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Outline

➤ Aims: an overview of “iterative linear algebra” [linear systems mostly] with
a historical perspective

➤ Follow flow of ideas over the years [‘big ideas’ or ’breakthroughs’]

➤ A few thoughts on where the field may be heading
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Introduction

➤ In 1953, George Forsythe published this survey paper:

➤ A fascinating article with extraordinary vision

➤ Author urged researchers to start looking at linear systems
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➤ Topics discussed: iterative methods, Conjugate Gradient, condition num-
bers, arithmetic, ...

➤ Mysterious footnote: ’original title was Solving linear equations is not
trivial’

➤ First line says: The subject of this talk is mathematically a lowly one

➤ One must realize: in 1950’s Numerical Analysis was new [advent of
computers] and not widely accepted yet as a new field by mathematicians

4 von Neumann Lecture, 08/22/2023



Hestenes and Todd
say this in their his-
tory of the INA:

“It was Hartree’s experience that, by and large, the mathematical
community was inexperienced in numerical analysis and showed little
interest in the subject. Some even belittled it. In 1948 in an INA
symposium (...) Hartree said, ’One of the unsolved problems of Nu-
merical Analysis is how to overcome the attitude of the Mathematical
Fraternity on this subject’.
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Why iterative methods? A quick look at direct methods

➤ Oldest method for solving linear systems: Gaussian Elimination

➤ Starting in the 1960: huge effort and progress on ‘sparse direct solvers’

➤ 1961: link between sparse elimination and graphs [Seymour Parter]

➤ 1975: Fill-ins and paths [Rose-Tarjan Theorem]

➤ Late 70s: Elimination Trees [YSMP group at Yale]

➤ Solution Packages: YSMP, SPARSPAK (70’s, 80’s)

➤ 1981: Book by George and Liu

6 von Neumann Lecture, 08/22/2023



Direct solution of two systems of size N = 122, 500

*Very* common misconception: 3-D problems are harder just because they
are bigger. In fact they are intrinsically harder.

First: Laplacean on a 350× 350 grid (2D); N = 122, 500

Second: Laplacean on a 50× 50× 49 grid (3D); N = 122, 500

Patterns of similar [much
smaller] matrices
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First big idea: Relaxation

➤ Idea goes back to Gauss (∼ 1823).

➤ Term ’relaxation’ likely introduced by Southwell (1940s)

➤ To solve: Ax = b View as a collection of equations:

aT
i x = βi (aT

i = i-th row) for i = 1, 2, · · · , n

➤ Notation: r = b−Ax (residual)

➤ Relaxation: Modify i-th component of x into x
(new)
i := xi + δi

so that: r(new)
i = 0. ➤ Do this in a certain order for i

➤ aT
i (x + δei) = βi −→ δi =

ri
aii
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Gauss letter to Gerling (1823)
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Ends letter with:

... Almost every evening I make a new edition of the tableau, wherever there
is easy improvement. Against the monotony of the surveying business, this is
always a pleasant entertainment; one can also see immediately whether any-
thing doubtful has crept in, what still remains to be desired, etc. I recommend
this method to you for imitation. You will hardly ever again eliminate directly,
at least not when you have more than 2 unknowns.
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Ends letter with:

... Almost every evening I make a new edition of the tableau, wherever there
is easy improvement. Against the monotony of the surveying business, this is
always a pleasant entertainment; one can also see immediately whether any-
thing doubtful has crept in, what still remains to be desired, etc. I recommend
this method to you for imitation. You will hardly ever again eliminate directly,
at least not when you have more than 2 unknowns. The indirect procedure
can be done while half asleep, or while thinking about other things.

➤ Recommends this iterative scheme (indirect elimination) over Gaussian
elimination for systems of order >2 (!)
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➤ Fast-forward to 1960s:

R. Varga

As an example of the magnitude of problems that have been
successfully solved on digital computers by cyclic iterative meth-
ods, the Bettis Atomic Power laboratory of the Westinghouse
Electric Corporation had in daily use in 1960 a two-dimensional
program which would treat as a special case, Laplacean-type
matrix equations of order 20,000. Richard Varga, 1962

➤ State of the art in early 1960s was a 20,000 × 20,000 Laplace equation.

➤ Today: Millions to Tens of Millions is common: CFD, MHD, ...

➤ Models are 3D - so we need iterative methods.
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Second big idea: Projection

Goal of projection methods: to extract an approximate solution to a problem
from a subspace.

➤ We define a subspace of approximants of dimension m and a set of m
conditions (orthogonality constraints) to extract the solution.

