
ANDERSON ACCELERATION WITH TRUNCATED GRAM-SCHMIDT

ZIYUAN TANG∗, TIANSHI XU† , HUAN HE‡ , YOUSEF SAAD∗, AND YUANZHE XI†

Abstract. Anderson Acceleration (AA) is a popular algorithm designed to enhance the convergence of fixed-point
iterations. In this paper, we introduce a variant of AA based on a Truncated Gram-Schmidt process (AATGS) which
has a few advantages over the classical AA. In particular, an attractive feature of AATGS is that its iterates obey a
three-term recurrence in the situation when it is applied to solving symmetric linear problems and this can lead to a
considerable reduction of memory and computational costs. We analyze the convergence of AATGS in both full-depth
and limited-depth scenarios and establish its equivalence to the classical AA in the linear case. We also report on
the effectiveness of AATGS through a set of numerical experiments, ranging from solving nonlinear partial differential
equations to tackling nonlinear optimization problems. In particular, the performance of the method is compared with
that of the classical AA algorithms.

Key words. Anderson Acceleration, Gram-Schmidt process, short-term recurrence, Krylov subspace, nonlinear
equations

AMS subject classifications. 65F10, 68W25, 65B99, 65N22

1. Introduction and Motivation. This paper considers numerical schemes for solving the non-
linear system of equations

(1.1) f(x) = 0,

where f is a continuously differentiable mapping from Rn to Rn. Problem (1.1) can be reformulated
as an equivalent fixed point problem

(1.2) x = g(x),

for a suitable mapping g from Rn to Rn. For example, we can set g(x) = x+ βf(x) for some nonzero
scalar β. When the fixed point iteration, i.e., the sequence generated by xj+1 = g(xj), converges to
the fixed point of (1.2) then this limit is a solution to the problem (1.1). However, the fixed-point
iteration can be slow or it can diverge and therefore acceleration methods are often invoked to improve
or establish convergence. Anderson Acceleration (AA) [1], which is equivalent to the DIIS method
- or Pulay Mixing [22, 23] in quantum chemistry, is a popular acceleration technique that has been
developed for this purpose. AA has found extensive applications in scientific computing and, more
recently, in machine learning [2, 13, 17, 19, 21, 30, 31, 32].

If the j-th iterate is denoted by xj and if we set fj ≡ f(xj), then AA starts with an initial
x0 and defines x1 = g(x0) = x0 + β0f0, where β0 > 0 is a parameter. Let mj = min{m, j} and
jm = max{0, j−m} ≡ j−mj and assume that the most recent mj iterates are saved at each step. At
step j, we define the matrices of differences:

(1.3) Xj = [∆xjm . . . ∆xj−1] ∈ Rn×mj , Fj = [∆fjm . . . ∆fj−1] ∈ Rn×mj ,

where ∆xi := xi+1 − xi and ∆fi := fi+1 − fi. Then AA defines the next iterate as follows:

xj+1 = xj + βjfj − (Xj + βjFj)θj where:(1.4)

θj = argminθ∈Rmj ∥fj −Fjθ∥2.(1.5)

Note that xj+1 can be expressed with the help of intermediate vectors:

(1.6) x̄j = xj −Xjθj , f̄j = fj −Fjθj , xj+1 = x̄j + βj f̄j .

AA is closely related to Broyden’s multi-secant type methods. This connection was initially revealed
in [8] and further discussed in [25]. Essentially, AA acts as a ‘block version’ of Broyden’s second
update method where an update of rank mj is applied at each step, instead of the traditional rank

∗Department of Computer Science and Engineering, University of Minnesota, Minneapolis (tang0389@umn.edu,
saad@umn.edu). The research of Tang and Saad is supported by the NSF award DMS 2208456.

†Department of Mathematics, Emory University, Atlanta, GA 30322 (tianshi.xu@emory.edu, yxi26@emory.edu). The
research of Xi is supported by NSF award DMS 2208412.

‡Work done in Department of Computer Science, Emory University, Atlanta, GA 30322 (hehuannb@gmail.com)

1

mailto:tang0389@umn.edu
mailto:saad@umn.edu
mailto:tianshi.xu@emory.edu
mailto:yxi26@emory.edu
mailto:hehuannb@gmail.com

2 Z. TANG, T. XU, H. HE, Y. SAAD, AND Y. XI

1 update. Note that the AA scheme just discussed retains mj past iterates where m is often called
the window size, or sometimes depth, of the AA procedure in the literature. In subsequent sections,
we will refer to this scheme as AA(m). Retaining and using all past iterates is equivalent to setting
m = ∞ in the procedure and so it will be often denoted by AA(∞). This is often referred to as the
full-depth Anderson Acceleration, while when m < ∞, AA(m) is known as a limited-depth, windowed
or truncated version of AA.

The study of the convergence of AA has been an active research area in recent years. It was shown
in [30] that the full-depth AA(∞) applied to g(x) = Gx+ b is “essentially equivalent” to the GMRES
method [27] applied to (I − G)x = b when I − G is nonsingular and the linear residuals are strictly
decreasing in the norm. Under these assumptions, the iterate xj returned by AA(∞) at step j is equal
to GxGMRES

j−1 +b where xGMRES
j−1 is the iterate returned by GMRES(j-1) with the same initial guess x0.

The first rigorous convergence analysis of AA(m) for contractive fixed point mappings was conducted
in [29] where the authors prove the q-linear convergence of the residuals for linear problems and the
local r-linear convergence for nonlinear problems when the coefficients in the linear combination remain
bounded. In addition, they also prove the q-linear convergence of the residuals for AA(1) separately.
These convergence results show that the convergence rate of AA(m) is not worse than that of the
underlying fixed point iteration. The explicit improvement of AA(m) over the underlying fixed point
iteration at each step is studied in [7] where the authors show that AA(m) can improve the convergence
rate to first order by a factor τj ≤ 1 that is equal to the ratio of ∥fj −Fjθj∥2 to ∥fj∥2. They also point
out that although AA(m) can increase the radius of convergence, AA(m) typically fails to improve the
convergence in quadratically converging fixed point iterations. The asymptotic convergence analysis
of AA(m) is conducted in [4], where the authors show that the r-linear convergence factor strongly
depends on the initial condition for the r-linearly convergent AA(m) sequence and the coefficients θj
do not converge but oscillate as the sequence converges. The one-step convergence analysis of inexact
AA(m) with a potentially non-contractive mapping is conducted in [35]. The convergence rate of
AA(m) on superlinearly and sublinearly converging fixed point iterations has recently been studied in
[24]. Recent work has also addressed the numerical stability of AA(m). The article [5] showed some
interesting theoretical results for AA(1) for linear problems, and numerically studied the least-squares
problem in AA(m). The paper emphasized that the robustness of least-squares solution techniques like
those based on the QR factorization can ensure small backward errors and accurate results without
the need for regularization. A comprehensive analysis of backward stability for approximate least-
squares solves in AA for linear problems can also be found in [16], where rigorous theoretical bounds
are exploited to minimize computational costs.

While recent studies have concentrated on the convergence of AA and on improving its convergence
properties, relatively little attention has been devoted to reducing its memory usage. One of the goals
of this paper is to address this issue. The paper develops a variant of AA that can exploit the symmetry
(or near symmetry) of the Jacobian of the function f . In doing so, the iterates will obey short-term
update expressions akin to those of the Conjugate Gradient or Conjugate Residual methods. The end
result is a substantial reduction in memory and computational costs when solving large-scale nonlinear
equations or optimization problems. Short-term recurrences often lead to numerical instabilities, and
thus the proposed algorithm may encounter numerical issues in some situations. To circumvent this
problem we introduce a restarting strategy that aims at monitoring the growth of floating point errors.

The remaining sections are organized as follows. AATGS is introduced in Section 2 which also
presents a convergence analysis. The restarting strategy is discussed in Section 3 and numerical
experiments are provided in Section 4. Finally, a few concluding remarks are drawn in Section 5.
Table 1.1 provides a summary of the notation and symbols used throughout the paper.

Symbol Description Symbol Description

fj f(xj) ∆xi xi+1 − xi

∆fi fi+1 − fi m window size
mj min{m, j} jm max{0, j −m}
Xj [∆xjm . . . ∆xj−1] Fj [∆fjm . . . ∆fj−1]

Table 1.1: List of some notation and symbols used in this paper.

