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Introduction: What is data mining?

» Common goal of data mining methods: to extract meaningful
information or patterns from data. Very broad area — includes: data
analysis, machine learning, pattern recognition, information retrieval, ...

» Main tools used: linear algebra; graph theory; approximation theory;
optimization; ...

» |In this talk: emphasis on dimension reduction techniques, interrelations
between techniques, and graph theory tools.

Agadir, 05-19-2009



Major tool of Data Mining: Dimension reduction

» (Goal is not just to reduce computational cost but to:
e Reduce noise and redundancy in data
e Discover ‘features’ or 'patterns’ (e.g., supervised learning)

» Techniques depend on application: Preserve angles? Preserve dis-
tances? Maximize variance? ..
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The problem of Dimension Reduction

» Given d < m find a mapping
d:x €cR" — y €R?
» Mapping may be explicit [typically linear], e.g.:
Y = Vg

»  Or implicit (nonlinear)

Practically:l Given X € R™*"™, }»

we want to find a low-dimensional

representation Y &€ R4*" of X - !

L —
2
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Linear Dimensionality Reduction

Given: a data set X = [x1,®2,...,%,], and d the dimension of the
desired reduced space Y = [y1, Y25+ Ynl-
Want: a linear transformation from X to Y

n
. V c Rmxd
d VT Y Yi I/ Id Y VX
n N Y c Ran

» m-dimens. objects (x;) ‘flattened’ to d-dimens. space (y;)
Constraint:  The y;’s must satisfy certain properties
»  Optimization problem

Agadir, 05-19-2009



Agadir, 05-19-2009

T
™
£
s
@
(a)
©
£
2
S
®)

)
n
oA
=
<
=
S
S,
S
S
S
Q
=
S
5
=
=
N
<
&

Example 1




2-D ‘reductions’: I
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Example 2: Digit images (a random sample of 30)
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2-D ’reductions’:

PCA - digits: 0 — 4

LLE - digits: 0 — 4
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Basic linear dimensionality reduction method: PCA

» We are given points in R™
and we want to project them
in R9. Best way to do this?

» i.e.: find the best axes for
projecting the data

» Q: “best in what sense”?
» A: maximize variance of
new data

» Principal Component Analysis [PCA]
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» Recall y; = VTz;, where V is m X d orthogonal
» We need to maximize over all orthogonal m x d matrices V.

>illyi — %Z] yy”% = =T [VTXXTV]

Where: X = X (I — %11T) == origin-recentered version of X

» Solution V' = { dominant eigenvectors } of the covariance matrix ==
Set of left singular vectors of X

» Solution V also minimizes ‘reconstruction error’ ..

Dz = Vviaz|? = e — Vil

> .. and it also maximizes [Korel and Carmel 04] 3, ; [lys — y;l|?
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Unsupervised learning: Clustering

Problem: partition a given set into subsets such that items of the same

subset are most similar and those of two different subsets most dissimilar.
Photovoltaic

Superhard
Superconductors
‘. Ferromagnetic
- . Catalytic Q
Multi—ferroics Thermo-electric

» Basic technique: K-means algorithm [slow but effective.]
» Example of application : cluster bloggers by ‘social groups’ (anarchists,
ecologists, sports-fans, liberals-conservative, ... )
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Sparse Matrices viewpoint

» Communities modeled by an ‘affinity’ graph [e.g., 'user A sends frequent
e-mails to user B’]

» Adjacency Graph represented » (@Goal: find reordering such that
by a sparse matrix blocks are as dense as possible:
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> Advantage of this viewpoint: no need to know number of clusters.
» Use ‘blocking’ techniques for sparse matrices [O’Neil Szyld 90, YS 03,

n

Agadir, 05-19-2009



Example of application I iIn knowledge discovery. Data set from :

http://www—personal.umich.edu/~mejn/netdata/

» Network connecting bloggers of different political orientations [2004 US
presidentual election]

'‘Communities’: liberal vs. conservative

Graph: 1, 490 vertices (blogs) : first 758: liberal, rest: conservative.
Edge: ¢« — 7 means there is a citation between blogs z and 3
Blocking algorithm (Density theshold=0.4) found 2 subgraphs

Note: density = |E|/|V|%.

