 months

$>$ Trend - so far (!): advance is much faster than that of Moore's law.
> Last point in curve (Chat-GPT-4 estimate): 100 trillion parameters!

Other factors:

- Chipmaking is very competitive - Technology highly protected
- In contrast: Al is basically 100% open.
- Bazaar (bottom-up) won vs. Cathedral (top-down)
- A blessing for research/science but ...

■ ... also a curse: containment issues
"The most important book about teclnology today, with implications that go far beyond programming."
THE CATHEDRAL \& THE BaZAAR
MUSINGS ON LINUX AND OPEN SOURCE
BY AN ACCIDENTAL REVOLUTIONARY

WITH A FORENORD BY BOB YOUNG, CHARMAN \& CEO OF RED HAT, INC.

Containment: An old problem

From The Hitchhiker's Guide to the Galaxy:
"... many elevators imbued with intelligence and precognition became terribly frustrated with the mindless business of going up and down, up and down, experimented briefly with the notion of going sideways, as a sort of existential protest, demanded participation in the decision-making process and finally took to squatting in basements sulking."

How should we in Numerical Linear Algebra react?

> AI is *very* disruptive:
■ Students: only interested in Al-related work
■ Education side: Homeworks can now easily be solved by Chat-GPT4.

- Research: labs (national, academic, corporate, ..) are pushing AI
> Danger: can NLA become irrelevant? [just used for its software?]
> Reasonable goal: Continue to seek innovation in Linear Algebra while also participating actively in Deep Learning research
> Difficulty: Culture, *Huge* community, different (unfamiliar) world

AI thinking vs. numerical analysis thinking: all about data

Trivial example: Given very noisy 'training points' x_{i}, y_{i} to an unknown function f, recover f

NA : Interpolate in Least-Squares sense
> Need to select interpolant type, e.g., cubic

ML : use data points + some form of averaging with 'attention'.
$>$ Given $\left\{k_{i}, v_{i}\right\}$ keys, values (NA: $\left.x_{i}^{\text {train }}, y_{i}^{\text {train }}\right\}$)
$>\ldots$ a query q (NA: The x where we want $f(x)$)
$>\ldots$ and a Kernel $a(q, k)$. Approximation at q :

$$
A(q)=\sum_{i} a\left(q, k_{i}\right) v_{i}
$$

"Attention" mechanism averages by giving more importance to points near q
$>$ Nadaraya-Watson attention [Kernel Regression]

Example: A pure LA idea that is very successful

"Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention", A. Katharopoulos, A. Vyas, N. Pappas, F. Fleuret ('21)
$>$ Scaled Dot-product Attention :
$>$ Softmax applied row-wise
$>Q: n \times d, K: n \times d, V: n \times v$

$$
A_{l}=\operatorname{softmax}\left(\frac{Q K^{T}}{\sqrt{d}}\right) V
$$

$>$ Cost: $O\left(n^{2}\right)$ - But without the softmax term:
$>$ Do $K^{T} V$ first - then $Q \times$ result: $\rightarrow O(n)$ cost
$>$ Idea: replace softmax $\left(Q K^{T}\right)$ by $\phi(Q) \phi\left(\boldsymbol{K}^{T}\right)$ (Judicious func. ϕ applied rowwise to Q, K)
> Very simple idea. Very impactful paper [Huge gain in training time]

Example: Low-rank structure in DNN

|"LoRa: Low-Rank Adaptation of Large Language Models" E. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen ('21)

- LoRa able to reduce number of parameters in Chat-GPT3 from 175B to $17 M$ - (i.e., / by 10,000)
> Observation: Depth on DNN leads to low-dimension in paramaters ("Law of parsimony") Over-parameterization \rightarrow Low-Dim.
> Many other papers, e.g., on analysis - example:
"The Low-Rank Simplicity Bias in Deep Networks" M. Huh, H. Mobahi, R. Zhang, B. Cheung, P. Agrawal, P. Isola ('22)
> Main ingredient in analysis: "Random Matrix Theory"

PART 2: ACCELERATION METHODS

Introduction \& Background

> Accelerators for linear systems: Conjugate Gradient, Conjugate Residual, GCR, ORTHOMIN, GMRES, BiCGSTAB, IDR, ... (Krylov subspace methods)
> Picture for nonlinear equations is more complex:
(a) Linear accelerators invoked when solving Jacobian systems iteratively in Newton \rightarrow Inexact Newton methods
(b) Quasi-Newton methods, BFGS, LBFGS, ..., : approximate Jacobian or its inverse with Low-rank updates
(c) Anderson acceleration, Pulay mixing, ... nonlinear acceleration viewpoint + a (rough) linear model.