ANDERSON ACCELERATION WITH TRUNCATED GRAM-SCHMDIT 3

2. Anderson Acceleration with Truncated Gram-Schmidt (AATGS). The variant of
Anderson Acceleration to be introduced in this section relies on building an orthonormal set of vectors
which will be used in place of the set Fj in AA. The idea of using an orthonormal basis in AA is not
completely new. For example, it is common to use the QR decomposition to determine the minimizer
θj in (1.5) by orthonormalizing the columns of Fj . This will lead to a process that is less prone to
numerical errors than an approach based on normal equations. However, in the limited-depth case,
this approach requires the successive QR factorization of an evolving set of vectors in which the oldest
vector is removed at each step once the buffer that stores Fj is full - which occurs when j + 1 ≥ m.
The proper way to implement this effectively in order to obtain the QR factorization of each new set of
vectors, is through a simple QR-downdating scheme, see, e.g., [30]. In this paper, we adopt a different
viewpoint, proceeding similarly to the truncated GCR algorithm [6] to produce a ‘locally’ orthonormal
basis, i.e., a basis in which the last vector is orthogonal to the most recent mj − 1 vectors instead of
all previous vectors. We will show that this variant has some advantages over classical AA.

2.1. AATGS(m). The basic idea of AATGS(m) is to exploit an evolving set of ‘locally orthonor-
mal’ vectors {qi} to simplify and improve the solution of the least-squares problem (1.5). At the j-th
step we start with mj − 1 such vectors qjm+1, qjm+2, · · · , qj−1 (when j = 0 this set is empty). We
orthonormalize ∆fj−1 against these vectors to obtain the next member qj of the set. Now the set Fj

in (1.3) is replaced by Qj = [qjm+1, · · · , qj] and so the least-squares problem (1.5) is trivial to solve:
θj = QT

j fj and f̄j = fj − Qjθj replaces the f̄j in (1.6). However, the new intermediate solution x̄j

can no longer be written as x̄j = xj − Xjθj because the sets Xj , Qj are no longer paired by a secant
condition. This can be remedied by replacing the set Xj by a set Uj = [ujm+1, ujm+2, . . . , uj] which is
paired with the qi’s. Here uj is initially set to ∆xj−1 and this is linearly combined with the previous
ui’s in exactly the same way ∆fj−1 is combined to the previous qi’s. In this way the sets Qj and Uj

are paired by a secant relation, in the sense that each qi is approximately Jui where J is the Jacobian
at xi. The relation f̄j = fj −Qjθj indicates that the correct x̄j is x̄j = xj −Ujθj and we can compute
xj+1 = x̄j + βj f̄j as before. The whole procedure is sketched as Algorithm 2.1.

Algorithm 2.1 AATGS(m)

1: Input: Function f(x), initial guess x0, window size m
2: Set f0 ≡ f(x0), x1 = x0 + β0f0, f1 ≡ f(x1)
3: for j = 1, 2, · · · , until convergence do
4: u := ∆x = xj − xj−1

5: q := ∆f = fj − fj−1

6: for i = jm + 1, . . . , j − 1 do
7: sij := (q, qi)
8: u := u− sijui

9: q := q − sijqi
10: end for
11: sjj = ∥q∥2
12: qj := q/sjj , uj := u/sjj
13: Set Qj = [qjm+1, . . . , qj], Uj = [ujm+1, . . . , uj]
14: Compute θj = Q⊤

j fj
15: xj+1 = (xj − Ujθj) + βj(fj −Qjθj)
16: fj+1 = f(xj+1)
17: end for

When m = ∞, Lines 6-10 in Algorithm 2.1 perform a modified Gram-Schmidt process to or-
thonormalize ∆fj−1 against all previous qi’s, resulting in the vector qj . When m < ∞, the same lines
of pseudocode perform an incomplete orthonormalization via a truncated Gram-Schmidt procedure
in which ∆fj−1 is orthonormalized against the previous mj − 1 vectors qi’s, resulting again in the
vector qj . In the loop the exact same linear transformation is applied to get uj from ∆xj−1 and the
previous ui’s. We prefer the modified Gram-Schmidt (MGS) to the numerically unreliable Classical
Gram-Schmidt (CGS), but we stress that CGS with reorthogonalization can also be useful in a parallel
computing environment [28]. Throughout the entire AATGS iterations, the bases Qj and Uj will al-
ways contain at most m vectors. Figure 2.1 shows an illustration of how the truncated Gram-Schmidt

4 Z. TANG, T. XU, H. HE, Y. SAAD, AND Y. XI

process operates for AATGS(3).

Figure 2.1: An illustration of the truncated Gram-Schmidt process to build the qi’s in Lines 6-10 in
Alg 2.1. In this figure, the window size is m = 3. The same picture illustrates the process for the
ui’s: the new vector ∆xj−1 is linearly combined with (instead of orthonormalized against) at most 2
previous ui’s, using the same scalars sij as for the qi’s.

Define the mj × mj upper triangular matrix Sj = {sik}i=jm+1:j,k=jm+1:j resulting from the or-
thogonalization process, where the nonzero entries sij are defined in Lines 7 and 11 of the algo-
rithm. In the full window case (m = ∞) or when j ≤ m the block in Lines 4–12 essentially per-
forms a Gram-Schmidt QR factorization of the matrix Fj , and enacts identical operations on the set
Xj = [∆xjm ,∆xjm+1, · · · ,∆xj−1]. A result of the algorithm in this particular case is that we have

(2.1) Fj = QjSj ; Xj = UjSj ,

but the above relation no longer holds when j > m.
Let us examine what happens when j = m+1, focussing on the setQj . Before the orthogonalization

begins we have Fm = QmSm. To simplify notation we set vi ≡ ∆fi−1 so that Fm = [v1, v2, · · · , vm] =
QmSm. Next the vector qm+1 is computed and before truncation is applied we actually have the
factorization: [v1, v2, · · · , vm+1] = [Qm, qm+1]Sm+1 where Sm+1 is an (m+1)×(m+1) upper triangular
matrix and qm+1 is orthogonal to q2, · · · , qm. This factorization is now truncated. Ignoring the first
column from the equality in this relation leads to (recall that Qm+1 ≡ [q2, q3, · · · , qm+1]):

[v2, · · · , vm+1] = [q1, q2, · · · , qm+1]

[
sT1

Ŝm+1

]
= q1s

T
1 +Qm+1Ŝm+1,

where, using matlab notation: sT1 ≡ Sm+1(1, 2 : m + 1), an 1 × m vector, and Ŝm+1 ≡ Sm+1(2 :
m + 1, 2 : m + 1), an m × m matrix. The end result is that the pair of matrices Qm+1 and Ŝm+1

constitute the QR factorization of [v2, · · · , vm+1]− q1s
T
1 . Note that q1 is a mutiple of v1. In the next

step the set is modified by a rank-one matrix of the form q2s
T and the process continues in the same

way adding one more rank-one perturbation at each step.
After step j of Algorithm 2.1 is applied, we would have built the orthonormal basis Qj =

[qjm+1, · · · , qj] along with a paired system Uj = [ujm+1, · · · , uj]. Note that Qj has orthonormal
columns but not Uj . The vector θj computed in Line 14 by a simple matrix-vector product, is the
least-squares solution of minθ ∥fj −Qjθ∥2. The resulting residual fj −Qjθj is not not necessarily the
same as the f̄j = fj − Xjθj of AA since the span of Fj differs from the span of Qj when j > m. Line
15 computes the next iterate xj+1 using the two paired bases Qj and Uj and θj . Note that as for
classical Anderson, we can also define x̄j and f̄j and rewrite xj+1 in the following form:

(2.2) x̄j = xj − Ujθj , f̄j = fj −Qjθj , xj+1 = x̄j + βj f̄j .

ANDERSON ACCELERATION WITH TRUNCATED GRAM-SCHMDIT 5

We mentioned the case j > m in the above discussion. It is easy to see that in the case where
j ≤ m, the subspaces spanned by Fj and Qj are identical and in this situation the iterates xj+1

resulting from AA and AATGS will be the same. In particular, when m = ∞ this will always be the
case, i.e., the full-depth AATGS(∞) and AA(∞) return the same iterate xj+1 in exact arithmetic at
each iteration and thus are mathematically equivalent.

In the next section, we will study the properties of AATGS(∞) and exhibit a particularly inter-
esting short-term recurrence of the algorithm when it is applied to symmetric linear systems.

2.2. Theoretical analysis of AATGS(∞). Consider a linear problem where f(x) = b − Ax
and A is invertible. Note that in this case we have

(2.3) Fj = −AXj .

In the next lemma, we show that the matrix Uj returned by Algorithm 2.1 forms a basis of the Krylov
subspace Kj(A, f0) and that under mild conditions, Qj , Uj satisfy the same relation as Fj ,Xj in (2.3)
for AATGS(∞).

Lemma 2.1. Assume A is invertible and f(x) = b − Ax. If Algorithm 2.1 applied for solving
f(x) = 0 with m = ∞ does not break at step j, then the system Uj forms a basis of the Krylov subspace
Kj(A, f0). In addition, the orthonormal system Qj built by Algorithm 2.1 satisfies Qj = −AUj.

Proof. We first prove Qj = −AUj by induction. When j = 1, we have q1 = (f1− f0)/s11 = −Au1.
Assume Qj−1 = −AUj−1. Then we have

sjjqj = (fj − fj−1)−
j−1∑
i=1

sijqi = −A(xj − xj−1)−
j−1∑
i=1

sij(−Aui)

= −A[(xj − xj−1)−
j−1∑
i=1

sijui]

= sjj(−Auj).

