Non-standard parallel solution strategies for
distributed sparse linear systems*

Yousef Saad! and Maria Sosonkina?

! Department of Computer Science and Engineering, University of Minnesota,
Minneapolis, MM 55455, USA|
saad@cs.umn.edu,
WWW home page: http://www.cs.umn.edu/ saad
? Department of Computer Science, University of Minnesota, Duluth, 320 Heller
Hall, 10 University Drive, Duluth, Minnesota 55812-2496. masha®d.umn.edu.

Abstract. A number of techniques are described for solving sparse lin-
ear systems on parallel platforms. The general approach used is a domain-
decomposition type method in which a processor is assigned a certain
number of rows of the linear system to be solved. Strategies that are
discussed include non-standard graph partitioners, and a forced load-
balance technique for the local iterations. A common practice when par-
titioning a graph is to seek to minimize the number of cut-edges and
to have an equal number of equations per processor. It is shown that
partitioners that take into account the values of the matrix entries may
be more effective.

1 Introduction

Recent years have seen a maturation of parallel processing to a point where the
methodology is now beginning to enter many engineering and scientific appli-
cations. The innermost part of these applications often requires the solution of
large sparse linear systems of equations. The most common architecture used
is that of a distributed memory computer, using MPI for message passing. The
most natural process for solving Partial Differential Equations and sparse lin-
ear systems on distributed memory computers is to employ strategies based on
domain decomposition. A typical finite element simulation for example, requires
the following steps: (1) The physical mesh is generated, typically on one pro-
cessor; (2) The mesh is partitioned using a number of publically available tools;
(3) The element matrices and right-hand sides are generated in each processor
independently; (4) Finally, a solution process, typically based on iterative meth-
ods, for the resulting distributed system is undertaken. This course of action
seems natural and straightforward. It comes, however, with a few challenging
questions.

The first of them is related to partitioning. What partitioning approaches
will lead to the best overall performance of the solver? Most current partitioners

* Work supported by NSF under grant CCR-9618827, and in part by the Minnesota
Supercomputer Institute.



II

will simply divide up the graph aiming at obtaining about the same number of
points in each processor and at reducing the number of edge cuts. A number
of heuristics have been developed with this strategy in mind, see e.g., [10,7,
13]. However, it is easy to imagine that this is far from perfect. First, if load
balancing is the main criterion (ignoring communication for a moment) then
clearly, the number of points assigned to each processor is not a good measure.
One can imagine, for example, a technique based on attempting to equalize the
time spent on matrix-vector products in which case, an algorithm that would
distribute edges rather than vertices equally would be more appropriate. These
two strategies may lead to a similar distribution in many cases, but not always.
Another rather complex issue is that the partitioning can affect the quality of the
preconditioning in a way that is hard to predict. We may obtain a partitioning
that has perfect load balance and a minimal number of cut-edges but which may
lead to an unacceptable increase in the number of iterations. This happens almost
systematically when the matrix arises from highly discontinuous problems.

This paper illustrates these issues by devising a number of alternative strate-
gies that can be used for partitioning a graph and reducing idle time during an
iteration. The intent is not to develop a new general method but rather to show
that a few alternative approaches can lead to effective solution methods.

2 Graph Partitioning Concepts

The very first task that a programmer faces when solving a problem on a dis-
tributed memory parallel computer, be it a dense or a sparse linear system is
to decide how to map the data into the processors. We call a map of V', any set
Vi, Va, ..., Vs, of subsets of the vertex set V', whose union is equal to V:

v,cv, Jwv=w

i=1,s

When all the subsets V; are not pairwise disjoint, the term partition conflicts
with common usage, but we will use the term overlapping partition in this case.
The most general way of describing a node-to-processor mapping is to set up a
list, containing all the nodes that are mapped to each processor. Thus, in the
example shown in Figure 1, the list {1,2, 5,6} is assigned to Processor 1, the list
{3,4} is assigned to Processor 2, the list {7,8,11,12} is assigned to Processor 3,
and the list {9,101} is assigned to Processor 4. Another representation which is
sometimes useful is to set-up an array which lists for each node the processor to
which it belongs. This is important when setting up the local data structure in
the preprocessing phase of domain decomposition type algorithms [16].