Acceleration of fixed point iterations

> Common situation: A (complex) physical simulation leading to a sequence of a physical quantity (charge densities, potentials, pressures, ...)
> Common approach: fixed point iteration

$$
x_{k+1}=g\left(x_{k}\right)
$$

- Acceleration: combine $g\left(x_{k}\right)$ with previous iterates \rightarrow faster convergence
- These methods try to solve: $f(x)=0$ where

$$
f(x) \equiv x-g(x)
$$

> Restriction: Use only function evaluations and lin. combinations

- To solve $f(x)=0$ can apply an acceleration

$$
g(x)=x-\mu f(x)
$$ method for:

- (i.e., $f(x)$ viewed as the gradient in gradient descent for optimization)

Inexact Newton

We now focus on solving $f(x)=0 \quad\left(f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right)$. Newton Approach

Set $x_{0}=$ an initial guess.
For $n=0,1,2, \ldots$ until conv. do: Solve: $J\left(x_{j}\right) \delta_{j}=-f\left(x_{j}\right)$ Set: $x_{j+1}=x_{j}+\delta_{j}$
$\leftarrow f\left(x_{j}+\delta\right) \approx f\left(x_{j}\right)+J\left(x_{j}\right) \delta$
with $J\left(x_{j}\right)=f^{\prime}\left(x_{j}\right)=$ Jacobian at x_{j}
Standard Newton: solve (*) exactly

Inexact Newton methods: solve system (*) approximately.
Quasi-Newton methods: solve system (*) in which Jacobian is replaced by an estimate obtained from previous iterates.

Newton-Krylov methods: solve system (*) by a Krylov subspace method

Inexact Newton with Krylov methods

In Newton Krylov: $x_{j+1}=x_{j}+\delta_{j}$ where $\delta_{j} \equiv$ approx. solution of $J \delta+f\left(x_{j}\right)=0$ by a Krylov subspace method
> Approximate sol. $==\delta_{j}=V_{l} y_{l}$ where V_{l} is an orthonormal basis of the Krylov subspace: $K_{l}=\operatorname{span}\left\{v, J v, \cdots, J^{l-1} v\right\}$ with $v \equiv-f\left(x_{j}\right)$
> For example, if the method invoked is FOM, then:

$$
\delta_{j}=V_{l}\left(V_{l}^{T} J V_{l}\right)^{-1} V_{l}^{T}\left(-f\left(x_{j}\right)\right)
$$

> In essence: inverse Jacobian approximated by the matrix

$$
B_{j, I O M}=V_{l}\left(V_{l}^{T} J V_{l}\right)^{-1} V_{l}^{T}
$$

Note: approximation for step j only - discarded in next step.

Quasi-Newton

$>$ Quasi-Newton (QN) methods: build approximations to $J\left(x_{j}\right)$ or $J\left(x_{j}\right)^{-1}$, progressively using previous iterates
$>$ Notation: $\Delta x_{j} \equiv x_{j+1}-x_{j}, \quad \Delta f_{j} \equiv f\left(x_{j+1}\right)-f\left(x_{j}\right)$,
> Secant condition:

$$
J_{j+1} \Delta x_{j}=\Delta f_{j}, \quad J_{j+1} q=J_{j} q, \quad \forall q \quad \text { such that } \quad q^{T} \Delta x_{j}=0 .
$$