Thus, since sjj ̸= 0 we get qj = −Auj and therefore Qj = −AUj , completing the induction proof.
Next, we prove by induction that Uj forms a basis of Kj(A, f0). It is more convenient to prove by

induction the property that for each i ≤ j, Ui forms a basis of Ki(A, f0). The result is true for j = 1
since we have u1 = (x1 − x0)/s11 = β0f0/s11. Now let us assume the property is true for j − 1, i.e.,
that for each i = 1, 2, · · · , j − 1, Ui is a basis of the Krylov subspace Ki(A, f0). Then we have

sjjuj = (xj − xj−1)−
j−1∑
i=1

sijui(2.4)

= −Uj−1θj−1 + βj−1(fj−1 −Qj−1θj−1)−
j−1∑
i=1

sijui

= −Uj−1θj−1 + βj−1fj−1 − βj−1Qj−1θj−1 −
j−1∑
i=1

sijui

= βj−1fj−1 − Uj−1θj−1 + βj−1AUj−1θj−1 −
j−1∑
i=1

sijui.

The induction hypothesis shows that−Uj−1θj−1+βj−1AUj−1θj−1−
∑j−1

i=1 sijui ∈ Kj(A, f0). It remains
to show that fj−1 = b−Axj−1 ∈ Kj(A, f0). For this, we expand b−Axj−1 as

b−Axj−1 = b−Axj−1 +Axj−2 −Axj−2 + . . .−Ax1 +Ax0 −Ax0 =

j−1∑
i=1

−A(xi − xi−1) + f0.

From the relation (2.4) applied with j replaced by i, we see that xi − xi−1 is a linear combination of
u1, u2, · · · , ui, i.e., it is a member Ki by the induction hypothesis. Therefore −A(xi − xi−1) ∈ Ki+1

- but since i ≤ j − 1 then −A(xi − xi−1) ∈ Kj . The remaining term f0 is clearly in Kj . Because
Uj = −A−1Qj has full column rank and ui ∈ Kj(A, f0) for i = 1, . . . , j, Uj forms a basis of Kj(A, f0).
This completes the induction proof.

6 Z. TANG, T. XU, H. HE, Y. SAAD, AND Y. XI

From (2.2), we see that in the linear case under consideration the vector f̄j is the residual for x̄j :

(2.5) f̄j = fj −Qjθj = (b−Axj)−Qjθj = (b−Axj) +AUjθj = b−A(xj − Ujθj) = b−Ax̄j .

The next theorem shows that x̄j minimizes ∥b−Ax∥2 over the affine space x0 +Kj(A, f0).

Theorem 2.2. The vector x̄j generated at the j-th step of AATGS(∞) minimizes the residual
norm ∥b − Ax∥2 over all vectors x in the affine space x0 + Kj(A, f0). It also minimizes the same
residual norm over the subspace xk +Kj(A, f0) for any k such that 0 ≤ k ≤ j.

Proof. Consider a vector of the form x = xj−δ where δ = Ujy is an arbitrary member of Kj(A, f0).
We have

(2.6) b−Ax = b−A(xj − Ujy) = fj +AUjy = fj −Qjy.

The minimal norm ∥b − Ax∥ is reached when y = Q⊤
j fj and the corresponding optimal x is x̄j .

Therefore, x̄j is the vector x of the affine space xj + Kj(A, f0) with the smallest residual norm. We
now write x as:

x = xj − Ujy

= x0 + (x1 − x0) + (x2 − x1) + (x3 − x2) + · · · (xi+1 − xi) + · · · (xj − xj−1)− Ujy(2.7)

= x0 +∆x0 +∆x1 + · · ·+∆xj−1 − Ujy.(2.8)

We will exploit the relation obtained from the QR factorization of Algorithm 2.1, namely Xj = UjSj

in (2.1): If e is the vector of all ones, then ∆x0 +∆x1 + · · ·+∆xj−1 = Xje = UjSje. Define tj ≡ Sje.
Then, from (2.8) we obtain

(2.9) x = xj − δ = x0 − Uj [y − tj].

This means that the set of all vectors of the form xj − δ is the same as the set of all vectors of the
form x0 − δ′ where δ′ ∈ Kj(A, f0). As a result, x̄j also minimizes b−Ax over all vectors in the affine
space x0 + Kj(A, f0). The proof can be easily repeated for any k between 0 and j. The expansion
(2.7 –2.8) becomes

xj − Ujy = xk + (xk+1 − xk) + (xk+2 − xk+1) + · · · (xi+1 − xi) + · · · (xj − xj−1)− Ujy(2.10)

= xk +∆xk +∆xk+1 + · · ·+∆xj−1 − Ujy.(2.11)

The rest of the proof is similar and straightforward.

Theorem 2.2 shows that x̄j is the j-th iterate of the GMRES algorithm for solving Ax = b with
the initial guess x0 and that f̄j is the corresponding residual. The value of x̄j is independent of the
choice of βi for i ≤ j. Now consider the residual fj+1 of AATGS(∞) at step j +1. From the relations
xj+1 = x̄j + βj f̄j and (2.5) we get:

(2.12) fj+1 = b−A[x̄j + βj f̄j] = b−Ax̄j − βjAf̄j = f̄j − βjAf̄j = (I − βjA)f̄j .

This implies that the vector fj+1 is the residual for xj+1 obtained from xj+1 = x̄j + βj f̄j - which is a
simple Richardson iteration starting from the iterate x̄j . Therefore, xj+1 in Line 15 of Algorithm 2.1
is nothing but a Richardson iteration step from this GMRES iterate. This is stated in the following
proposition.

Proposition 2.3. Assume A is invertible and f(x) = b−Ax. If Algorithm 2.1 applied for solving
f(x) = 0 with m = ∞ does not break at step j+1, then the residual fj+1 of the iterate xj+1 generated
at the j-th step of AATGS(∞) is equal to (I−βjA)f̄j where f̄j = b−Ax̄j minimizes the residual norm
∥b − Ax∥2 over all vectors x in the affine space x0 + Kj(A, f0). In other words, the (j + 1)-st iterate
of AATGS(∞) can be obtained by performing one step of a Richardson iteration applied to the j-th
GMRES iterate.

A similar result has also been proved for the standard AA by Walker and Ni [30] under slightly
different assumptions.

ANDERSON ACCELERATION WITH TRUNCATED GRAM-SCHMDIT 7

2.3. Short-term recurrence in AATGS for linear symmetric problems. We now show
that the orthogonalization process (Lines 6-10 of Algorithm 2.1) simplifies in the linear symmetric case
under consideration. Indeed, we will see that Sj consists of only 3 non-zero diagonals in the upper
triangular part when A is symmetric. This implies that we only need to save qj−2, qj−1 and uj−2, uj−1

in order to generate qj and uj in the full-depth AATGS(∞). Before we prove this result, we first
examine the components of the vector Q⊤

j fj in Line 14 of Algorithm 2.1.

Lemma 2.4. When f(x) = b−Ax where A is a real non-singular symmetric matrix then the entries
of the vector θj = QT

j fj in Algorithm 2.1 are all zeros except the last two.

Proof. Let i ≤ j − 1. From (2.12), we have

(fj , qi) = (f̄j−1 − βj−1Af̄j−1, qi) = (f̄j−1, qi)− βj−1(Af̄j−1, qi).

The first term equals zero because (fj−1 − Qj−1θj−1, qi) = ((I − Qj−1Q
T
j−1)fj−1, qi) = 0. Consider

the second term:
(Af̄j−1, qi) = (f̄j−1, Aqi).

Observe that since ui ∈ Ki(A, f0), then qi = −Aui belongs to the Krylov subspace Ki+1(A, f0)
which is the same as Span{Ui+1} according to Lemma 2.1. Thus, it can be written as Aui = Ui+1y
for some y and hence, Aqi = −AUi+1y = Qi+1y, i.e., Aqi is in the span of q1, · · · , qi+1. Therefore,
recalling that f̄j−1 ⊥ Span{Qj−1}, we have:

(f̄j−1, Aqi) = 0 for i ≤ j − 2.

In the end, we obtain (fj , qi) = 0 for i ≤ j − 2.

Lemma 2.4 indicates that the computation of xj+1 in Line 15 of Algorithm 2.1 only depends on the
two most recent qi’s and ui’s. The next theorem will further show that qj and uj in Line 12 can be
computed based on qj−2, qj−1 and uj−2, uj−1 instead of all previous qi’s and ui’s.

Theorem 2.5. When f(x) = b − Ax where A is a real non-singular symmetric matrix, then the
upper triangular matrix Sk is banded with bandwidth 3, i.e., we have sij = 0 for i < j − 2.

