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Introduction: a few factoids

» Data is growing exponentially at an “alarming” rate:

e 90% of data in world today was created in last two years
e Every day, 2.3 Million terabytes (2.3 x 10'® bytes) created
» Mixed blessing: Opportunities & big challenges.
» Trend is re-shaping & energizing many research areas ...

» ... including my own: numerical linear algebra
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Introduction: What is data mining?

Set of methods and tools to extract meaningful information
or patterns from data. Broad area : data analysis, machine
learning, pattern recognition, information retrieval, ...

» Tools used: linear algebra; Statistics; Graph theory; Approx-
imation theory; Optimization; ...

» This talk: brief introduction — emphasis on linear algebra
viewpoint

» + our initial work on materials.
» Focus on “Dimension reduction methods”
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Major tool of Data Mining: Dimension reduction

» Goal is not as much to reduce size (& cost) but to:

e Reduce noise and redundancy in data before performing a
task [e.g., classification as in digit/face recognition]

e Discover important ‘features’ or ‘paramaters’

The problem: \Given: X =[xy, yx,] € R™*™ find a

low-dimens. representation Y = [y, ,y,] € R>"of X

» Achievedbyamapping @®:2x € R™ — y € R  so:

¢(mz):yza t1=1,---,n
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» dmaybelinear: y=W'z; ,ie, Y =W'X ,.

» ... or nonlinear (implicit).

» Mapping @ required to: Preserve proximity? Maximize
variance? Preserve a certain graph?
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Example: Principal Component Analysis (PCA)

In  Principal Component Analysis W is computed to maxi-
mize variance of projected data:

-
max E Yi — — E Y. y, = W x;.
WeRmX W TW =1 (3 n J y (2 1

i=1 j=1

» Leads to maximizing
T [WH(X —pe" ) (X —pe”)TW], p=_-3"

» Solution W = { dominant eigenvectors } of the covariance
matrix = Set of left singular vectors of X = X — pe'
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Unsupervised learning

PCA - digits : 5 ——7

“Unsupervised learning” . meth-
ods that do not exploit known labels
» Example of digits: perform a 2-D
projection
» Images of same digit tend to
cluster (more or less)

» Such 2-D representations are
popular for visualization

» (Can also try to find natural clus-
ters in data, e.g., in materials

» Basic clusterning technique: K-
means
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Example: Digit images (a random sample of 30)
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2-D ‘reductions’:

PCA - digits : 0 —— 4

LLE - digits : 0 —— 4
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Supervised learning: classification

Problem:  Given labels
(say “A” and “B”) for each Lo
item of a given set, finda =
mechanism to classify an
unlabelled item into either
the “A” or the “B” class. o

f)

» Many applications.
» Example: distinguish SPAM and non-SPAM messages

» (Can be extended to more than 2 classes.
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Supervised learning: classification

» Best illustration: written digits recognition example

Digit 0

" Digfit 1
Digit 2
Digit 9

1 Digit ??

Given: a set of

labeled samples mEm

(training set), and| |||/l | 111 §
an (unlabeled) test]| | ||| 2
image. Training data Test data :
Problem: find g
label of test image : §E 3 S

Digit 9
Digit ??

0000000000 - - - UDDD |

» Roughly speaking: we seek dimension reduction so that
recognition is ‘more effective’ in low-dim. space
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Basic method: K-nearest neighbors (KNN) classification

» |dea of a voting system: get

distances between test sample -~ N 4
and training samples % N L]

. :' ORI
» (et the k nearest neighbors ! ¥ 1% 9
(here k = 8) v "e :’e

[] \\\v ’

» Predominant class among o ©
these k items is assignedtothe ¥y, _ v * e

test sample (“+” here)
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Supervised learning: Linear classification

Linear classifiers: Find a hy-
perplane which best separates
the data in classes A and B.

Linear
classifier

» Note: The world in non-linear. Often this is combined with
Kernels — amounts to changing the inner product
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Linear classifiers and Fisher’s LDA

» |dea for two classes: Find a hyperplane which best sepa-
rates the data in classes A and B.