$>$ Broyden: $\exists!J_{j+1}$ that satisfies both conditions. Calculated as:

$$
J_{j+1}=J_{j}+\left(\Delta f_{j}-J_{j} \Delta x_{j}\right) \frac{\Delta x_{j}^{T}}{\Delta x_{j}^{T} \Delta x_{j}} .
$$

$>$ Type II Broyden: Inverse Jacobian approximated by G_{j} at step j
> Secant condition:
$>$ No-change condition:

$$
G_{j+1} \Delta f_{j}=\Delta x_{j}, \quad G_{j+1} q=G_{j} q, \quad \forall q \quad \text { such that } \quad q^{T} \Delta f_{j}=0 .
$$

$>$ Broyden (II): $\exists!G_{j+1}$ that satisfies both conditions. Calculated as:

$$
G_{j+1}=G_{j}+\left(\Delta x_{j}-G_{j} \Delta f_{j}\right) \frac{\Delta f_{j}^{T}}{\Delta f_{j}^{T} \Delta f_{j}},
$$

Note: Common feature of QN methods: The sequence of pairs of $\Delta x_{i}, \Delta f_{i}$ used to update previous approximation to $J\left(x_{j}\right)$ or $J\left(x_{j}\right)^{-1}$.
> Progressive low-rank approximation ...
> ... 'One rank at a time'

Anderson Acceleration

$>$ Want fixed point of $g(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Let $f(x)=g(x)-x$.
$>$ Select x_{0} and define $x_{1}=x_{0}+\beta f_{0} \quad[\beta$ is a parameter]
Given:

$$
x_{i} \text { and } f_{i}=f\left(x_{i}\right) \text { for } i=j-m, \cdots, j
$$

Let:

$$
\begin{aligned}
& \Delta x_{i}=x_{i+1}-x_{i}, \quad \Delta f_{i}=f_{i+1}-f_{i} \text { for } i=0,1, \cdots, j-m \\
& P_{j}=\left[\Delta x_{j-m} \cdots \Delta x_{j-1}\right], \quad V_{j}=\left[\Delta f_{j-m} \cdots \Delta f_{j-1}\right] .
\end{aligned}
$$

Compute: $x_{j+1}=\bar{x}_{j}+\beta \bar{f}_{j}$ where: $\bar{x}_{j}=x_{j}-P_{j} \theta^{(j)}, \bar{f}_{j}=f_{j}-V_{j} \theta^{(j)}$

And:

$$
\theta^{(j)}=\operatorname{argmin}_{\theta \in \mathbb{R}^{m}}\left\|f_{j}-V_{j} \theta\right\|_{2}
$$

Note: Original article formulated problem in the standard 'acceleration’ form

$$
\bar{x}_{j}=\sum_{i=j-k}^{j} \mu_{i}^{(j)} x_{i} \quad \text { with } \quad \sum \mu_{i}^{(j)}=1
$$

$>$ The $\mu_{i}^{(j)}$,s must now minimize $\left\|\sum_{i=j-k}^{j} \mu_{i}^{(j)} f_{i}\right\|_{2}^{2}$
> Mathematically equivalent to previous formulation

Relation with other methods

- AA is a multisecant method [Eyert '96, Fang-YS '09]
- Detailed study of relation with GMRES in linear case [Walker and Ni'11]

■ Several other methods discovered independently turned out equivalent (or very close) to AA

Revisiting old friends: The GCR method

Goal: start with accelerators for linear problems - then see how to extend them to nonlinear case

Class of Krylov subspace methods:

- Conjugate gradient (Hestenes and Stiefel, '51), Conjugate Residual (Stiefel '55), Lanczos (51), Bi-CG (Fletcher 76)
■ Accelerators developed in 1980s, 1990s:
GCR, ORTHOMIN, GMRES, BiCGSTAB, IDR, ..
> We consider the Generalized Conjugate Residual (GCR) [Eisenstat, Elman, Schultz, '83]

GCR for linear case: $A x=b$

ALGORITHM: 1. GCR

Input: Matrix A, RHS b, initial x_{0}.
Set $p_{0}=r_{0} \equiv b-A x_{0}$.
for $j=0,1,2, \cdots$, Until convergence do
4. $\quad \alpha_{j}=\left(r_{j}, \boldsymbol{A} p_{j}\right) /\left(\boldsymbol{A} p_{j}, \boldsymbol{A} p_{j}\right)$