Proof. It is notationally more convenient to consider column j + 1 of Sk where k > j. Denote
∆fj = fj+1 − fj , and ∆xj = xj+1 − xj . Consider si,j+1 = (∆fj , qi) for i ≤ j and note that
si,j+1 = −(A∆xj , qi). We note that

∆xj = xj+1 − xj = x̄j + βj f̄j − xj = xj − Ujθj + βj f̄j − xj = −Ujθj + βj f̄j .

We write

A∆xj = −AUjθj + βjAf̄j = Qjθj + βjAf̄j

= −(fj −Qjθj) + fj + βjAf̄j

= −f̄j + fj + βjAf̄j ,

and hence,

(2.13) (A∆xj , qi) = −(f̄j , qi) + (fj , qi) + βj(Af̄j , qi).

The first term on the right-hand side, (f̄j , qi) vanishes since i ≤ j. According to Lemma 2.4 the inner
product (fj , qi) is zero for i ≤ j − 2. The last term (Af̄j , qi) is equal to zero when i ≤ j − 1 as shown
in the proof of Lemma 2.4. This completes the proof as it shows that si,j+1 = 0 for i < j − 1.

Lemma 2.4 and Theorem 2.5 show that when AATGS(∞) is applied to solving linear symmetric
problems, only the two most recent qj−2, qj−1 and uj−2, uj−1 are needed to compute the next iterate
xj+1, which significantly reduces both memory and orthogonalization costs. In other words, AATGS(3)
is equivalent to AATGS(∞) in the linear symmetric case.

Corollary 2.6. When f(x) = b − Ax where A is non-singular and real symmetric, AATGS(3)
is equivalent to AATGS(∞).

Staying with the linear case, the next theorem examines the convergence rate of AATGS(∞) when
A is symmetric positive definite.

8 Z. TANG, T. XU, H. HE, Y. SAAD, AND Y. XI

Theorem 2.7. Assume that A is symmetric positive definite and that a constant β is used in
AATGS. Then we have the following error bound for the residual rAATGS

j+1 obtained at the (j + 1)-st
step of AATGS(∞):

(2.14) ∥rAATGS
j+1 ∥2 ≤ 2∥I − βA∥2

(√
κ(A)− 1√
κ(A) + 1

)j

∥r0∥2,

where κ(A) is the 2-norm condition number of A.

Proof. Based on Proposition 2.3, we have

∥rAATGS
j+1 ∥2 = ∥(I − βA)rGMRES

j ∥2,

where rGMRES
j denotes the residual associated with the j-th iterate from GMRES. Since A ∈ Rn×n is

symmetric, it admits the following eigendecomposition:

(2.15) A = UΛU⊤, U⊤U = I, Λ = diag(λ1, . . . , λn),

where 0 < λ1 ≤ λ2 ≤ · · · ≤ λn. It is known that the GMRES residual vector can be expressed as

(2.16) rGMRES
j = ρ(A)r0 = Uρ(Λ)U⊤r0, ρ ∈ Pj ,

where Pj is the affine space of polynomials p of degree j such that p(0) = 1 and

∥ρ(A)r0∥2 = min
p∈Pj

∥p(A)r0∥2 ≤ min
p∈Pj

max
i

|p(λi)|∥r0∥2(2.17)

≤ min
p∈Pj

max
λ∈[λ1,λn]

|p(λ)|∥r0∥2(2.18)

≤ ∥r0∥2
Tj(1 + 2 λ1

λn−λ1
)
,(2.19)

where Tj is the Chebyshev polynomial of first kind of degree j. The last inequality follows from well-
known results on the optimality properties of Chebyshev polynomials, see, e.g., [26]. Also note that
since

Tj(λ) ≥
1

2

(
λ+

√
λ2 − 1

)j
,

we have

Tj

(
1 + 2

λ1

λn − λ1

)
≥ 1

2

(√
κ(A) + 1√
κ(A)− 1

)j

.

Thus, we obtain

∥rAATGS
j+1 ∥2 = ∥(I − βA)rGMRES

j ∥2
= ∥(I − βA)ρ(A)r0∥2
≤ ∥(I − βA)∥2∥ρ(A)r0∥2

≤ ∥(I − βA)∥2
Tj(1 + 2 λ1

λn−λ1
)
∥r0∥2

≤ 2∥I − βA∥2

(√
κ(A)− 1√
κ(A) + 1

)j

∥r0∥2.

This completes the proof.

The convergence results can be generalized to the case where the eigenvalues of A are distributed
in two intervals excluding the origin. This result is omitted.

Another case of interest is when A is skew-symmetric. In this situation, when the βj ’s are constant,
it can be seen that the AATGS algorithm yields x2 = x1 after the first iteration, and consequently, the

ANDERSON ACCELERATION WITH TRUNCATED GRAM-SCHMDIT 9

process breaks at Line 12 due to s22 being equal to zero. To circumvent this problem, one could adjust
βj at each iteration. Alternatively, reformulating the problem f(x) itself presents another viable
strategy. An example demonstrating this approach is provided in Section 4.6 for solving minimax
optimization problems. Note that there is no issue in the interesting case when A is of the form
A = I + S where S is skew-symmetric, for which it can be shown that we do have a simplification
similar to that of the symmetric case.

2.4. Limited-depth AATGS. We now explore the limited-depth version of AATGS(m) for a
fixed m. Recall the notation jm = max{0, j − m}. At step j, Algorithm 2.1 orthogonalizes the
latest ∆f vector against qjm+1, ..., qj−1 to produce qj . We set Uj ≡ [ujm+1, ujm+2, · · · , uj−1, uj] and
Qj ≡ [qjm+1, qjm+2, · · · , qj−1, qj] in Line 13. Note that Uj and Qj have min{j,m} columns, which is
the same number of columns as the block Fj in Anderson Acceleration. As it turns out, x̄j = xj−Ujθj
satisfies a similar result to that of Theorem 2.2.

Proposition 2.8. The intermediate iterate x̄j = xj−Ujθj obtained at the j-th step of AATGS(m)
minimizes ∥b−Ax∥2 over all vectors x of the form x = xj − δ where δ ∈ Span{Uj}.

Proof. We consider a generic vector x = xj − δ where δ ∈ span{Uj} which we write as δ = Ujy.
Then Equation (2.6) in the proof of Theorem 2.2 still holds, i.e., we can write r ≡ b−Ax = fj −Qjy.
It is known that the residual norm is minimal iff r ⊥ Span{Qj}, i.e., iff: fj −Qjy ⊥ Span{Qj} which
is precisely the condition imposed to get θj . This means that x̄j minimizes ∥b−Ax∥2 over all vectors
x of the form x = xj − δ where δ ∈ Span{Uj}.
Note that this result is a little weaker than that of Theorem 2.2 which allowed the affine spaces on
which the residual norm is minimized to be of the form xk + Span{Uj} for any k between 0 and j.
Similar to the full-depth case, we may now ask whether the vector x̄j corresponds to the result of some
other classical algorithms for linear systems. One may think that there should exist an equivalence
with a similar method such as Truncated GCR (TGCR also known as ORTHOMIN, see e.g., [26]) or
one of the other Krylov methods that rely on truncation in the orthogonalization, e.g., ORTHODIR,
or DQGMRES [26]. While this is possible, we did not find an obvious result that showed such an
equivalence.

3. Restarting AATGS. Lines 6-12 of Algorithm 2.1 carry-out an orthonormalization of the
vector qj versus qjm+1, · · · , qj−1 and imposes the same operations undergone by the sequence {qi} to
the sequence {ui}. While the columns of Qj are orthonormal, those of Uj are not, and they are prone
to numerical instability. Therefore, it is essential to check for the onset of instability, especially when
the problem is neither linear nor positive definite. To take advantage of the short-term recurrence
while also preserving accuracy, we introduce a lightweight strategy to determine when a restart is
deemed necessary.

Using the same notation as in Algorithm 2.1, the propagation of Uj can be expressed in the
following matrix form:

(3.1)

uT
jm+2
...

uT
j−1

uT
j

 =

0 1
...

. . .

0 1
− sjm+1,j

sjj
− sjm+2,j

sjj
· · · − sj−1,j

sjj

uT
jm+1
...

uT
j−2

uT
j−1

+
1

sjj

0
...
0

∆xT

where ∆x := xj − xj−1. Note that the above system need not be formed explicitly. We point out that
(3.1) is applied element-wise to the columns of Uj . This means that the k-th component of uj can be
derived by applying the operations in (3.1) to the k-th element of ∆x and the k-th row of Uj , i.e., if
v(k) refers to the k-th component of a vector v, we have

(3.2) u
(k)
j =

1

sjj
∆x(k) −

j−1∑
i=jm+1

sij
sjj

u
(k)
i .