Problem: (P )

To solve for x ∈ Rn

Project
−→

Problem: (P̃ )

To solve for x̃ ∈ K ⊆ Rn

➤ Typically: dimension m of K much smaller than n.

➤ Related ideas: Model Order Reduction (in Control); Proper Order Decom-
position (Solving PDEs); Principal Component Analysis (Stats.)
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Projection methods for linear systems

➤ Initial Problem: Ax = b

• Given subspaces K and L of dim.
m, define Projected problem:

Find x̃ ∈ K such that b−Ax̃ ⊥ L

➤ m degrees of freedom (K) + m constraints (L)→ m×m system

➤ Basic projection step. Typically a sequence of such steps are applied

➤ With a nonzero initial guess x0, approximate problem is

Find x̃ = x0 + δ, δ ∈ K such that b−Ax̃ ⊥ L→

Find δ ∈ K such that r0 −Aδ ⊥ L
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Two Important Particular Cases

❶ L = K When A is SPD then ∥x∗ − x̃∥A = minz∈K ∥x∗ − z∥A.

➤ Class of Galerkin or Orthogonal projection methods (OP) methods

➤ Important member of this class: Conjugate Gradient (CG) method

❷ L = AK In this case ∥b−Ax̃∥2 = minz∈K ∥b−Az∥2

➤ Class of Minimal Residual–type Methods (MR) methods

➤ CR, GCR, ORTHOMIN, GMRES, CGNR, ...
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Example: One-dimensional projection processes

Notation:
x == current iterate; r = b−Ax = current residual.
x̃ = new iterate

(OP) Steepest Descent K = span{r}
L = K

→ Iteration:
α := (r, r)/(Ar, r)
x̃ := x + αr

➤ When A is SPD each step minimizes f(x) = ∥x−x∗∥2A in direction −∇f .

(MR) Min. Residual
iteration:

K = span{r}
L = AK

→ Iteration:
α := (Ar, r)/(Ar,Ar)
x̃ := x + αr

➤ Each step minimizes f(x) = ∥b−Ax∥22 in direction r.
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One-dimensional projection processes

➤ Steepest descent: Cauchy [1847]. But Kantorovitch [1945] introduced it in
the form we know today for linear systems for SPD matrices:

minx
1
2
xTAx− bTx

➤ Cimmino’s method [1938] and Kaczmarz’s method [1937] were also ‘Line-
search’ type methods in the direction of a rowT or a column of A.

➤ Kaczmarz algorithm played a big role in computer tomography - (Known
as ART & Implemented in first medical scanners in 1970s)
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Third big idea: Polynomial acceleration

➤ One-dimensional projection methods are greedy, ‘short-sighted’, methods

Example: In Steepest Descent: New direction of search
r̃ is ⊥ to old direction of search r.

r ← b−Ax,
α← (r, r)/(Ar, r)
x← x + αr

Question: can we do better by combining successive iterates?

➤ Yes: Polynomial iteration, acceleration, Krylov subspace methods..
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Polynomial Acceleration

➤ Consider MR (or steepest de-
scent): xk+1 = xk + αkrk →

rk+1 = b−A(xk + αkrk)

= rk − αkArk = (I − αkA)rk

• In the end: rk+1 = (I − αkA)(I − αk−1A) · · · (I − α0A)r0 = pk+1(A)r0

➤ pk+1(t) is a polynomial of degree k + 1 of the form pk+1(t) = 1− tqk(t)

➤ Note that: xk+1 = x0 + qk(A)r0 , with deg (qk) = k

Idea: Acceleration. Build new sequence = ‘Best’
linear combination of k first iterates (

∑
ηj,k = 1)

yk =
∑k

j=0 ηj,kxj

➤ Amounts to selecting residual polynomial pk+1 that is ‘best’ in some sense
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1910: L. F. Richardson Introduced
polynomial acceleration.
Coefficients: Ad-hoc.

➤ Seems unaware of Chebyshev pols.

1952: C. Lanczos mentions Chebyshev polynomials as pre-processing in
his MR paper. Different from Chebyshev acceleration.