5: $\quad \boldsymbol{x}_{\boldsymbol{j}+1}=\boldsymbol{x}_{\boldsymbol{j}}+\boldsymbol{\alpha}_{\boldsymbol{j}} \boldsymbol{p}_{\boldsymbol{j}}$
¢: $\quad \boldsymbol{r}_{\boldsymbol{j}+1}=\boldsymbol{r}_{\boldsymbol{j}}-\boldsymbol{\alpha}_{\boldsymbol{j}} \boldsymbol{A} \boldsymbol{p}_{\boldsymbol{j}}$
7. $\quad p_{j+1}=r_{j+1}-\sum_{i=0}^{j} \beta_{i j} p_{i} \quad$ where $\quad \boldsymbol{\beta}_{i j}:=\left(\boldsymbol{A r} r_{j+1}, \boldsymbol{A} p_{i}\right) /\left(\boldsymbol{A} p_{i}, A p_{i}\right)$

8: end for
$>$ Recall: the set $\left\{A p_{i}\right\}_{i=0, \cdots, j}$ is orthogonal

Two practical variants

Restarting GCR(k) - restart every k steps

Truncation TGCR(m,k) - Truncated GCR: Orthogonalize against m most recent vectors only + restart dimension of k
$>\operatorname{In}$ TGCR(m,k) Line 7 becomes: [Notation: $j_{m}=\max \{0, j-m+1\}$]

$$
p_{j+1}=r_{j+1}-\sum_{i=j_{m}}^{j} \beta_{i j} p_{i} \quad \text { where } \quad \beta_{i j}:=\left(A r_{j+1}, A p_{i}\right) /\left(A p_{i}, A p_{i}\right)
$$

> GCR(k): Eisenstat, Elman and Schultz [83] - equivalent to GMRES(k)
> TGCR initially developed by Vinsome '76 (as ORTHOMIN), analyzed in 1983 GCR paper

A few properties of (full) GCR in linear case

Notation: $\quad \boldsymbol{P}_{k}=\left[p_{0}, p_{1}, \cdots, p_{k}\right] \quad \boldsymbol{R}_{k}=\left[r_{0}, r_{1}, \cdots, r_{k}\right], \quad V_{k}=A P_{k}$
Property: (Eisenstat-Elman-Schultz) The residual vectors produced by (full) GCR are semi-conjugate, i.e., $\left(r_{j}, A r_{i}\right)=0$ for $i<j$.

Corollary: When $A=A^{T}$ residuals are conjugate
Property: When \boldsymbol{A} is nonsingular, (full) GCR breaks down iff it produces an exact solution.

$$
\text { breakdown } \leftrightarrow \text { 'lucky breakdown’ }
$$

Property: Approximate solution at k-th step is $\quad x_{k+1}=x_{0}+P_{k} V_{k}^{T} r_{0}$
$>$ We say that the algorithm induces the 'approximate inverse' $B_{k}=P_{k} V_{k}^{T}$

- a rank-k matrix. Let $\mathcal{L}_{k}=\operatorname{Span}\left(\boldsymbol{V}_{k}\right)$ and $\pi=\boldsymbol{V}_{k} \boldsymbol{V}_{k}^{T}$. Then

■ $B_{k}=A^{-1} \pi \rightarrow B_{k}$ inverts A exactly in \mathcal{L}_{k}, i.e., $B_{k} \pi=A^{-1} \pi$.

- $A B_{k}=\pi$.
- When \boldsymbol{A} is symmetric then \boldsymbol{B}_{k} is self-adjoint when restricted to \mathcal{L}_{k}.
$\square B_{k} A x=x$ for any $x \in \operatorname{Span}\left\{P_{k}\right\}$, i.e., \boldsymbol{B}_{k} inverts \boldsymbol{A} exactly from the left when A is restricted to the range of P_{k}.
$\square B_{k} A$ is the projector onto $\operatorname{Span}\left\{P_{k}\right\}$ and orthogonally to $A^{T} \mathcal{L}_{k}$.