We now analyze how the accumulation of the errors from the computation of previous ui’s affect the
accuracy of the most recent uj . For this we denote the computed version of ui as ũi = ui + εi, where
εi ∈ Rn represents the error introduced during the computation of ui. We also denote the rounding
errors introduced during the computation of uj at step j − 1 by δj and we assume that

(3.3) ∥δj∥∞ ≤ C · ∥∆x∥∞/sjj

10 Z. TANG, T. XU, H. HE, Y. SAAD, AND Y. XI

where C is a constant.
Then, the perturbed version of (3.2) becomes:

(3.4) ũ
(k)
j =

1

sjj
∆x(k) −

j−1∑
i=jm+1

sij
sjj

ũ
(k)
i + δ

(k)
j .

We then substitute ũj = uj + εj and ũi = ui + εi into Equation (3.4) and subtract Equation (3.2).
This leads to:

(3.5) ε
(k)
j = −

j−1∑
i=jm+1

sij
sjj

ε
(k)
i + δ

(k)
j .

Therefore,

|ε(k)j | ≤
j−1∑

i=jm+1

|sij |
sjj

|ε(k)i |+ |δ(k)j |

≤
j−1∑

i=jm+1

|sij |
sjj

∥εi∥∞ +
C

sjj
∥∆x∥∞.(3.6)

This leads us to define the following scalar sequence wj to monitor the behavior of the bound (3.6):

wj :=

j−1∑
i=jm+1

|sij |
sjj

wi +
C

sjj
∥∆x∥∞.(3.7)

The sequence wj is just an upper bound for the infinity norm of the error vector εj and it can
be used to monitor the growth of the rounding errors. When wj exceeds a threshold η > 0, we
should discard all vectors in Uj and Qj and set jm ≡ j. The next iteration then computes ∆x and
∆f in Lines 4-5 of Algorithm 2.1 using the latest pairs xj+1, xj along with related fj+1, fj and set
wj+1 = C · ∥∆x∥∞/sj+1,j+1 to restart monitoring the growth of the rounding errors. The auto-restart
version of Algorithm 2.1 is briefly summarized in Algorithm 3.1. In the experiments section, we set
C = 1, unless otherwise specified.

Algorithm 3.1 AATGS(m) with Restarting

1: Input: Function f(x), initial guess x0, window size m, threshold η, constant C.
2: Set f0 ≡ f(x0), x1 = x0 + β0f0, f1 ≡ f(x1), w0 ≡ 0, jm = 0
3: for j = 1, 2, · · · , until convergence do
4: Update jm := max{jm, j −m}
5: Run lines 4-16 of Algorithm 2.1
6: wj := C · ∥∆x∥∞/sjj +

∑j−1
i=jm+1(|sij |/sjj)wi

7: if wj > η then
8: Set jm ≡ j and Qj ≡ [], Uj ≡ []
9: end if

10: end for

Here are some details and comments on Algorithm 3.1:
• Line 2: Same as the initialization step in Algorithm 2.1. In the implementation, we can
allocate a vector of length m to store wj ’s.

• Line 6: Note that when j − 1 < jm, i.e., in the first step after a restart, the sum in the
expression is empty and therefore equal to zero. In this case both Qj and Uj are empty. In
this situation wj := C∥∆x∥∞/sjj reflecting the fact that there are no errors propagating from
earlier steps.

• Lines 7-9: When wj surpasses the given threshold η, a restart is necessary because the
stability is compromised. For a restart, we set jm ≡ j and discard all stored vectors in Qj

and Uj . We only retain the last two iterates, xj and xj+1 as well as fj and fj+1 to continue
the process when we compute ∆x and ∆f in the next iteration. Algorithm 3.1 will generate
mathematically the same iterates as Algorithm 2.1 if this condition is not met.

ANDERSON ACCELERATION WITH TRUNCATED GRAM-SCHMDIT 11

4. Experiments. This section presents a few experiments on nonlinear problems to compare
AATGS with the standard AA. We also include the results of the fixed point iteration in our experi-
ments. Since it is common practice to add a fixed restart for AA (i.e., clearing Xj and Fj every fixed
number of iterations), we incorporate a fixed restart for both AATGS (in addition to the auto-restart
strategy discussed in Section 3) and AA. For AA, to restart after obtaining xj+1, we discard all vectors
in Xj and Fj . The next iteration then begins by computing ∆xj and ∆fj using xj+1 and xj along
with related fj+1 and fj . In the figures in this section, we use the notation AATGS[m, d] and AA[m, d]
to represent AATGS and AA with window size m and fixed restart dimension d. When d is replaced
with a ‘−’, fixed restart is disabled. Unless otherwise noted, we set the threshold parameter η in
Algorithm 3.1 to 103. Note that standard AA performance is highly dependent on window size m and
fixed restart dimension d. While we present results for only a few AA parameters, we employ a grid
search to select the best-performing AA configurations. In our tests, the max number of iterations and
stopping tolerance for the relative norm of f(x) varies based on problem size, convergence rate, and
the initial norm of f(x).

Our results demonstrate that AATGS achieves performance comparable to the standard AA
method with equivalent window sizes when applied to highly non-symmetric and nonlinear problems.
Furthermore, because of the short-term recurrence incorporated in AATGS, it outperforms AA on
problems that are close to symmetric linear, even with a much smaller window size. These experi-
ments illustrate the properties of AATGS shown in the previous sections. We also demonstrate the
effectiveness of the restarting strategy. Although it is possible to carefully tune the parameters and
generate competitive results using standard AA, the proposed auto-restart AATGS has the advantage
of not requiring the selection of the restart dimension.

All of the methods were implemented in MATLAB 2023a. We implemented AA by solving the
least-square problem shown in Equation 1.5 using the pseudo-inverse with MATLAB’s pinv function.
All experiments were conducted on the Agate cluster at the Minnesota Supercomputing Institute. The
computing node features 64 GB of memory and is equipped with two sockets, each having a 2.45GHz
AMD EPYC 7763 64-Core Processor.

4.1. Bratu Problem. In our first experiment, we solve a problem with a low degree of non-
linearity to demonstrate the benefits of the short-term recurrence in AATGS. We consider a finite
difference discretization of the followingmodified Bratu problem [11] with Dirichlet boundary condition:

∆u+ αux + λeu = 0 in Ω,

u = 0 on ∂Ω,(4.1)

where Ω = [0, 1]2. We use centered finite differences [3, 9, 34] to discretize the equation on a 202× 202
grid (including boundary points). For our boundary value problem, this discretization results in a
system of nonlinear equations with n = 200× 200 = 40, 000 unknowns of the form:

(4.2) f(v) = Av + h · αBv + h2 · λ exp(v) = 0,

where v ∈ Rn is the numerical solution at n interior grid points, h = 1/201 is the mesh size, A ∈ Rn×n

is a symmetric matrix, and B ∈ Rn×n is a skew-symmetric matrix. The fixed point iteration takes the
form:

(4.3) g(v) = v + βf(v) = v + β(Av + h · αBv + h2 · λ exp(v)).

The parameter λ in the equation influences the change rate in the Jacobian of the problem. Denoting
by J(v) the Jacobian at v, we have

(4.4) ∥J(vj+1)− J(vj)∥max ≤ h2 · λ∥ exp(vj+1)− exp(vj)∥∞,

where ∥ · ∥max is the matrix max norm. This indicates that a larger λ can potentially increase the
non-linearity of the problem. We take λ = 1 in all of our experiments so that the equation is physically
meaningful. In this case, the Jacobian’s variation is limited, resulting in an almost linear problem.
The parameter α controls the degree of symmetry of the problem. We test both symmetric (α = 0)
and non-symmetric (α ̸= 0) cases.

In all our experiments on Bratu problem, we use the zero vector as the initial solution and set the
parameter β = 1.0 for both AATGS and AA. For comparison, we also include the results of fixed point
iteration with β = 0.1.

12 Z. TANG, T. XU, H. HE, Y. SAAD, AND Y. XI

0 200 400 600 800 1000

Iteration

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

C
o

s
t

fixed point

AA [20, -]

AA [100, -]

AATGS [3, -]

0 200 400 600 800 1000

Iteration

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

C
o

s
t

fixed point

no restart [5, -]

fixed restart [5,50]

auto-restart [5, -]

0 200 400 600 800 1000

Iteration

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

C
o

s
t

fixed point

AA [5,50]

AA [20,50]

AATGS [5, -]

Figure 4.1: Bratu problem with initial solution v0 = 0 and λ = 1. (left) AATGS and AA with no
restart for symmetric Jacobian with α = 0; (middle) AATGS with no restart, a fixed restart, and
auto-restart for the non-symmetric Jacobian case. (right) AATGS with auto-restart and AA with a
fixed restart for non-symmetric Jacobian with α = 20. x-axis is the iteration number and y-axis is the
residual norm ∥f(v)∥2. Here, [·, ·] indicates the window size and the restart dimension of each method.