1953: G. Shortley invokes Chebyshev acceleration. But method impracti-
cal [3-term recurrence not exploited]

1954: D. M. Young uses Chebyshev again. Goal: complete what Richard-
son did in 1910. Uses roots of Chebyshev pol. (No 3-term recurrence)
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➤ First Chebyshev acceleration scheme that exploits 3-term recurrence:

1959: A. Blair, N. Metropolis, J. von Neumann , A. H. Taub,& M. Tsingou “A
study of a numerical solution to a two-dimensional hydrodynamical problem”

➤ And 2 years later in:

1961: G. H. Golub & R. Varga ‘semi-iterative methods’ - Footnote in 3rd
page of paper:

* This is called “Linear Acceleration” by Forsythe [5]. Professor A. H.
Taub has kindly pointed out to us that these results were known much
earlier to von Neumann, see [2].
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Chebyshev Acceleration

➤ Iteration amounts to: xk+1 = x0 + qk(A)r0 where qk = pol. of deg. k

➤ rk+1 = b−Axk+1 = [I −Aqk(A)]r0 ≡ pk+1(A)r0 −→

pk+1(t) = 1− tqk(t)
Note: pk+1 ∈ Pk+1,0 = set of Pol.s p of
degree k + 1 s.t. p(0) = 1.

Problem: Find pk+1 ∈ Pk+1,0 such that pk+1(λi) small for λi ∈ Λ(A)

➤ When A Symmetric Positive Definite (SPD): Λ(A) ⊂ [α, β] with α > 0

➤ Idea: Replace Λ(A) by [α, β]
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Chebyshev Polynomials

Problem: min
p∈Pk,0

max
t∈[α,β]

|p(t)|

Solution: Let: θ ≡ β+α
2

, δ ≡ β−α
2

.

➤ Then Solution is:
Tk(t) ≡ 1

σk
Ck

(
θ−t
δ

)
with σk ≡ Ck

(
θ
δ

)
.
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➤ Three-term recurrence for the Chebyshev polynomials leads to

σk+1 = 2
θ

δ
σk − σk−1, k = 1, 2 . . . , with: σ1 =

θ

δ
, σ0 = 1, and:
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Tk+1(t) ≡
1

σk+1

[
2
θ − t

δ
σkTk(t)− σk−1Tk−1(t)

]
k ≥ 1, (R)

=
σk

σk+1

[
2
θ − t

δ
Tk(t)−

σk−1

σk

Tk−1(t)

]
, with T1(t) = 1−

t

θ
, T0(t) = 1

Define ρk ≡
σk

σk+1

, k = 1, 2, . . . . Then above recurrences yield:{
ρk = 1

2σ1−ρk−1

Tk+1(t) = ρk

[
2
(
σ1 − t

δ

)
Tk(t)− ρk−1Tk−1(t)

]
, k ≥ 1.

➤ Above formulas can start at k = 0 if we set T−1 ≡ 0 and ρ−1 ≡ 0

Goal: to obtain an iteration that produces residual vector rk+1 = Tk+1(A)r0

Idea: Exploit difference rk+1−rk = −A(xk+1−xk) = (Tk+1(A)−Tk(A))r0.

➤ Then use recurrence (R) above. Calculations lead to algorithm:
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ALGORITHM : 1 Chebyshev Acceleration
1. r0 = b−Ax0; σ1 = θ/δ;
2. ρ0 = 1/σ1; d0 = 1

θ
r0;

3. For k = 0, . . . , until convergence Do:
4. xk+1 = xk + dk

5. rk+1 = rk −Adk

6. ρk+1 = (2σ1 − ρk)
−1;

7. dk+1 = ρk+1ρkdk +
2ρk+1

δ
rk+1

8. EndDo

Lines 7 and 4 can be
recast into udate:

xk+1 = xk + ρk

[
ρk−1(xk − xk−1) +

2

δ
(b−Axk)

]

➤ Compare this with momentum-type methods
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Fourth big idea: Krylov methods

➤ In essence: Optimal polynomial acceleration via projection

Can be viewed from
different angles:

Krylov

Subspace

Methods

Approximation 

Theory 

Polynomial

Projection

Techniques

Orthogonal

Polynomials

Acceleration

Moment matching

27 von Neumann Lecture, 08/22/2023



Krylov subspace methods for solving Ax = b

Definition: A projection
method on the subspace

K ≡ Km(A, b) = span{b,Ab, · · · , Am−1b}

➤ Approximate solution→ x̃ = p(A)b where p == pol. of deg. m− 1

(OP) Case:
A is Symmetric Positive Definite. Find x̃ ∈ K such that
b−Ax̃ ⊥ Km(A, b) . Note: f(x) = 1

2
xTAx− bTx minimized

➤ One implementation yields the Conjugate Gradient method

➤ Major breakthrough in early 1950s

Note: We assume initial guess x0 is 0. Otherwise x̃ ∈ x0 + K and K = Km(A, r0)
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Krylov methods take off: The CG algorithm

➤ Magnus Hestenes [UCLA] and Eduard Stiefel [ETH,
Zürich] developed the method of Conjugate Gradient
independently

M. Hestenes

Article:
Methods of conjugate gradients for solving linear
systems, Nat. Bur. Standards, 1952.