Nonlinear case: Exploit a multisecant viewpoint with GCR

> 1st approach: Inexact Newton. Well-known but has disadvantages.
> Instead we will develop a multisecant approach.
> Linear TGCR builds m directions such that:
$\left\{\boldsymbol{A} \boldsymbol{p}_{j_{m}}, \cdots \boldsymbol{A} \boldsymbol{p}_{j}\right\}$ is orthogonal

- In nonlinear case we can still use this basis- where A is 'some' Jacobian
$>$ Assume that at step j we have a set of (at most) m current 'search' directions $\left\{p_{i}\right\}$ for $i=j_{m}, j_{m}+1, \cdots, j$
$>$ Along with $v_{i} \approx J\left(x_{i}\right) p_{i}, i=j_{m}, j_{m}+1, \cdots, j$
$>$ Set: $P_{j}=\left[p_{j_{m}}, p_{j_{m}+1}, \cdots, p_{j}\right], \quad V_{j}=\left[v_{j_{m}}, v_{j_{m}+1}, \cdots, v_{j}\right]$.
$>$ Note: In Linear case or Inexact Newton case $v_{i}=J p_{i}(J$ is fixed $)$
$>p_{i}$ and v_{i} are 'paired' much like the vectors Δf_{i} and Δx_{i} of QN and AA
$>$ Notation

$$
V_{j} \approx[J] P_{j}
$$

Main Idea of Nonlinear Extension:

$>$ Just build orthonormal basis V_{j} as in TGCR
> Do usual projection step to minimize 'linear residual' - i.e.,

$$
x_{j+1}=x_{j}+P_{j} y_{j} \quad \text { where } \quad y_{j}=\operatorname{argmin}_{y}\left\|f\left(x_{j}\right)+V_{j} y\right\|
$$

$>$ Note: V_{j} orthonormal $\rightarrow y_{j}=V_{j}^{T}\left(-f\left(x_{j}\right)\right) \equiv V_{j}^{T} r_{j}$

ALGORITHM : 2. nITGCR(m)

Input: $f(x)$, initial x_{0}.
Set $r_{0}=-f\left(x_{0}\right)$.
Compute $v=J\left(x_{0}\right) r_{0}$;

- Use Frechet
$v_{0}=v /\|v\|, p_{0}=r_{0} /\|v\|_{2} ;$
for $j=0,1,2, \cdots$, do
$y_{j}=V_{j}^{T} r_{j}$
$x_{j+1}=x_{j}+P_{j} y_{j} \quad \triangleright$ Scalar α_{j} becomes vector y_{j} $\boldsymbol{r}_{j+1}=-\boldsymbol{f}\left(\boldsymbol{x}_{j+1}\right) \quad \triangleright$ Replaces linear update: $\boldsymbol{r}_{j+1}=\boldsymbol{r}_{j}-V_{j} \boldsymbol{y}_{j}$ Set: $p:=r_{j+1}$; Compute $v=J\left(x_{j+1}\right) p$
- Use Frechet for $i=j_{m}: j$ do
$\beta_{i j}:=\left\langle v, v_{i}\right\rangle$

$$
p:=p-\beta_{i j} p_{i} ; \quad v:=v-\beta_{i j} v_{i}
$$

end for

$$
p_{j+1}:=p /\|v\|_{2} ; \quad v_{j+1}:=v /\|v\|_{2}
$$

end for

A few properties

$>$ Notation: $\tilde{r}_{j+1}=r_{j}-V_{j} y_{j} \quad$ (Linear Residual) ; $\quad z_{j}=\tilde{r}_{j}-r_{j}$
The following properties are satisfied by the vectors produced by \boldsymbol{n} ITGCR:

1. The system $\left[v_{j_{m}}, v_{j_{m}+1}, \cdots, v_{j+1}\right]$ is orthonormal.
2. $\left(\tilde{r}_{j+1}, v_{i}\right)=0 \quad$ for $\quad j_{m} \leq i \leq j$, i.e., $V_{j}^{T} \tilde{r}_{j+1}=0$.
3. $\left\|\tilde{r}_{j+1}\right\|_{2}=\min _{y}\left\|f\left(x_{j}\right)+V_{j} y\right\|_{2}$
4. $\left(v_{j+1}, \tilde{r}_{j+1}\right)=\left(v_{j+1}, r_{j}\right)$
5. $V_{j}^{T} r_{j}=\left(v_{j}, \tilde{r}_{j}\right) e_{1}-V_{j}^{T} z_{j}$ where $e_{1}=[1,0, \cdots, 0]^{T} \in \mathbb{R}^{m_{j}}$ with $m_{j} \equiv$ $\min \{m, j+1\}$.
$>$ What can we say about the deviation z_{j} ?

A few properties (cont.)

$>$ Can show: the difference $\tilde{r}_{j+1}-r_{j+1}$ is of "second order"
> Hence: can switch to linear form of residual at some point
> Saves one fun. eval

Multisecant property

$>$ Observe that the update at step j takes the form:

$$
x_{j+1}=x_{j}+P_{j} V_{j}^{T} r_{j}=x_{j}+P_{j} V_{j}^{T}\left(-f\left(x_{j}\right)\right)
$$

> Thus, we are in effect using a secant-type method with the Approximate inverse Jacobien:

$$
G_{j+1}=P_{j} V_{j}^{T}
$$

The unique solution to the problem
> In addition:

$$
\min \left\{\|B\|_{F} \text { subject to: } \quad B V_{j}=P_{j}\right\}
$$

is achieved by the matrix $G_{j+1}=P_{j} V_{j}^{T}$.
> Yet another multi-secant type method, but ...
$>$ The method shares also characteristics of inexact Newton, e.g., ..
> .. can add global convergence strategies like backtracking
$>$ The relation $v_{j} \approx J\left(x_{j}\right) p_{j}$ should be fairly accurate [Frechet diff.]
$>$ Contrast with the relation $\Delta f_{j} \approx J \Delta x_{j}$ (Anderson, QN)
> Two function evaluations per iteration but ...
$>\ldots$ can be reduced to one as soon as r_{j} becomes close to \tilde{r}_{j} (\sim linear)

General GCR framework

> There are known situations where Anderson does quite well..
$>$ e.g., Picard iteration for Navier Stokes
Q: Can we implement Anderson acceleration in the form of GCR?
A: Yes -

General Framework:
At step j : define a new pair of vectors: p_{j+1} and v_{j+1} - with the requirement that $v_{j+1} \approx J p_{j+1}$ Where $J=$ Jacobian at x_{j}
$>$ As before, orthonormalize to get p_{j+1}, v_{j+1}
$>$ Same update as before: $x_{j+1}=x_{j}+P_{j} y_{j}$

General GCR framework: A matter of pairing

> In nITGCR: [before orthogonalization] - Pair:

1. $p_{j+1}=r_{j+1}$ and ...
2. $v_{j+1}=J r_{j+1} \quad==$ explicitly computed.
$>$ Recall Notation: $\tilde{r}_{j}=r_{j}-V_{j} y_{j}=$ 'Linear' residual $>$ Then nITGCR will give the exact same iterates as (full) Anderson if:
3. $p_{j+1}=P_{j} y_{j}+\beta \tilde{r}_{j}$ and $x_{j+1}=x_{j}+p_{j+1} \equiv \underbrace{\left(x_{j}+P_{j} y_{j}\right)}_{n l T G C R}+\beta \tilde{r}_{j}$
4. $v_{j+1}=r_{j+1}-r_{j}$ where $r_{j+1}=f\left(x_{j+1}\right)$
> Subtle point: Truncated versions are not the same.
> Let us explore this a little further

General GCR framework: Exploring AA from GCR angle

We can implement 3 different versions of AA which are all mathematically equivalent in the full window case ($m=\infty$).