There has been a flurry of activity in finding good partitionings of graphs.
Among the most popular techniques are the spectral bisection method [13] and
Metis [10]. These methods attempt to provide a partition that will have good
load balancing and a small number of edge cuts. A few algorithms to accomplish
this have been described in [1,6,13,12,4,7,10].



II1

S~ = 7
1

HO, (1o—+—(1) ) |
| P I |
L] | __J I
] 1 Pa |
I I I
(o o U B D |
|<5/ 6 7 \@l
I I I
I I I
I Py r~——t1-————- Bl
l I P, I
Lo __Z__ 1__~______Z 4

Fig. 1. Mapping of a simple 4 x 3 mesh to 4 processors.

2.1 A few graph-based partitioners

The Breadth-First-Search (BFS) algorithm is at the basis of many partitioning
techniques, including those to be described in this paper. BFS is essentially a
level-by-level traversal of a graph. It starts with a given vertex vg which will
constitute the level 0. Then all nodes adjacent to vy will be visited — and these
constitute level 1. In the third step, all non-visited vertices that are adjacent to
vertices belonging to level 1, will be visited and they will constitute Level 2, etc.

We note that BFS does need not start with a single node. We can, for exam-
ple, start with a known level, i.e., a set of nodes forming a string of connected
nodes. The one-way partitioning algorithm simply traverse the nodes in the
Breadth-First-Search order and assigns nodes to partitions until a given number
of assigned nodes is reached.

ALGORITHM 21 One-way-partitioning using level-sets

1. Input: nlev, levels, ip (number of nodes per partition)
2. Qutput: ndom, node-to-processor list.

3. Start: ndom = 1; siz = 0;

4. Loop: For lev =1, nlev Do

5. For each j in levels(lev) Do

6. add j to dom(ndom); siz = siz+1;

7. If (siz .ge. ip) then

8. ndom = ndom+1; siz = 0;

9. EndIf

10. EndDo

In an actual implementation, some care must be exercised to obtain equal
sized domains, and to avoid having a last subdomain consisting of the points



v

that are left-over in the very last step. For example, if n = 101 and ip = 10,
we will have 10 subdomains of size 10 each and one of size one. This can be
prevented by adjusting the ip parameter as we proceed. Two-way partitioning
consists of two applications of one-way partitionings. In a first pass we determine
a one-way partition. Then each of the subdomains created is again partitioned
using the one-way partitioning algorithm. This strategy will be referred to as the
“double-striping” algorithm. It uses 2 parameters: p; the number of partitions
in the first one-way partitioning, and p, the number of sub-partitions in each of
the p; partitions resulting from the first pass.

A critical ingredient in the efficiency of the procedure is the starting node.
A well-known procedure for this is a heuristic for finding a so-called pseudo-
peripheral node [5]. This procedure starts with an arbitrary node z and performs
a BFS from this node. It then records the node y that is farthest away from x
and the corresponding distance dist(z,y). We then assign z := y and perform a
new traversal from z. We repeat the process and stop when dist(x,y) does not
vary between two successive traversals.

2.2 Level-set expansion algorithms

As was noted earlier, the Breadth First Search traversal can start from several
independent vertices at once instead of one node only. Level-set expansion al-
gorithms consist of building the subdomains by a using a BFS traversal from
a number of centers. Thus, these algorithms consist of two phases. The first
phase finds ‘center’ nodes for each partition from which to expand each subdo-
main. Ideally, these centers are vertices that are far apart from one another, in
a graph theory sense. In the second phase these points are used to generate the
subdomains using a BFS expansion from them.

Next, we present a version of the algorithm that is sequential with respect
to the domains but it is clear that the process is inherently parallel.

ALGORITHM 22 Level-set-expansion

1 Start:

2 Find an initial set of ‘coarse mesh’ vertices 3. v1,...,Undom
4 Fori=1,2,...,ndom Do label(v;) := 1.

5. Define levset := {v1,...,Undom } and nodes = ndom

6. 2. Loop: While (nodes <n) Do

7. Next_levset = ¢

8 For each v; in levset Do

9 for each neighbor vy, of vj s.t. label(vy) = 0 Do

10. Next_levset := Next levset | J{v}
11. label (vy) = label(v;)

12. nodes = nodes + 1

13. EndDo

14. EndDo

15. levset := Next_levset



16. EndWhile

The algorithm starts with one node in each processor then expands by adding
level sets until all points are labeled. The indicator that is assigned on each node
to indicate whether or not the note has already been visited is now a label
and the vertices will inherit the labels of their parents in the traversal process.
At the end, all nodes having the same label will constitute a subdomain. We
must assume here that the initial graph is connected or that there is at least
one starting node in each connected component. The parallel version of this
algorithm consists of assigning each starting node to a different processor, then
expanding the level sets independently. At some point there will be conflicts,
i.e., two processors will attempt to ‘acquire’ the same node which belongs to
two level sets originating from two different starting nodes. In such cases, the
host program must arbitrate. Our current implementation uses a first-come first
served rule, but there are several possible improvements which are not considered
here.