We begin our experiments with the symmetric case where α = 0. To highlight the benefits of
AATGS’s short-term recurrence, we compare AATGS(3) with AA(20) and AA(100), and disable the
restart for both AATGS and AA. The left panel of Figure 4.1 plots the iteration number versus the
residual norm ∥f(v)∥2. We can observe from the figure that AATGS performs better than AA in
this experiment, even with a much smaller window size. This is because when λ = 1, the problem is
close to a symmetric linear problem. In this case, AATGS(3) behaves similarly to AATGS(∞), which
is equivalent to AA(∞). This explains its superior performance compared to AA(20) and AA(100),
demonstrating the potential advantage of AATGS over AA in handling nearly linear and symmetric
problems.

Next, we set α to 20 and solve a non-symmetric problem, noting that it remains nearly linear.
We first study the performance of AATGS with different restart strategies: no restart, fixed restart
with dimension 50, and auto-restart with η = 103. Since the problem is no longer symmetric, we
slightly increase the window size to m = 5. We can observe from the middle panel of Figure 4.1
that the AATGS(5) without restart underperforms the other two options. The two restart versions
have similar performance and the auto-restart is slightly better in this experiment. This shows the
importance of restart strategies. As restart strategies can be very useful, in the following tests, we
enable restart strategies for both AATGS and AA.

Finally, we compare the performance of AATGS and AA for the same non-symmetric problem
with α = 20. We compare AATGS(5) with auto-restart (η = 103) against AA(5) and AA(20), both
with a fixed restart dimension of 50. The results, shown in the right panel of Figure 4.1, demonstrate
that AATGS(5) outperforms AA(5) and shows results comparable to those of AA(20). This indicates
that AATGS constructs a more effective subspace than standard AA even when the Jacobian is not
symmetric.

4.2. Chandrasekhar’s H-equation. Next, we evaluate our method for Chandrasekhar’s H-
equation [14]. A form of the equation can be written as:

(4.5) H(µ)−
(
1− ω

2

∫ 1

0

µH(ν)

µ+ ν
dν

)−1

= 0,

where ω ∈ [0, 1] is a parameter, and we seek a solution H ∈ C[0, 1]. We discretize (4.5) on a uniform
grid and obtain the following discretized problem [14]:

(4.6) [f(h)]i := hi −

1− ω

2n

n∑
j=1

µihj

µi + µj

−1

ANDERSON ACCELERATION WITH TRUNCATED GRAM-SCHMDIT 13

0 5 10 15 20 25 30

Iteration

10
-15

10
-10

10
-5

10
0

C
o
s
t

fixed point

AA [5,20]

AA [20,20]

AATGS [5, -]

AATGS [20, -]

0 5 10 15 20 25 30

Iteration

10
-15

10
-10

10
-5

10
0

C
o
s
t

fixed point

AA [5,20]

AA [20,20]

AATGS [5, -]

AATGS [20, -]

Figure 4.2: Chandrasekhar’s H-equation with dimension n = 1, 000. (left) The simpler case with
ω = 0.99; (right) The harder case with ω = 1.0. x-axis is the iteration number and y-axis is the
residual norm ∥f(h)∥2. Here, [·, ·] indicates the window size and the restart dimension of each method.

where h ∈ Rn is the numerical solution at n grid points, µi =
i−0.5

n for 1 ≤ i ≤ n, and the component-
wise expression of the corresponding fixed point iteration h = g(h) is given by

(4.7) [g(h)]i = hi + β[f(h)]i = hi + β

hi −

1− ω

2n

n∑
j=1

µihj

µi + µj

−1
 .

It is known that the Jacobian in this problem is non-symmetric [15], as indicated by its expression:

(4.8) [J(h)]ik = δik − ω

2n
· µi

µi + µk
·

1− ω

2n

n∑
j=1

µihj

µi + µj

−2

,

where δik = 1 if i = k and 0 otherwise. The choice of ω can have an impact on the convergence of
solution algorithms [33]. In our experiments, we set n = 1, 000 and consider cases with ω = 0.99 and
ω = 1.0, both of which require careful timing for restarts in AA and AATGS.

In this group of experiments, we use the vector of all ones as the initial solution and again set
the parameter β = 1.0 for both AATGS and AA. Since the problem size is much smaller, we apply a
smaller fixed restart dimension of 20 for AA. We compare AATGS and AA with window sizes m = 5
and m = 20 and again include results for fixed point iteration with β = 0.1. In this problem, a larger
m does not necessarily yield faster convergence, as observed from Figure 4.2 that AA(5) consistently
outperforms AA(20). Furthermore, we can see that AA(20) stagnates before a restart is triggered at
step 20, which demonstrates the usefulness of the restarting procedure in this problem. With auto-
restart, AATGS makes a stable selection of the window size, as shown by the identical performance of
AATGS(5) and AATGS(20) in both figures.

It is worth noting that a larger ω leads to a more challenging problem. When ω = 0.5, the
trajectories of AA(5), AA(20), AATGS(5), and AATGS(20) all overlap. However, when ω increases
to 0.99, AA(20) fails to catch up with the other methods. When ω = 1.0, AATGS outperforms AA.
This enhanced robustness of AATGS in dealing with numerical stability issues in the sequence of xj ’s
can also be attributed to the auto-restart strategy.

4.3. Lennard-Jones problem. Next, we evaluate the performance of AATGS when solving the
unconstrained minimization problem of the form

(4.9) min
x

ϕ(x).

We define f(x) = −∇ϕ(x), and write the fixed point iteration in the gradient descent form

(4.10) g(x) = x+ βf(x) = x+ β(−∇ϕ(x)).

14 Z. TANG, T. XU, H. HE, Y. SAAD, AND Y. XI

0 50 100 150 200

Iteration

10
-10

10
-5

10
0

E
j -

 E
m

in

fixed point

AA [3,100]

AA [3,10]

AA [20,100]

AATGS [3, -]

Figure 4.3: The Lennard-Jones problem. (left) The geometry of particles at the initial state and the
final state; (right) The results of various methods in this experiment. x-axis is the iteration number
and y-axis is the shifted energy Ej − Emin. Note that, Emin is the minimum energy achieved by all
considered methods so that the shifted energy is always positive. [·, ·] indicates the window size and
the restart dimension of each method.

Specifically, we optimize the geometry of molecules to achieve a minimum total Lennard-Jones (LJ)
potential energy. The LJ potential is defined as follows1:

(4.11) E(Y) =

N∑
i=1

i−1∑
j=1

4ϵ

[(
δ

∥Yi,: − Yj,:∥

)12

−
(

δ

∥Yi,: − Yj,:∥

)6
]
.

In this formulation, N is the number of atoms, ϵ represents the well depth, δ is the distance between
two non-bonding particles, and Y ∈ RN×3 with its i-th row Yi,: representing the coordinates of atom i.
We reformulate the problem by reshaping Y into x ∈ R3N where [x3i−2, x3i−1, x3i] = Yi,: and defining
the loss function ϕ(x) = E(Y). In our experiments, we set both ϵ and δ to 1 and simulate an Argon
cluster starting from a perturbed initial Face-Centered-Cubic (FCC) structure [18]. We took 3 cells
per direction, resulting in 27 unit cells. Given that each FCC cell includes 4 atoms, there are N = 108
atoms in total. The challenge in this problem arises from the high exponents in the potential.

Figure 4.3 (left) shows an illustration of the geometry optimization in this problem, where the
initial positions of the atoms are shown as blue dots, and the red triangles indicate the optimized
final positions, which represent a local minimum around the initial positions rather than a global
optimum. We take β = 1.5× 10−4 in our experiments for both AATGS and AA. Given that this is an
unconstrained optimization problem, the Jacobian of ∇ϕ(x) is also the Hessian of ϕ(x), which is always
symmetric. Therefore, we set the window size of AATGS to m = 3. In Figure 4.3 (right), we compare
AATGS against standard AA in three configurations. We can see that AATGS with a window size of
m = 3 and auto-restart strategy outperforms others. AA with m = 20 and a restart dimension of 100
performs similarly to AA with m = 3 and restart 10, and both surpass AA with m = 3 and a restart
dimension of 100. It again demonstrates the usefulness of the auto-restart strategy in AATGS for a
non-trivial optimization problem.

4.4. Steady Navier–Stokes equations. In our next experiment, we aim to solve a 2D lid-driven
cavity problem described by the steady Navier-Stokes equations (NSEs):

(4.12)
u · ∇u+∇p−Re−1∆u = f,

∇ · u = 0,

with the domain Ω = (0, 1)2 and the Dirichlet boundary condition (u, p) = (0, 0) on the sides and
bottom and (1, 0) on the lid. Following the settings in [20], we set the Reynolds number Re = 10, 000

1Thanks: We benefited from Stefan Goedecker’s course site at Basel University.