E. Stiefel
29 von Neumann Lecture, 08/22/2023



The CG algorithm and ‘Conics’

➤ Hestenes & Stiefel used purely geometric arguments: Ellipses, conics, ...

➤ Goal: find min. of f(x) = 1
2
(Ax, x)− (b, x)

➤ The Min. is at the center of the ellipsoids {x|f(x) = K}

Source: NIST spec. pub. 730

• Min.of f(x) on a chord reached in its middle
• Take 2 parallel chords (L1, L2)
• Line L3 joining minima is a conjugate direction
• Line L3 passes through center of ellipse
• Min. of f(x) on that line is at center
• x2 = x1 +α1p1, y1 = x2 + s2, y2 = y1 +βp1

• p2 = y2 − x2 == conjugate direction
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➤

C. Lanczos developed a similar method [different notation
and viewpoint:]
Solution of systems of linear equations by minimized
iterations, Nat. Bur. Standards (1952)

➤ A minimal residual (MR) method, implemented with ...

➤ ... the Lanczos procedure for eigenvalue problems [Lanczos ’50]

➤ Lanczos article came out in July ’52, Hestenes and Stiefel in Dec. ’52

➤ CG: Not too well received initially, viewed as an unstable, direct method...

➤ Engeli [1959]: CG ‘as iterative process’ takes 2n or 3n to ‘converge’

➤ ... until the early 1970s : paper by John Reid + analysis by Kaniel
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Krylov subspace methods for solving Ax = b, Nonsymmetric case

Definition: A projection
method on the subspace

Km(A, b) = span{b,Ab, · · · , Am−1b}

➤ Approximate solution→ x̃ = p(A)b where p == pol. of deg. m− 1

(MR) Case: Find x̃ such that b−Ax̃ ⊥ AKm(A, b) .
Note ∥b−Ax̃∥2 is minimized

➤ Implementation with orthonormal basis of Km [Arnoldi]→ GMRES (1)

➤ Other implementations:
• Axelsson’s CGLS(2) • ORTHOMIN (3)

• ORTHODIR (4) • GCR (5)

(1) YS and Schultz ’86; (2) O. Axelsson ’80; (3) Vinsome, ’76;
(4) Young & Jea ’80; (5) Eisenstat, Elman, Schultz ’83
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➤ Sample from 3 decades of prolific activity in Krylov subspace methods:

Excellent reference:

has > 1000 refs.

P.K.W. Vinsome ’76 (ORTHOMIN); P. Concus, G.H. Golub, D.P.
O’Leary ’76 (Generalized CG); C.C. Paige & M. Saunders ’82
(LSQR); V. Faber and T. Manteuffel ’84 (Faber-Manteuffel theo-
rem); P. Sonneveld, ’89 (CGS); P.N. Brown & YS ’90 (Inexact-
Newton GMRES); R. W. Freund & N.M. Nachtigal ’91 (QMR);
R. Bramley & A. Sameh ’92 (Projection methods) ; H. A. Van
der Vorst ’92 (Bi-CGSTAB); D.Y. Hu, L. Reichel ’92 (Krylov for
Sylvester equations); G.H. Golub and G. Meurant ’93 (Moments,
quadrature); N.M. Nachtigal, S.C. Reddy, L.N. Trefethen ’92
(comparing Krylov methods); R. W. Freund ’93 (TFQMR); R.W.
Freund, M.H. Gutknecht, N.M. Nachtigal ’93 (Look-ahead Lanczos) , L. Zou, H. F. Walker
’94 (residual smoothing); X.C. Cai, W.D. Gropp, D.E. Keyes, M.D. Tidriri ’94 (Newton-Krylov);
D.L. Boley ’94 (Krylov for control); P. Feldmann, R.W. Freund’ 95 (Pade via Lanczos); O.
Axelsson ’96(Book, Generalized versions of CG, CGLS,..); A Greenbaum, V Pták, Z Strakoš
’96 (Prescribed convergence of GMRES); Greenbaum ’97 (book); M. Hochbruck, C. Lubich
’97 (Krylov subs. integrators); C.C. Paige, M Rozloznik, Z Strakos ’06 (backward stability); ...
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Why is it so hard to analyze convergence in non-normal case?