The next question is how to find the center points. There are at least three
possible options. First, if a coarse mesh is already available from the discretiza-
tion then the nodes of this mesh can be taken as the centers. If a coarse mesh is
not available we can alternatively use points provided from a two-way partition-
ing algorithm. Second, if the coordinates of the nodes are available then one can
easily select the centers from simple geometrical considerations. For example,
for a rectangular 2-D mesh, we can choose points that are uniformly distributed
in each direction. Other alternatives are required for the cases where only the
graph is known and coordinate information is not available.

In general, the two-way partitioning algorithm does not provide as good
a splitting of the graph as some of the well-known alternatives such as the
Recursive Spectral Bisection technique [13]. It is, however, rather inexpensive
to obtain. As a result, we can use this partitioning only to get the centers for
the Level-Set Expansion. For example, we can simply take the middle node in
the subdomain as a center. The resulting partitioning will be far better than the
original two-way partitioning in general. An illustration of the process is given
in Figure 2.

2.3 Partitioning strategies using shortest path methods

Partitioning is a form of reordering and as such it may have an important effect
on the quality of partitioning. The purpose of this section is only to illustrate this
point and propose, not a solution, but some general guidelines toward developing
effective partitioners for iterative solvers.

The key point is to take into account the matrix values when partitioning the
problem. This can be done using weights on edges. The weight values are based
on the absolute magnitudes of the matrix entries associated with the edges. In
particular, if e;; is the edge connecting vertices i and j, then the weight w(e;;)
of this edge is 1/(1 + |aij| + |aji|), where both matrix entries a;; and aj; are



VI

associated with edge e;; under the assumption that the matrix is structurally
symmetric. The hypothesis used here is that keeping together those nodes which
are strongly coupled would lead to a better preconditioning. Weights have been
used in partitioning methods, such as those developed in public domain codes. A
drawback of such partitionings, however, is that the decision with respect to the
weights is made only locally, that is, the weights are considered only to choose
among the possible edge-cut candidates.

To achieve a better quality preconditioning, we would like to “propagate”
the weight-related information and group together several matrix entries whose
added weights are small. The shortest path algorithm may be employed for this
purpose. This algorithm finds the path with the smallest weight from a given
node to all the nodes in a graph. Note that this shortest path algorithm starts
with a single node. Finding the shortest path results in recording one by one
the nodes constituting this path in a proper order, which we will call a shortest-
path ordering. Then the nodes are gathered in the subdomains based on this
shortest-path ordering rather than on a level-set ordering. At the same time, we
would like to keep the edge cut small, i.e., we do not let any shortest path have
a large number of (cheap) links. In other words, we would like to preserve the
quality of partitions produced by a level-set expansion from the chosen center
points. Thus, we introduce a weight coefficient indicating the relative location of
a node in the level-set structure produced by BFS starting from a center point.
For each edge e;;, this coefficient may be computed, for example, as the sum of
the levels at which the incident with this edge nodes are located. In general, the
partitioning algorithm consists of the following major steps:

Find domain centers.

Do level-set expansion from these centers.
Record the level for each node.

Compute the weight coefficients.
Multiply weights by the coefficients.

Do shortest path ordering of the nodes.
Collect nodes into subdomains.

N ot N

The full shortest-path algorithm is quite expensive: A standard implementation
costs O((|V| + |E|) log|V]). Thus, some heuristic approximations were used in-
stead of the complete shortest path algorithm. A test has been performed on
the RAEFSKY3 matrix [2]. This matrix is of size 21,200 and has 1,488,768
of nonzeros. The Schur-LU preconditioner [17] has been applied to solve the
corresponding linear system using FGMRES(20) [15] on 16 processors. A brief
description of the Schur-LU preconditioner is given in Section 3. Table 1 shows a
comparison between using a standard level-set expansion versus a method using
a full shortest-path ordering in the expansion. The times are in seconds on the
Paragon parallel computer. Note that these timings measure the solution phase
only. The major time gains occur in the preconditioning phase — 142.04 vs.
97.84 seconds — which is not surprising since the preconditioning application,
being expensive, benefits the most from improving the quality of the local ma-



VII

trices. The importance of using the knowledge of matrix values in partitioning
can be demonstrated in another example discussed next.