Linear
classifier
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A harder case

Spectral Bisection (PDDP)

-1

» Use kernels to transform



Projection with Kernels —— 0% = 2.7463
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Fisher’s Linear Discriminant Analysis (LDA)

Goal: Use label information to define a good projector, i.e.,
one that can ‘discriminate’ well between given classes

» Define “between scatter”: a measure of how well separated
two distinct classes are.

» Define “within scatter”: a measure of how well clustered
items of the same class are.

» QObjective: make “between scatter’” measure large and “within
scatter” small.

ldea: Find projector that maximizes the ratio of the “between
scatter” measure over “within scatter” measure

W &M 10-31-2014



Define: Where:

Sp = (k) _ k) _ ,\T  ® p=mean (X)
B kz::lnk(u “’) (IJ’ /1’) 9 o IJJ(k) — mean (Xk)

e X, = k-th class

Sw=3 Y (x;i—pu®)(@i—p")T ¢ nj = | X
k=1x; €X;

B  CLUSTER CENTROIDS
% GLOBAL CENTROID
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» Consider 2nd a’Spa = Z"k |aT(N(k) — )%
moments for a vec- =1

ores a’Swa =3 >, la"(@i—p®)P
k=1x; € X,

» a''Spa = weighted variance of projected p;’s

» a’'Swya = w. sum of variances of projected classes X;’s

» LDA projects the data so as to maxi- a’Sgpa
Imax

mize the ratio of these two numbers: a al'Swa

» Optimal a = eigenvector associated with the largest eigen-
value of: Spu; = )\zSW’u,Z .
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LDA — Extension to arbitrary dimensions

» Criterion: maximize the ratio Tr [UTssU]

of two traces: Tr [UTswU]

» Constraint: UTU = I (orthogonal projector).
» Reduced dimensiondata: Y = U X.

Common viewpoint: hard to maximize, therefore ...

» ... alternative: Solve instead max Tr [UT SpU]
the (‘easier’) problem: UTSwU=I

» Solution: largest eigenvectors of Spu; = A\;Swu; .
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LDA — Extension to arbitrary dimensions (cont.)

» Consider the original Tr[U" AU
Imax

problem: U € R, UTU=I Tr [UT BU]

Let A, B be symmetric & assume that B is semi-positive
definite with rank(B) > n — p. Then Tr [UT AU /Tr [UT BU]
has a finite maximum value p.. The maximum is reached for a
certain U, that is unique up to unitary transforms of columns.

» (Consider

f(p) = max Tr [VT(A — pB)V]
the function:

VIV=I

» Call V (p) the maximizer for an arbitrary given p.

» Note: V(p) = Set of eigenvectors - not unique
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» Define G(p) = A —

» Clearly:
f(p) = pi(p)

pB and its n eigenvalues:
pi(p) = p2(p) = -+ 2 pa(p)

p2(p) + -+ + pp(p) -

» (Can express this differently. Define eigenprojector:

P(p) =V(p)V(p)"

» Then:

flp) =Tr
= Tr
= Tr

V(p)'G(p)V(p)]
G(p)V(p)V(p)']

G(p)P(p)]

W &M 10-31-2014



»  Recall [e.g. —1/ »
P(p)=— | (G(p) —=I)""d
Kato '65] that: (p) 271 F( (p) — =2I) z

I' is a smooth curve containing the p eivenvalues of interest

> Hence: f(p) = —Tr/ G(p)(G(p) — 2I) "' dz =

— —Tr /1“ 2(G(p) — zI)" ' dz

271

»  With this, can prove :

1. f Is a non-increasing function of p;
2. f(p) = 01ff p = ps;
3. f'(p) = —Tr[V(p)" BV (p)]
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Can now use Newton’s method.