1. Standard $A A$ where LS problem is solved via downdating QR [or just NE]
2. nITGCR with the pairing just given. We call this $n I T G C R _A A$
3. Anderson acceleration where a (Truncated) Gram-Schmidt process is applied to the columns of V_{j} and and same linear mixing is applied to P_{j}. We call this $A A_{-} T G S$
$>V_{j} \longrightarrow V_{j}=Q_{j} S_{j}$ (Gram-Schmidt QR);

$$
\begin{aligned}
q_{j} & =v_{j}-\sum s_{i j} q_{i} \\
u_{j} & =p_{j}-\sum s_{i j} u_{i}
\end{aligned}
$$

$>P_{j} \longrightarrow P_{j}=U_{j} S_{j}$ (same transf. as V_{j})

Input: x_{0}, f, β..
$f_{0}=f\left(x_{0}\right)$;
$x_{1}=x_{0}+\beta f_{0}$ Compute $f_{1}=f\left(x_{1}\right)$
for $j=1,2, \cdots$, until convergence do

$$
q=f_{j}-f_{j-1} ; \quad u=x_{j}-x_{j-1}
$$

$$
\text { for } i=j_{m}, \cdots, j-1 \text { do }
$$

$$
s_{i j}=q_{i}^{T} q
$$

$$
q:=q-s_{i j} q_{i} ; \quad u:=u-s_{i j} u_{i}
$$

end for

$$
\begin{aligned}
& q_{j}=q / s_{j j}, \quad u_{j}=u / s_{j j} \quad \text { where } \quad s_{j j}=\|q\| \\
& x_{j+1}=\left(x_{j}-U_{j} \theta\right)+\beta\left(f_{j}-Q_{j} \theta\right) \quad \text { where } \quad \theta=Q_{j}^{T} f_{j} \\
& f_{j+1}=f\left(x_{j+1}\right)
\end{aligned}
$$

end for
$>$ Assume: $f(x)=A x-b, A=A^{T}$, and $m=\infty$
$>$ Then something remarkable happens:

$$
S=\left[\begin{array}{llllll}
\star & \star & \star & 0 & 0 & 0 \\
& \star & \star & \star & 0 & 0 \\
& & \star & \star & \star & 0 \\
& & & \star & \star & \star \\
& & & & \star & \star \\
& & & & & \star
\end{array}\right] \quad \theta=\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
\star \\
\star
\end{array}\right]
$$

1. The upper triangular matrix S is tridiagonal: $s_{i j}=0$ for $i<j-2$
2. $\theta=Q_{j}^{T} f_{j}$ has only 2 nonzero components (last 2).
> In other words: the algorithm simplifies in the linear symmetric case.
> Let us go back to the general case
$>$ Any relation between: $A A, n I T G C R A A$, and $A A_{-} T G S$?
$>$ It is (very) easy to see that:
3. $A A_{-} T G S$ and $n I T G C R _A A$ are mathematically equivalent
4. $A A_{-} T G S$, $n I T G C R A A$ and $A A$ are equivalent when $m=\infty$

Expl: 30 iterations of the 3 methods on a linear system of size 100

$m=5$
$m=\infty$
$>$ Note: system is symmetric

Similar example: a Small nonlinear problem $(n=2242)$: Navier Stokes equations [back-step] using ifiss

$m=10$

$m=\infty$
$>$ Note: Problem is nonlinear + no obvious symmetry

- In effect $\boldsymbol{A A _ T G S}$ is a 'symmetric' variant of AA which is ...
- ... equivalent to standard AA in case $m=\infty$.
> Obtained by using formalism of nITGCR
Consequence: For optimization problems - Hessian is symmetric $\rightarrow \mathrm{a}$ window of $m=3$ is enough and optimal.
> Further studies needed [Experimentation + Theory]
> Experiments to be discussed next are not concerned these variants

Experiments - Bratu problem

> Illustrates the importance of exploiting symmetry [Recall: in linear symmetric case GCR becomes CR, requires window-size of 2]
> .. and importance of adaptive version
Nonlinear eigenvalue problem (Bratu)
$>$ Take $\boldsymbol{\lambda}=0.5$.