Time (Iterations
Standard 175.27 161
Shortest-Path|122.95 106
Table 1. Impact of two different partitioning strategies on the performance of the
Schur-LU preconditioner.

2.4 Partitioning for problems with discontinuities

Consider an elliptic partial differential equation of the form

0 (a@) 9 (b@> - (1)
oxr \ Ox oy \ Oy

on rectangular regions with general mixed-type boundary conditions. In the test
problems, the regions are the square 2 = (0,1)2, or the cube 2 = (0,1)3; the
Dirichlet condition v = 0 is always used on the boundary. Only the discretized
matrix is of importance, since the right-hand side will be created artificially.
Therefore, the right-hand side h is not relevant here. The mesh is 96x96 grid
points per processor, meaning that the problem size is scaled with the number of
processors: the more processor used, the larger the problem solved. For example,
on 4 processors, the problem size is 96 x 96 x 4 = 36, 864; on 16 processors, the
problem size is 96 x 96 x 16 = 147,456.

In the region 0.25 < z,y < 0.75, the coefficient a = 100 (Figure 3) and a =1
elsewhere, while the function b is constant and equal to 1. We can partition the
resulting mesh without consideration given to the coeflicients or we can partition
it by trying to ensure that the discontinuity lines will not cross subdomains.
Having coeflicients a = 100 and b = 1 in the region creates the discontinuity in
only one direction, which already shows the advantages of treating this region
separately and allows a greater freedom in partitioning it separately. We use
a two-way level-set partitioning (“double-stripe”) as described in Section 2.1.
This consists of taking a pseudo-peripheral node [5], then doing a breadth-first
traversal from the peripheral node and keeping as many levels in the traversal
as needed to have about n/p; nodes in each processor. The process is repeated
to partition each of the resulting subgraphs into ps subpartitions. The result is
a partition into p = p1 X p2 subgraphs, where p must be multiple of 4 in our
example.

Table 2 shows the solution times using this algorithm (DoubleStripe) and its
modification (DoubleStripem) in which the partitioning is done in two phases.
First, the double-stripe algorithm is applied to the area outside the region (“low



VIII

coefficient a” area) only to partition it into 3p/4 processors (Figure 4—left).
Second, the rest of the processors (p/4) is assigned to the “high coefficient a”
area inside the region using the same algorithm.

Time Iterations
PEs 16| 24| 48|(16| 24| 48
DoubleStripe [9.66|14.34(51.29|81(132|341
DoubleStripe_m|5.58| 6.33| 6.17|[50| 61| 58
ByHand 6.39(12.73| 9.98|(52|{120| 87
ByHand m 6.3| 7.34| 7.25(|53| 62| 59
Table 2. Solution times (Paragon seconds), numbers of outer iterations for the Schur-
LU preconditioner with four different partitioning strategies.

One might argue that using a general purpose partitioning for this problem
is not adequate since we can do the partitioning “By hand”, i.e., provide a
rectangular partitioning for this regular mesh. In Table 2, ByHand represents
such a partitioning. To consider separately the “low coefficient a” region, we
proceed in the same way as with double-stripe partitioning and assign the region
to the p/4 processors as shown in Figure 4(right). The results for the two-phase
partitioning “By hand” are labeled ByHand m in Table 2.

3 Solution of Distributed Sparse Systems

A distributed sparse linear system is a collection of sets of equations that are
assigned to different processors. Each equation of the global linear system must
be assigned to at least one processor. When equation number ¢ is assigned to
processor p, it is always assumed that the corresponding variable 7 is also as-
signed to processor p. A pair consisting of an equation and the corresponding
unknown is sometimes referred to as a node. Overlapping refers to situations in
which a given node is assigned to more that one processor. The parallel solution
of a sparse linear system begins with partitioning the adjacency graph of the
coefficient matrix. The linear system is then distributed by assigning the equa-
tions to processors according to the partitioning. When this is done, three types
of unknowns can be distinguished: (1) Interior unknowns that are coupled only
with local equations; (2) Local interface unknowns that are coupled with both
non-local (external) and local equations; and (3) External interface unknowns
that belong to other subdomains and are coupled with local equations. This set-
ting which is illustrated in Figure 5, is common to most packages for parallel
iterative solution methods [14, 16,8,19,19, 3,18, 9].