ANDERSON ACCELERATION WITH TRUNCATED GRAM-SCHMDIT 15

0 5 10 15 20 25 30 35 40 45 50

Iteration

10
-8

10
-6

10
-4

10
-2

10
0

10
2

C
o

s
t

Picard

AA [5, -]

AA [10, -]

AATGS [5, -]

Figure 4.4: 2D Steady Navier-Stokes equations with the Reynolds number Re = 10, 000. (left) The
streamlines of the solution given by AATGS at step 50; (right) The results of various methods in this
experiment. x-axis is the iteration number and y-axis is the residual norm of ∥Picard(v) − v∥2. [·, ·]
indicates the window size and the restart dimension of each method.

and use an initial guess of all zeros 2. The discretization results in a problem of size 190,643. Readers
can refer to [20] for details of the mesh. The fixed point iteration used by both AATGS and AA takes
the form:

(4.13) g(v) = v + βf(v) = v + β(h(v)− v),

where v is the discretization of (u, p) on grid points, and h(v) performs one step of Picard iteration
which maps v to some specific approximate solution. Details on h(v) can be found in [21].

The results in Figure 4.4 compare Picard iterations, AA with window sizes m = 5 and m = 10,
and AATGS with a window size of m = 5. A restart is not necessary in this experiment since we can
observe that both AA and AATGS converge without stagnation. We also observe that Picard iteration
fails to converge, which is likely due to the extremely large Reynolds number. Both AATGS and AA
manage to converge at a similar rate. Given the non-symmetric and nonlinear nature of this problem,
we cannot expect significant gains from AATGS over AA in this case. Indeed, the methods behave
similarly.

4.5. Regularized Logistic Regression. Regularized logistic regression is a powerful tool for
binary classification tasks, particularly when dealing with datasets that have a large number of features.
In this experiment, we investigate the application of regularized logistic regression to the Madelon
dataset 3. The training set consists of N = 2, 000 samples and n = 500 features. The objective can be
formulated as follows:

(4.14) min
θ

1

N

N∑
i=1

log(1 + exp(−yi · x⊤
i θ)) +

λ

2
∥θ∥22,

where xi represents the feature vector of the i-th sample (each feature is normalized to have a mean of
0 and a standard deviation of 1 across all samples), yi represents the label of the i-th sample (either -1
or 1 for binary classification), θ ∈ Rn is the parameter vector to be optimized, λ is the regularization
parameter that controls the balance between fitting the training data well and preventing overfitting
by penalizing large parameter values.

Figure 4.5 illustrates the shifted training loss as a function of the iteration number. We set the
fixed point iteration parameter β = 1.0, the regularization parameter λ = 0.01, and the window size
m = 3. We use the zero vector as the initial solution. In this comparison, we focus on AATGS with
varying auto-restart threshold η ranging from 101 to ∞. The results demonstrate the efficacy and

2Thanks: We would like to thank Sara Pollack and Leo G. Rebholz for sharing their 2D Steady Navier-Stokes
equation codes with us.

3https://archive.ics.uci.edu/dataset/171/madelon

https://archive.ics.uci.edu/dataset/171/madelon

16 Z. TANG, T. XU, H. HE, Y. SAAD, AND Y. XI

0 20 40 60 80 100

Iteration

10
-15

10
-10

10
-5

10
0

c
j -

 c
m

in

AATGS [3, -] = 10
1

AATGS [3, -] = 10
2

AATGS [3, -] = 10
3

AATGS [3, -] = 10
4

AATGS [3, -] = 10
5

AATGS [3, -] = 10
6

AATGS [3, -] =

Figure 4.5: The results of various η’s for the regularized logistic regression on the Madelon dataset.
x-axis is the iteration number and y-axis is the shifted training loss cj − cmin. Note that, cmin is the
minimum training loss achieved by all considered methods so that the shifted loss is always positive.
[·, ·] indicates the window size and the restart dimension of each method.

simplicity of parameter tuning for our auto-restart strategy, as the loss curves for η = 102 to 106 show
small variance. The performance deteriorates only when η = 101 – resulting in excessive, redundant
restarts – and when η = ∞ – leads to the absence of restarts. Through our testing across many
experiments, the default setting of η = 103 often delivers a sufficiently accurate solution.

In Table 4.1, we present the number of iterations (up to 1000) required for AATGS to achieve a
relative loss smaller than 10−12. The regularization parameter λ varies from 100 to 10−5, changing the
optimization problems from relatively simple to significantly difficult to solve. It is important to note
that our goal in these comparisons is not to achieve the highest accuracy but rather to elucidate the
characteristics of AATGS. With a window size of m = 3, it is observed that as the problem becomes
more challenging (with smaller λ), the number of required iterations generally increases. However,
AATGS with η = 103 to 105 always exhibits similar performance. Only extremely high or low η’s tend
to be significantly slower than other values and fail to converge within 1000 iterations. This further
confirms that η offers a broad selection range.

λ
Number of Iterations

η = 101 η = 102 η = 103 η = 104 η = 105 η = ∞
100 21 20 22 22 22 22
10−1 52 50 48 51 51 56
10−2 200 113 105 117 113 167
10−3 F F 188 173 201 418
10−4 F 473 251 209 228 F
10−5 F F 254 228 251 F

Table 4.1: A comparison of AATGS with a fixed window size m = 3 across various auto-restart
thresholds η (columns) and regularization parameters λ (rows) is presented. This table displays the
number of iterations required for AATGS to achieve a relative loss smaller than 10−12. The notation
‘F’ indicates cases where the method fails to converge within 1000 iterations.

4.6. Minimax Optimization. Bilinear games are often regarded as an important example of
understanding new algorithms and techniques for solving general minimax problems [10, 13]. In this
experiment, we study the following zero-sum bilinear games:

(4.15) min
x∈Rn

max
y∈Rn

ϕ(x, y) = xTAy + bTx+ cT y,

ANDERSON ACCELERATION WITH TRUNCATED GRAM-SCHMDIT 17

-6 -5 -4 -3 -2 -1 0 1

real 10
-5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

im
a
g

simultaneous

alternating

0 500 1000 1500 2000

Iteration

10
-2

10
-1

10
0

C
o
s
t

fixed point

AA [10,20]

AA [20,20]

AATGS [3, -]

Figure 4.6: Minimax optimization on a bilinear game. (left) Spectrum of the linear systems corre-
sponding to the simultaneous GDA and alternating GDA. x-axis is the real part and y-axis is the
imaginary part. Blue crosses represent the eigenvalues of the simultaneous GDA. Red plus signs repre-
sent the eigenvalues of the alternating GDA; (right) The results of various methods in this experiment.
x-axis is the iteration number and y-axis is the relative Euclidean distance to the optimal solution.
[·, ·] indicates the window size and the restart dimension of each method.

where A is a full-rank matrix. The Nash equilibrium to the above problem is given by (x∗, y∗) =
(−A−T c,−A−1b). We use the alternating Gradient Descent Ascent (GDA) algorithm to solve the
problem in the following form:

(4.16)

[
xj+1

yj+1

]
=

[
xj

yj

]
+ β ·

[
−∇xϕ(xj , yj)
∇yϕ(xj+1, yj)

]
=

[
I −βA

βAT I − β2ATA

] [
xj

yj

]
− β

[
b

βAT b− c

]
where the solution of the above fixed point iteration is the root of the following nonlinear equation f :

(4.17) f

([
x
y

])
:=

[
0 −A
AT −βATA

] [
x
y

]
−
[

b
βAT b− c

]
.

The coefficients of the initial problem, A ∈ R100×100, b ∈ R100, and c ∈ R100, are generated using
random numbers following the distribution N (0, 1). Subsequently, A undergoes normalization to
ensure its 2-norm equals 1. The initial guess is also generated using random numbers following the
distribution N (0, 1). The cost of this problem is defined as the relative distance to the optimal solution,
i.e., cj := ∥(xj , yj)− (x∗, y∗)∥2/∥(x∗, y∗)∥2, where (xj , yj) is the iteration at step j.

Note that Equation (4.16) is referred to as the alternating GDA since we update xj+1 and yj+1 in
an alternating manner. For the simultaneous GDA, we update xj+1 and yj+1 simultaneously. However,
this leads to a skew-symmetric linear system to solve (e.g., consider β = 0 in Equation (4.17)) which
has numerical issues as mentioned at the end of Section 2.3. Furthermore, the difference in spectra
is shown in Fig. 4.6 (left), where the eigenvalues of the coefficient matrix in simultaneous GDA are
purely imaginary, while those of the alternating GDA have small real parts. Therefore, we consider
the alternating GDA in this experiment.

In Figure 4.6 (right), we compare AATGS with standard AA under different settings. Since
the coefficient matrix defined in function f in Equation (4.17) is skew-symmetric plus a symmetric
perturbation, we expect a similar short-term recurrence in AATGS and therefore we set the window
size to m = 3. In addition, we employ the auto-restart strategy instead of a fixed restart. For the
baseline methods, we consider AA with window sizes m = 10 and m = 20, along with a fixed restart
dimension of 20. Note that we use a smaller restart dimension because both AA options fail to converge
if we use a restart dimension of 50. Moreover, we set β = 10−4 to ensure that all methods do not
diverge in most cases. We observe that after 2000 iterations, AATGS manages to converge with a
relative distance of around 0.0044, while the AAs still have relative distances of 0.69 and 0.84 from

18 Z. TANG, T. XU, H. HE, Y. SAAD, AND Y. XI

the optimal solution. This experiment illustrates the appealing behavior of AATGS in solving linear
problems that are nearly skew-symmetric.