➤ First analyses of convergence relied on the eigenvalues: → weak results

➤ What we now know: “there can be no sharp convergence results that
depend on eigenvalues alone” ... because :

➤ For any given spectrum, one can build a system (A and b) that will
yield a prescribed convergence of the residual norms [A. Greenbaum, Z.
Strakos’94, A. Greenbaum, V. Ptak, Z. Strakos,’96,...]

➤ Interesting counter-example-type negative result but ...

➤ ... We still don’t fully understand how Krylov methods converge

➤ Let us take a look at upper triangular matrices
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➤ Let A = D − µE0 where:

E0 random strict upper triangular matrix

µ selected to vary difficulty (non-normality)

Can select E0 to be sparse or full

D (eigenvalues) = either the identity or has some
prescribed distribution 0 100 200 300 400

nz = 2355
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Changing µ, fix D = I
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Changing spectrum - µ = 1
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Changing µ, D = clustered, Sparse case
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Observations:

� When µ≫ 1, even D = I can lead to ‘non-convergence’

� but spectrum clustered around one seems similar to case D = I

➤ Eigenvalue distribution does play a role - but not the only factor, e.g., ...

➤ ... Structure plays a role, as does degree of non-normality, etc.

➤ Difficulty of analysis boils down to this:
When D and E0 do not commute not much can be said of p(D − µE0).

➤ In contrast no issue with p(I − µE0) or p(D) (Hermitian case)
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➤ There can be no ‘sharp results’ without some assumptions on normality

➤ Can show a basic result by assuming:
❶ departure from normality not large ❷ clustering of spectrum around 1

Main idea: Assume A = D − E0 where E0 = strict Upper Triang. Then rewrite A as:
A = I − [(I −D) + E0] ≡ I − E with E = (I −D) + E0

➤ E now has entries on diagonals (small under ‘clustering’ assumption.) Take ’test

vector:’ x = x0 + q(A)r0 with q(A) = I + E + · · ·+ Ek−1.

Then GMRES residual rk at step k satisfies:
∥rk∥ ≤ ∥(I −Aq(A))r0∥ ≡ ∥Ekr0∥ ≤ ∥Ekr0∥1 −→ 0 provided: ∥E∥1 ≤ δ < 1.

� Good news: ∥E0∥ small + clustered spectrum −→ good convergence

➤ This leads to next big idea.
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Fifth big idea: Preconditioning

➤ Idea: use Krylov sub-
space method to solve

M−1Ax = M−1b preconditioner M is close
to A in some sense

➤ e.g., M = LU = incomplete LU factorization of A

➤ In effect: calling direct methods (or other methods) for help!

➤ Many other preconditioning ideas, e.g., AMG, Physics-based, Fast-
Poisson solvers, ...

1977: IC (Incomplete Cholesky) + CG (ICCG) [Meijerink and Van der Vorst]

➤ Idea of preconditioning was old – but ’77 ICCG paper was a major catalyst

➤ Preconditioned Krylov subspace methods gained enormous popularity
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Research in iterative linear algebra today

➤ Active: Preconditioners for some types of problems [Helmholtz, Maxwell,
Structures, Data related applications, ..] Parallel implementations, ...

➤ Not as active: accelerators ... Except: adaptation to new hardware

➤ Impact of floating point arithmetic

➤ Some ideas are finding their way to Data Science context, e.g.

Peaceman-Rachford’s ADI [1955] −→ ADMM

Relaxation techniques −→ Coordinate descent

Steepest Descent −→ ‘Stochatic Gradient Descent’ (SGD)

Kaczmarz −→ Randomized Kaczmarz [T. Stohmer, R. Vershyin, ’09; D.
Needell, R. Ward, N. Srebro ’14,..]
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➤ Important new consideration: randomness + statistical analysis

➤ In this context: Standard ‘optimal’ methods (e.g. CG, GMRES) not as
useful

➤ Instead: Big activity in randomized numerical linear algebra e.g. Projec-
tion on randomly generated subspaces N. Halko, P.G. Martinsson, J.A. Tropp, ’11
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So: What will be the next ‘Big Idea’ in NLA?

➤ INA experience from late 40s suggest that big ideas result from:
❶ Pressing need to solve well defined problems
❷ Bright researchers with exceptional training and vision

➤ For ❶ : Right now demand is all about ML & data-related methods

➤ What about ❷ ? We must strive to disseminate our work with a goal of
inspiring readers, one of whom may become the next big star

➤ That means: efforts to present ideas in an insightful way to spark interest

➤ + Make resources available, contribute to making science more open, ..

➤ Problem: Not so easy in current fast-paced & competitive environment
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and ...

Thank you

... for your attention
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