The matrix assigned to a certain processor is split into two parts: the local
matrix A;, which acts on the local variables and an interface matriz X;, which
acts on the external variables. Accordingly, the local equations can be written



IX

as follows:

Az + XiYi eat = bi. (2)
where z; represents the vector of local unknowns, y; ..+ are the external interface
variables, and b; is the local part of the right-hand side vector. It is common
to reorder the local equations in such a way that the interface points are listed
last after the interior points. This ordering leads to an improved interprocessor
communication and to reduced local indirect addressing during matrix-vector
multiplication. Thus, the local variables form a local vector of unknowns z;
which is split into two parts: the subvector w; of internal vector components
followed by the subvector y; of local interface vector components. The right-
hand side b; is conformally split into the subvectors f; and g;. When the block
is partitioned according to this splitting, the local equations (2) can be written

as follows: B F 5
1 1 k3 — k3 i 3
(Ei Ci) (y) - (Zjem- Eijyj) <9i) ®)

Here, N; is the set of indices for subdomains that are neighbors to the sub-
domain i. The term FE;;y; is a part of the product Xjy; e;¢ which reflects the
contribution to the local equation from the neighboring subdomain j. The result
of the multiplication by X; affects only the local interface unknowns, which is
indicated by a zero in the top part of the second term of the left-hand side of

3).

3.1 Distributed Krylov subspace solvers

Implementation issues when developing Preconditioned Krylov subspace algo-
rithms for solving distributed sparse systems have been discussed elsewhere,
see e.g., [16,8,19,3,15]. Once the data structure associated with the local data
has been built in each processor, then the operations required for implement-
ing a Krylov subspace method are (1) vector operations such as SAXPY and
dot products, (2) matrix vector products, and (3) preconditioning operations.
The SAXPY operations are entirely local, since vectors are all partitioned con-
formally. The dot products require a global sum of partial inner products. This
reduction operation requires communication but if the domains are large enough,
the related overhead is usually small.

To multiply a given vector x by the global matrix, we only need to multiply
the local matrix by the local part of z to obtain a vector z then get the external
interface variables, multiply them by the X matrix and add the result to z. Thus,
there are three costs to be added: the cost of the local matvec, then the cost of
the exchange of interface data and finally the cost of the second matvec.

The most important operation when solving distributed sparse linear systems
is undoubtedly the preconditioning operation. A discussion of preconditioners is
beyond the scope of this paper. Here we only discuss two such methods for the
sake of completeness.

The simplest domain-decomposition preconditioner is the additive Schwarz
procedure, which is a form of the block Jacobi iteration, where the blocks refer
to matrices associated with entire subdomains.



X

ALGORITHM 31 Additive Schwarz

1. Obtain external data y; eqt

2. Compute (update) local residual r; = (b — Az); = b — Aixi — XiViewt
3. Solve A,(S, =T

4. Update solution x; = x; + 6;

The systems which arise in line 3, are solved by either a standard (sequential)
ILUT preconditioner [15] combined with GMRES or the application of one ILU
preconditioning operation. Of particular interest in this context are the overlap-
ping additive Schwarz methods. In the domain decomposition literature [18] it
is known that overlapping is a good strategy to reduce the number of steps.

Another preconditioning method described in [17] is the Schur-LU precon-
ditioner. The main step in this technique is to solve approximately the Schur
complement system, i.e., the (global) system which involves the interface vari-
ables y. This system is obtained by eliminating the variable u; from equation (3),
using the first equation. This global system in y can be solved approximately by
a form of block Jacobi preconditioner. An ILUT factorization for the matrix A;
yields as a by-product an ILUT factorization for the local Schur complement.
This is used to precondition the global Schur system. Once the approximation
to the y variable is obtained, the u variables are extracted. The step of obtaining
the approximate u;, y; pair in this manner from a right-hand side constitutes one
step of the Schur-LU preconditioner. For further details, see [17].