$$
\begin{aligned}
-\Delta u & =\lambda e^{u} \text { in } \Omega=(0,1) \times(0,1) \\
u(x, y) & =0, \text { for }(x, y) \in \partial \Omega
\end{aligned}
$$

$>$ FD discretization with grid of size $100 \times 100 \rightarrow$ Problem size $=n=10,000$

The Adaptive update version

>Bratu problem is almost linear - true in general when nearing convergence
> Idea: exploit the linearized update version of nITGCR to cut number of func. evals. by \approx half
$>$ Need an adaptive mechanism: switch from the nonlinear to linear updates - [\approx linear regime]
$>$ and switch back when needed
> Define the nonlinear and nonlinear res. at step j :

$$
\begin{aligned}
r_{j+1}^{n l} & =-f\left(x_{j+1}\right), \\
r_{j+1}^{l i n} & =r_{j}^{n l}-V_{j} y_{j} .
\end{aligned}
$$

$>$ Criterion will use the angular distance between the two vectors:

$$
d_{j}:=1-\frac{\left(r_{j}^{n l}\right)^{T} r_{j}^{l i n}}{\left\|r_{j}^{n}\right\|_{2} \cdot\left\|r_{j}^{l_{n} \|_{2}}\right\|_{2}}
$$

$>$ Linear updates turned on when $d_{j}<\tau$, where τ is a threshold
$>$ Check d_{j} regurlarly, for example, every 10 iterations,
$>$ Switch back to nonlinear updates when $d_{j} \geq \tau$
$>$ In experiments: $\tau=0.01$
$>$ Window size $m=1$,

Function evaluations.

Iterations

Exploiting symmetry

Bratu problem with:
AA, L-BFGS, Nonlinear CG (NCG), [fletcher reeves], and Inexact Newton with CG (Newton-CG).

Molecular optimization with Lennard-Jones potential(*)

> Illustrates the importance of a global strategy - linesearch / backtracking + exploiting the Jacobian at multiple points
> Goal: find atom positions that minimize total potential enery:

Lennard-Jones Potential $\left(x_{i}=\right.$ position of atom i)

$$
E=\sum_{i=1}^{N a t} \sum_{j=1}^{i-1} 4 \times\left[\frac{1}{\left\|x_{i}-x_{j}\right\|^{12}}-\frac{1}{\left\|x_{i}-x_{j}\right\|^{6}}\right]
$$

Initial Config \rightarrow Iterate to mininmize $\|\nabla \boldsymbol{E}\|^{2} \rightarrow$ Final Config
$>$ Difficult problem due to high powers \rightarrow Backtracking essential
(*) Thanks: Stefan Goedecker’s course site - Basel Univ.

> Initial geometry: 'Face-Centered Cube' + perturbation
$>$ Adaptive gradient method: $x_{j+1}=x_{j}-t_{j} \nabla E\left(x_{j}\right)$ - with t_{j} adapted can be made to work fairly well.
> AA will fail unless underlying fixed point iteration selected carefully: $x_{j+1}=x_{j}-\mu \nabla E\left(x_{j}\right)$ where $\mu \sim 10^{-3}$. Also must take $\beta \sim 10^{-2}$.

Lennard-Jones problem.)

Zoom near convergence

Graph Convolutional Network

Dataset: Cora [2708 scientific pubs., 5429 links, 7 classes]. Goal: node classification [topic of paper from words and links]

nITGCR vs. Adam: training loss and validation accuracy

Image classification with CIFAR10 dataset

> Test using ResNet-18 architecture. Implemented with PyTorch -
> Compared nITGCR with Adam and Momentum (Nesterov)

> Accuracies achieved: nITGCR: 91.56, Adam: 90.13; Momemtum: 89.53

Concluding remarks

$>$ Method can be adapted to context of stochastic gradient-type methods
$>$ In deep learning: build P_{j}, V_{j} across different batches [i.e., ignore change of objective function with each batch]
> Challenge: QN-type methods exploit smoothness but ...
> ... Stochastic character limits smoothness.
$>$ A lot more remains to be done to answer the question:
Can 2nd-order type methods be adapted to become *generally* superior to existing approaches in stochastic context?