5. Conclusion. This paper introduced what may be termed a ‘symmetric version’ of Anderson
Acceleration. When the fixed point iteration handled by Anderson Acceleration is a linear iteration,
then AA does not take advantage of symmetry in the case when the iteration matrix is also symmetric.
The Truncated Gram-Schmidt variant of AA (AATGS) introduced in this paper, addresses this issue.
AATGS is mathematically equivalent to AA when the depth of both algorithms is m = ∞. However,
when the problem is linear and symmetric, AATGS(∞) simplifies in that only a few vectors must
be saved instead of all of the previous directions generated, in order to produce the same iterates as
AA(∞). This can lead to substantial savings in memory and computational requirements for large
problems. From a practical point of view, the original AATGS algorithm without any modification
can suffer from numerical stability issues. A careful restarting strategy was developed to restart
when deemed necessary by a simple short-term scalar recurrence designed to mimic the behavior
of the numerical errors. Equipped with this artifice, the algorithm showed good robustness, often
outperforming the original AA at a lower cost. This was confirmed by a few numerical experiments,
with applications ranging from nonlinear partial differential equations to challenging optimization
problems. The numerical experiments showed that for problems whose Jacobien is nearly symmetric
and for optimization problems (Hessian is symmetric), AATGS can be vastly superior to AA and this
is expected from theory.

In the future, we plan to explore the applicability and efficacy of AATGS when applied to stochastic
optimization problems. We will also study the exploitation of information on the Jacobian during the
iteration in order to improve both robustness and efficiency, as done in [12].

6. Acknowledgements. The authors acknowledge the Minnesota Supercomputing Institute
(MSI) at the University of Minnesota for providing resources that contributed to the research results
reported within this paper (http://www.msi.umn.edu).

REFERENCES

[1] D. G. Anderson, Iterative procedures for non-linear integral equations, Assoc. Comput. Mach., 12 (1965), pp. 547–
560.

[2] W. Bian, X. Chen, and C. T. Kelley, Anderson acceleration for a class of nonsmooth fixed-point problems,
SIAM Journal on Scientific Computing, 43 (2021), pp. S1–S20.

[3] M. H. Chaudhry et al., Open-channel flow, vol. 523, Springer, 2008.
[4] H. De Sterck and Y. He, Linear asymptotic convergence of anderson acceleration: Fixed-point analysis, SIAM

Journal on Matrix Analysis and Applications, 43 (2022), pp. 1755–1783.
[5] H. De Sterck, Y. He, and O. A. Krzysik, Anderson acceleration as a krylov method with application to asymp-

totic convergence analysis, arXiv preprint arXiv:2109.14181, (2021).
[6] S. C. Eisenstat, H. C. Elman, and M. H. Schultz, Variational iterative methods for nonsymmetric systems of

linear equations, SIAM Journal on Numerical Analysis, 20 (1983), pp. 345–357.
[7] C. Evans, S. Pollock, L. G. Rebholz, and M. Xiao, A proof that anderson acceleration improves the convergence

rate in linearly converging fixed-point methods (but not in those converging quadratically), SIAM Journal on
Numerical Analysis, 58 (2020), pp. 788–810.

[8] V. Eyert, A comparative study on methods for convergence acceleration of iterative vector sequences, J. Comput.
Phys., 124 (1996), pp. 271–285.

[9] G. B. Folland, Introduction to partial differential equations, vol. 102, Princeton university press, 1995.
[10] G. Gidel, H. Berard, G. Vignoud, P. Vincent, and S. Lacoste-Julien, A variational inequality perspective on

generative adversarial networks, in 7th International Conference on Learning Representations, ICLR, 2019.
[11] M. Hajipour, A. Jajarmi, and D. Baleanu, On the accurate discretization of a highly nonlinear boundary value

problem, Numerical Algorithms, 79 (2018), pp. 679–695.
[12] H. He, Z. Tang, S. Zhao, Y. Saad, and Y. Xi, nltgcr: A class of nonlinear acceleration procedures based on

conjugate residuals, SIAM Journal on Matrix Analysis and Applications, 45 (2024), pp. 712–743.
[13] H. He, S. Zhao, Y. Xi, J. C. Ho, and Y. Saad, GDA-AM: on the effectiveness of solving min-imax optimization

via anderson mixing, in The Tenth International Conference on Learning Representations, ICLR 2022, Virtual
Event, April 25-29, 2022, OpenReview.net, 2022.

[14] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, Society for Industrial and Applied Mathe-
matics, 1995.

[15] D. Lin, H. Ye, and Z. Zhang, Explicit superlinear convergence rates of broyden’s methods in nonlinear equations,
arXiv preprint arXiv:2109.01974, (2021).

[16] M. Lupo Pasini and M. P. Laiu, Anderson acceleration with approximate calculations: Applications to scientific
computing, Numerical Linear Algebra with Applications, (2022), p. e2562.

[17] V. V. Mai and M. Johansson, Anderson acceleration of proximal gradient methods, in Proceedings of the 37th
International Conference on Machine Learning, ICML’20, JMLR.org, 2020.

http://www.msi.umn.edu

ANDERSON ACCELERATION WITH TRUNCATED GRAM-SCHMDIT 19

[18] L. Meyer, C. Barrett, and P. Haasen, New crystalline phase in solid argon and its solid solutions, The Journal
of Chemical Physics, 40 (1964), pp. 2744–2745.

[19] Y. Peng, B. Deng, J. Zhang, F. Geng, W. Qin, and L. Liu, Anderson acceleration for geometry optimization
and physics simulation, ACM Trans. Graph., 37 (2018).

[20] S. Pollock and L. G. Rebholz, Filtering for anderson acceleration, SIAM Journal on Scientific Computing, 45
(2023), pp. A1571–A1590.

[21] S. Pollock, L. G. Rebholz, and M. Xiao, Anderson-accelerated convergence of picard iterations for incompress-
ible navier–stokes equations, SIAM Journal on Numerical Analysis, 57 (2019), pp. 615–637.

[22] P. Pulay, Convergence acceleration of iterative sequences. the case of SCF iteration, Chem. Phys. Lett., 73 (1980),
pp. 393–398.

[23] , Improved SCF convergence acceleration, J. Comput. Chem., 3 (1982), pp. 556–560.
[24] L. G. Rebholz and M. Xiao, The effect of anderson acceleration on superlinear and sublinear convergence, J.

Sci. Comput., 96 (2023).
[25] H. ren Fang and Y. Saad, Two classes of multisecant methods for nonlinear acceleration, Numer Linear Algebra

Appl., 16 (2009), pp. 197–221.
[26] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edition, SIAM, Philadelpha, PA, 2003.
[27] Y. Saad and M. H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear

systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856–869.
[28] K. Swirydowicz, J. Langou, S. Ananthan, U. Yang, and S. Thomas, Low synchronization gram–schmidt and

generalized minimal residual algorithms, Numerical Linear Algebra with Applications, n/a (2020), p. e2343.
[29] A. Toth and C. T. Kelley, Convergence analysis for anderson acceleration, SIAM Journal on Numerical Analysis,

53 (2015), pp. 805–819.
[30] H. F. Walker and P. Ni, Anderson acceleration for fixed-point iterations, SIAM Journal on Numerical Analysis,

49 (2011), pp. 1715–1735.
[31] D. Wang, Y. He, and H. De Sterck, On the asymptotic linear convergence speed of anderson acceleration applied

to admm, J. Sci. Comput., 88 (2021).
[32] F. Wei, C. Bao, and Y. Liu, Stochastic anderson mixing for nonconvex stochastic optimization, in Advances

in Neural Information Processing Systems, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, eds.,
2021.

[33] F. Wei, C. Bao, Y. Liu, and G. Yang, Convergence analysis for restarted anderson mixing and beyond, arXiv
preprint arXiv:2307.02062, (2023).

[34] P. Wilmott, S. Howson, S. Howison, J. Dewynne, et al., The mathematics of financial derivatives: a student
introduction, Cambridge university press, 1995.

[35] F. Xue, One-step convergence of inexact anderson acceleration for contractive and non-contractive mappings,
Electronic Transactions on Numerical Analysis, 55 (2022), pp. 285–309.

	Introduction and Motivation
	Anderson Acceleration with Truncated Gram-Schmidt (AATGS)
	AATGS(m)
	Theoretical analysis of AATGS()
	Short-term recurrence in AATGS for linear symmetric problems
	Limited-depth AATGS

	Restarting AATGS
	Experiments
	Bratu Problem
	Chandrasekhar's H-equation
	Lennard-Jones problem
	Steady Navier–Stokes equations
	Regularized Logistic Regression
	Minimax Optimization

	Conclusion
	Acknowledgements
	References