T [V(p)'(A—pB)V(p)] _ Tr[V(p)' AV (p)]

Pnew —

T [V(p)TBV (p)]  Tr[V(p)TBV(p)]
» Newton's method to find the zero of f = a fixed point

_ Tr[V(p)AV (p)]

iteration with ~ g(p) = TVI(p) BV (p)]’

» |dea: Compute V (p) by a Lanczos-type procedure
» Note: Standard problem - [not generalized] — inexpensive!
» See T. Ngo, M. Bellalij, and Y.S. 2010 for details
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Graph-based methods

» Start with a graph of data. e.g.: graph
of k nearest neighbors (k-NN graph)

Want: | Perform a projection which pre-
serves the graph in some sense

» Define a graph Laplacean:

L=D—-W
_ o 1if 3 € Ady(2) L o N
e.g.,. w”_{O olse D = diag dm—gfwz]
- J v -

with Adj (2) = neighborhood of ¢ (excluding )

W &M 10-31-2014



Example: The Laplacean eigenmaps approach

Laplacean Eigenmaps [Belkin-Niyogi '01] *minimizes*

F(Y) =) wl|lyi—y;||> subjectto YDY' =

1,7=1

Motivation: it ||x; — z;|| is small
(orig. data), we want ||y; — y,|| to be
also small (low-Dim. data)

»  Original data used indirectly
through its graph

» Leads to n X n sparse eigenvalue
problem [In ‘sample’ space]

I
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Locally Linear Embedding (Roweis-Saul-00)

» Very similar to Eigenmaps - but ...

» ... Graph Laplacean is replaced by an ‘affinity’ graph

Graph: Each x; written as a convex
combination of its k nearest neighbors:
T; R BWiiLiy ) icagji) Wi = 1
> Optimal weights computed
(local calculation’) by minimizing

||£Bz — Z’UJZJQEJH for1 = l,:--.,m

» Mapped data (Y') computed by minimizing

2
> yi — Bw;jy,|
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Implicit vs explicit mappings

» In PCA the mapping ® from high-dimensional space (R™)
to low-dimensional space (R?) is explicitly known:

y=>®(x) =Vig
» In Eigenmaps and LLE we only know
Yi = ¢(mz)az =1---,n

Mapping ¢ is complex, i.e.,
Difficult to get ¢(a) for an arbitrary « not in the sample.

Inconvenient for classification

Yy Y VY Y

“The out-of-sample extension” problem
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ONPP (Kokiopoulou and YS °05)

» Orthogonal Neighborhood Preserving Projections

» A linear (orthogonoal) version of LLE obtained by writing Y
intheformY =V 'X

» Same graph as LLE. Objective: preserve the affinity graph
(as in LEE) *but* with the constraintY = V' X

» Problem solved to obtain mapping:

VvV
st VIV =1

minTr |[VTX(I - WT)(I - W)X V|

» InLLEreplace VX by Y
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Face Recognition — background

Problem: We are given a database of images: [arrays of pixel
values]. And a test (new) image.
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Face Recognition — background

Problem: We are given a database of images: [arrays of pixel
values]. And a test (new) image.

Question: Does this new image correspond to one of those
in the database?

W &M 10-31-2014



Example: Eigenfaces [Turk-Pentland, °91]

» |dea identical with the one we saw for digits:

— Consider each picture as a (1-D) column of all pixels

— Put together into an array A of size # _pixels X #_1mages.

HEEEE N -

- 7

A

— Do an SVD of A and perform comparison with any

In low-dim. space
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Graph-based methods in a supervised setting

Graph-based methods can be adapted to supervised mode.
ldea: Build G so that nodes in the same class are neighbors.
If ¢ = # classes, G consists of ¢ cliques.

» Weight matrix W =block-diagonal (W1 \
» Note: rank(W) =n — c. W,
» As before, graph Laplacean: W =

L.=D—-—W \ Wc)

» (Can be used for ONPP and other graph based methods

» Improvement: add repulsion Laplacean [Kokiopoulou, YS
09]

W &M 10-31-2014



Class 1 class2 |Leads to eigenvalue problem
with matrix:

Lc — pLR

AV

e L. =class-Laplacean,
e Ly =repulsion Laplacean,
® p — parameter

Class 3

Test: ORL 40 subjects 10 sample Images each example:

# of pixels : 112 X 92; TOT. # images : 400

W &M 10-31-2014



ORL -- TrainPer—Class=5

0.98

| R \\\\\ //// \:\ ‘, R 4 N/
') N %, = - +-onpp
'Y e K —— °
ogelt ¥ @@ ¢ pca
f. =g= olpp—-R
osaf, & ¢ laplace
" - v =fisher
082 = =& onpp—-R
- =k=0lpp
086 | | | | | | | | J
10 20 30 40 50 60 70 80 90 100

» QObservation: some values of p yield better results than
using the optimum p obtained from maximizing trace ratio
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IR: Use of the Lanczos algorithm (J. Chen, YS °09)

» Lanczos algorithm = Projection method on Krylov subspace
Span{v, Av,--- , A™ v}

» (Can get singular vectors with Lanczos, & use them in LS

» Better: Use the Lanczos vectors directly for the projection

» K. Blom and A. Ruhe [SIMAX, vol. 26, 2005] perform a
Lanczos run for each query [expensive].

» Proposed: One Lanczos run- random initial vector. Then
use Lanczos vectors in place of singular vectors.

» In short: Results comparable to those of SVD at a much
lower cost.
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Information # Terms # Docs # queries sparsity
retrieval MED 7,014 1,033 30 0.735
datasets CRAN 3,763 1,398 225 1.412

Med Cran
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Average retrieval precision

Med dataset Cran dataset

Med Cran
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Retrieval precision comparisons
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Updating the SVD (E. Vecharynski and YS’13)

» In applications, data matrix X often updated

» Example: Information Retrieval (IR), can add documents,
add terms, change weights, ..

Problem |

Given the partial SVD of X, how to get a partial SVD of X,,ew

»  Will illustrate only with update of the form X,,c., = [ X, D]
(documents added in IR)
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Updating the SVD: Zha-Simon algorithm

» Assume A=U,X.V,' and Ap = [A,D] ,D € R™*P

» Compute Dy = (I — UU;')D and its QR factorization:
[U,, R] = qr(Dy,0), R € RP*P, U, € R™*?P

Viol' o _ [SUID
0|’ ""T|0 R

» /Zha-Simon ('99): Compute the SVD of Hp & get approxi-
mate SVD from above equation

Note: Ap=|Uy, p]HD[

» |t turns out this is a Rayleigh-Ritz projection method for the
SVD [E. Vecharynski & YS 2013]

» (Can show optimality properties as a result
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Updating the SVD

» When the number of updates is large this becomes costly.

> ldea: Replace U, by a low dimensional approximation:

» Use U of the form U = [Uy, Z;] instead of U = [Uy, U,
» Z; must capture the range of Dy, = (I — U U;")D

» Simplest idea : best rank—I| approximation using the SVD.

» (Can also use Lanczos vectors from the Golub-Kahan-Lanczos
algorithm.

W &M 10-31-2014



» LSl - with MEDLINE collection: m = 7,014 (terms), n =
1,033 (docs), k = 75 (dimension), t = 533 (initial # docs),
ng = 30 (queries)

» Adding blocks of 25 docs at a time

» The number of singular triplets of (I — UU;) D using SVD
projection (“SV”) is 2.

» For GKL approach (“GKL’) 3 GKL vectors are used
» These two methods are compared to Zha-Simon (“ZS”).

» We show average precision then time
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Retrieval accuracy, p = 25
0.75 . . : : .
—ZS
sV | | | |
0.7f'== GKL| R .

0.65

0.6

Average precision

0.5

0.45

4 | | | | |
500 600 700 800 900 1000 1100
Number of documents

» Experiments show: gain in accuracy is rather consistent
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Updating time, p = 25
04 T T T T

0.350 ..

0.3

. 0.25

0.2

Time (sec.

0.15

0.1

0.05

O | | | | |
500 600 700 800 900 1000 1100
Number of documents

» Times can be significantly better for large sets
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Data mining for materials: Materials Informatics

» Huge potential in exploiting two trends:

1 Improvements in efficiency and capabilities in computa-
tional methods for materials

2 Recent progress in data mining techniques

» Current practice: “One student, one alloy, one PhD” [see
special MRS issue on materials informatics] — Slow ..