3.2 Reducing idle time in preconditioning operations

For the local preconditioning strategies, such as Additive Schwarz, the amount of
work each processor accomplishes in the preconditioning application is different
and depends on the properties of the local submatrices. Since the properties of
the local submatrices may vary greatly, the times of the preconditioning phase
may also differ substantially leading to a load imbalance among processors. Thus
when the processor synchronizations take place (in the orthogonalization phase
of FGMRES and during the matrix-vector product computation), the processors
with a small preconditioning workload must wait for the rest of the processors.
One way to avoid this idling is to force all the processors to spend the same
time in the preconditioning application in each outer iteration. The rationale is
that it is better to spend the time that would otherwise be wasted, to perform
more iterations in the “faster” processors. A better accuracy may be achieved
in these processors which would eventually propagate to others, resulting in
a reduction of the number of iterations. The time may be fixed, for example,
based on the time required by the processor with the largest workload to apply
a preconditioning step.

There are several approaches to control the “fixed-time” condition for an Ad-
ditive Schwarz application which uses an iterative process (say, preconditioned
GMRES). One of these approaches is to change the number of inner iterations at



XI

a certain iteration of FGMRES for each processor based on some criterion com-
paring the time of the previous preconditioning step. Thus the processors with
small workloads will proceed for more iterations and compute a more accurate
preconditioning vector. As a result, the number of the outer iterations may be
reduced.

In testing this approach, the following iteration adjustment has been deter-
mined experimentally and applied after each preconditioning step in processor
i, i=1,...,p): . . . _ .

if (A% >nj_1/3) nj=n;_1+A4],

where n; is the number of the inner iterations in the jth iteration of FGMRES;

Aj. is the number of iterations that processor ¢ can fit into the time to be wasted
in idling otherwise at the (next) jth outer iteration of FGMRES. Specifically,

. (Tmax — THN?
o R I

where Tinax is the maximum time among all the processors and T the time for
processor i to perform preconditioning operations during j — 1 previous outer
iterations, N* is the total number of preconditioning operations performed by
processor ¢ so far. The number of inner iterations n; can be updated provided
that the limit ny, on the number of inner iterations is not reached. Figure 6
compares the time and iteration results for the standard (Jacobi in Figure 6)
and the “fixed-time” (Jacobi_ft in Figure 6) Additive Schwatz preconditionings
accelerated with FGMRES(20). The experiments have been performed on the
IBM SP with the problem AF23560 from the Harwell-Boeing collection [2]. This
problem has 23,560 unknowns and 484,256 nonzeros in the matrix. The precon-
ditioning phase consists of ILUT-preconditioned GMRES(20) with the following
parameters: 1£i1=25, n{ = 5, nyi, = 20, and the relative accuracy of 10~ 2. Note
that this accuracy is increased to the accuracy of FGMRES (10~ 8) whenever n!
is increased for the “fixed-time” algorithm. Figure 6 indicates that Jacobi_ft
exhibits a better overall performance on a wide range of processor numbers, thus
showing an advantage of forced load balancing. Earlier testings of this approach
with a slightly different criterion, reported in [11] for small processor numbers,
are in agreement with our numerical experiments.

4 Conclusion

A few strategies have been described for enhancing the performance of precon-
ditioned Krylov subspace methods for solving distributed sparse linear systems.
The techniques described show that much can be gained from using partitioners
that take into account the values of the matrix entries. In addition, the standard
stopping criteria used when iterating locally in a processor may lead to wasted
idle time, either because of load imbalance or because some subdomain systems
are much easier to solve than others. We found that some improvements can be
made by simply forcing all processors to iterate about the same amount of time.



XII

Such non-standard heuristics may be necessary because the impact of a given
partitioning on the overall preconditioner is difficult to predict or analyze.

References

1. X. C. Cai and Y. Saad. Overlapping domain decomposition algorithms for general
sparse matrices. Numerical Linear Algebra with Applications, 3:221-237, 1996.

2. 1. S. Duff, R. G. Grimes, and J. G. Lewis. Sparse matrix test problems. ACM
Transactions on Mathematical Software, 15:1-14, 1989.

3. V. Eijkhout and T. Chan. ParPre a parallel preconditioners package, reference
manual for version 2.0.17. Technical Report CAM Report 97-24, UCLA, 1997.

4. C. Farhat and M. Lesoinne. Mesh partitioning algorithms for the parallel solution
of partial differential equations. Applied Numerical Mathematics, 12, 1993.