» Data Mining: can help speed-up process, e.g., by exploring
In smarter ways

Issue 1: Who will do the work? Few researchers are familiar
with both worlds
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Issue 2: databases, and more generally sharing, not too com-
mon in materials

The inherently fragmented and multidisciplinary nature of
the materials community poses barriers to establishing
the required networks for sharing results and information.
One of the largest challenges will be encouraging scien-
tists to think of themselves not as individual researchers
but as part of a powerful network collectively analyzing
and using data generated by the larger community.
These barriers must be overcome.

NSTC report to the White House, June 2011.

» Materials genome initiative [NSF]
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Unsupervised learning

CN STRUCTURE .
g:%%gg:ﬁ%wm“ ’ » 1970s: Unsupervised
T "7 4 zinceLenoe T aosor learning “by hand”: Find
N - *CsBr . .
+ | 3§;§£%NDS v IR coordinates that will clus-
A ; ter materials according to
S 2of S T structure
oL v el » 2-D projection from
< 0® %, Y v—=——"RAgCR :
ERUES 3 C%cugs_r.:_{:%gi, physical knowledge_ |
R VR » ‘Anomaly Detection’:
el ottt 1 helped find that compound

000 050 1.00 150 200 CU F does not exist

tr = [rp(A)- rs(A)] + [rp(B)-rs(B)]
see: J. R. Chelikowsky, J. C. Phillips, Phys Rev. B 19 (1978).
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Question: Can modern data mining achieve a similar dia-
grammatic separation of structures?

» Should use only information from the two constituent atoms
» Experiment: 67 binary ‘octets’.

» Use PCA — exploit only data from 2 constituent atoms:

1. Number of valence electrons;

2. lonization energies of the s-states of the ion core;

3. lonization energies of the p-states of the ion core;

4. Radii for the s-states as determined from model potentials;

5. Radii for the p-states as determined from model potentials.
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Supervised learning: classification

Problem: classify an unknown binary compound into its
crystal structure class

» 55 compounds, 6 crystal structure classes
» “leave-one-out” experiment

Case 1: Use features 1:5 for atom A and 2:5 for atom B. No
scaling is applied.

Case 2: Features 2:5 from each atom + scale features 2 to 4
by square root of # valence electrons (feature 1)

Case 3: Features 1:5 for atom A and 2:5 for atom B. Scale
features 2 and 3 by square root of # valence electrons.
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Three methods tested

1. PCA classification. Project and do identification in space of
reduced dimension (Euclidean distance in low-dim space).

2. KNN K-nearest neighbor classification —

3. Orthogonal Neighborhood Preserving Projection (ONPP) - a
graph based method - [see Kokiopoulou, YS, 2005]

Recognition rates for 3
different methods using
different features

Case KNN ONPP PCA

Case 1 0.909 0.945 0.945
Case 2 0.945 0.945 1.000
Case 3 0.945 0.945 0.982
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» Some data is becoming available
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» Exploit Band-
sctructues - in the
same way we use
images..

» For now we do
clustering.
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» Work in progress
» 3-way clustering
obtained with dim. re-
duction + k-means —
» Working on unrav-
eling the info & explor-
Ing classification with
the data
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Conclusion

» Many, interesting new matrix problems in areas that involve
the effective mining of data

» Among the most pressing issues is that of reducing compu-
tational cost - [SVD, SDP, ..., too costly]

» Many online resources available

» Huge potential in areas like materials science though inertia
has to be overcome

» On the + side: materials genome project is starting to ener-
gize the field

» To a researcher in computational linear algebra : big tide of
change on types or problems, algorithms, frameworks, culture,



» But change should be welcome

» In the words of “Who Moved My Cheese?” [ Spencer John-
son, 2002]:

“If you do not change, you can become extinct !”
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“If you do not change, you can become extinct I”

“The quicker you let go of old cheese, the sooner you find new
cheese.”

Thank you ! |
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