5. J. A. George and J. W. Liu. Computer Solution of Large Sparse Positive Definite
Systems. Prentice-Hall, Englewood Cliffs, NJ, 1981.

6. T. Goehring and Y. Saad. Heuristic algorithms for automatic graph partitioning.
Technical Report UMSI 94-29, University of Minnesota Supercomputer Institute,
Minneapolis, MN, February 1994.

7. B. Hendrickson and R. Leland. An improved spectral graph partitioning algorithm
for mapping parallel computations. Technical Report SAND92-1460, UC-405, San-
dia National Laboratories, Albuquerque, NM, 1992.

8. Scott A. Hutchinson, John N. Shadid, and R. S. Tuminaro. Aztec user’s guide.
version 1.0. Technical Report SAND95-1559, Sandia National Laboratories, Albu-
querque, NM, 1995.

9. M. T. Jones and P. E. Plassmann. BlockSolve95 users manual: Scalable library
software for the solution of sparse linear systems. Technical Report ANL-95/48,
Argonne National Lab., Argonne, IL., 1995.

10. G. Karypis. Graph Partitioning and its Applications to Scientific Computing. PhD
thesis, Department of Computer Science, University of Minnesota, Minneapolis,
MN, 1996.

11. S. Kuznetsov, G. C. Lo, and Y. Saad. Parallel solution of general sparse linear
systems. Technical Report UMSI 97/98, Minnesota Supercomputer Institute, Uni-
versity of Minnesota, Minneapolis, MN, 1997.

12. J. W. H. Liu. A graph partitioning algorithm by node separators. ACM Transac-
tions on Mathematical Software, 15:198-219, 1989.

13. A. Pothen, H. D. Simon, and K. P. Liou. Partitioning sparse matrices with eigen-
vectors of graphs. STAM Journal on Matriz Analysis and Applications, 11:430-452,
1990.

14. Y. Saad. Parallel sparse matrix library (P_SPARSLIB): The iterative solvers mod-
ule. In Advances in Numerical Methods for Large Sparse Sets of Linear Equations,
Number 10, Matriz Analysis and Parallel Computing, PCG 9/, pages 263-276,
Keio University, Yokohama, Japan, 1994.

15. Y. Saad. Iterative Methods for Sparse Linear Systems. PWS publishing, New York,
1996.

16. Y. Saad and A. Malevsky. PSPARSLIB: A portable library of distributed memory
sparse iterative solvers. In V. E. Malyshkin et al., editor, Proceedings of Parallel
Computing Technologies (PaCT-95), 8-rd international conference, St. Petersbury,
Russia, Sept. 1995, 1995.



XIIT

17. Y. Saad and M. Sosonkina. Distributed Schur complement techniques for general

18.

19.

sparse linear systems. Technical Report UMSI 97/159, Minnesota Supercomputer
Institute, University of Minnesota, Minneapolis, MN, 1997. Submitted, Revised.
B. Smith, P. Bjgrstad, and W. Gropp. Domain decomposition: Parallel multilevel
methods for elliptic partial differential equations. Cambridge University Press,
New-York, NY, 1996.

B. Smith, W. D. Gropp, and L. C. McInnes. PETSc 2.0 user’s manual. Technical
Report ANL-95/11, Argonne National Laboratory, Argonne, IL, July 1995.



XIv

Fig. 2. Two-way partitioning (left) and level-set expansion using centers at the “middle
node” of resulting subdomains (right).



a(z,y) =b(z,y) =1

aL(m,y)ZIO2
b(z,y)=1

=

B

Fig. 3. A test problem with discontinuous coefficient.

XV

p/4 PEs

p/4 PEs

p/8 PEs

p/4 PEs

p/8 PEs

p/4 PEs

Fig. 4. A macro-partitioning of the problem in Figure 3.




XVI

Fig. 5. A local

AF23560 — Wall-Clock Time

External
/ interface points
\

view of a distributed sparse matrix.

AF23560 - Iterations

25 Solid line: Jacobi

SP seconds

Dash-dot line: Jacobi_ft

1

ol

0oF

Iterations
8

Solid line: Jacobi
Dash~-dot line: Jacobi_ft

Processors

Fig. 6. Solution times and iterations

Schwatz preconditionings.

for the

10 20 30 4‘0 50
Processors

standard and “fixed-time”

Additive