Smaller subgraph: conservative blogs, larger one: liberals

One observation: smaller subgraph is denser than that of the larger
one. Concl. agrees with [L. A. Adamic and N. Glance 05] :

‘right-leaning (conservative) blogs have a denser structure of strong con-
nections than the left (liberal)”

YYYVYVYYY
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Supervised learning: classification

Problem: Given labels (say “A” and “B”) for each item of a given set, find
a way to classify an unlabelled item into either the “A” or the “B” class.

* 9

|
» Many applications.
» Example: distinguish between SPAM and non-SPAM messages
» (Can be extended to more than 2 classes.
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Linear
classifier

Linear classifiers: Find a hyperplane which best separates the data in
classes A and B.
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A harder case: I

Spectral Bisection (PDDP)

4r
+ 4+ T
++++ ++++
4:+
3t T4 ++ L -H-+++- H
+4+
+
11F-++++ﬂﬁ-|r +
2r 4 *
¢ # 2
Tkt ++
g e o 09990 f L
r 9 8, O O T+
%)% OCQ@%O + g +
O o O
@O@O@%o S L. +:|=#
B [Rp— QG%-&-Q _____ A____-H-__
0 @ o 00 +- 7
" 90 w0 ° %% ° LFa
o0® o O 00 +++
b Beg™e & O% T4t
0 O g Q@ﬁ%O% ++
+
+i+j;++
-2t #+ 7+ -|J-r++
G
N ++“d$ + +
+TH T A4
+
-3r iy T+
3 +_F]:F|_ ++ :l:+ +++ +:|: i++ +
S
:.ﬁ:F'-l H+
_4 | | | | | | J
-2 -1 0 1 2 3 4 5

» Use kernels to transorm
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Linear classifiers

» Let X = [xq,--: ,x,]| be the data matrix.
» and L = [l4,--- ,1,] the labels either +1 or -1.

» First Solution: Find a vector v
such that vTx; close to I; for all 4.

» More common solution: Use SVD
to reduce dimension of data [e.g. 2-
D] then do comparison in this space.
eg. A:vlz; > 0,B:vlz; <0

[Note: for clarity v principal axis
drawn below where it should be]
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Better solution: Linear Discriminant Analysis (LDA)

Define “between scatter”. a measure of how well separated two distinct
classes are.

Define “within scatter”: a measure of how well clustered items of the same
class are.

» (Goal: to make “between scatter” measure large, while making “within
scatter” small.

|ldea: Project the data in low-dimensional space so as to maximize the
ratio of the “between scatter” measure over “within scatter” measure of
the classes.
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» Let 4 = mean of X,
» and p®) = mean of the k-th class (of size ny).

B CLUSTER CENTROIDS
% GLOBAL CENTROID
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Sp = Y me(p® — p)(u® — w)7,
k=1

Sw=3 3 (@i—p®)(w:— p®)7,

» Project set on a one-dimensional space spanned by a vector a. Then:

a’Spa = an|aT(M(k) — H)|2a a' Swa = S: S: |aT(33i — lwb(k))|2

Define

=1 k=1 T, € Xk
» LDA projects the data so as to maxi- . a’Spa
mize the ratio of these two numbers: a al'Swa

» Optimal a = eigenvector associated with the largest eigenvalue of:
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LDA — Extension to arbitrary dimension

»  Would like to project in d dimensions —
» Normally we wish to maximize the ratio of two traces

Tr [UTspU]
Tr [uTswU]

» U subject to being unitary UTU = I (orthogonal projector).
» Reduced dimensiondata: Y = UT X.
Difficulty: Hard to maximize. See Bellalij & YS (in progress).

» Common alternative: Solve instead the (easier) problem:

max Tr[U'SgU]
UTSwU=I

» Solution: largest eigenvectors of

Agadir, 05-19-2009



Motivating example: Collaborative filtering, Netflix Prize

» Important application in commerce ..
» .. but potential for other areas too
» When you order a book in Amazon you will get recommendations>»

'‘Recommender system’

» A very hot topic at the height of the dot-com era ...

» Some of the tools used: statistics, clustering, KNN graphs, LSI (a form
of PCA), ...

» Visit the page Gouplens page hitp.//www.grouplens.org/

» Netflix: “qui veut gagner un million?” [who wants to win a $ million?]
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Face Recognition — background

Problem: We are given a database of images: [arrays of pixel values].
And a test (new) image.

(.. (.. (.. (.. (.. (..
§ § § 4§ 3§ g
~N T /7

Question: Does this new image correspond to one of those in the database?
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Difficulty |

» Different positions, expressions, lighting, ..., situations :

Common approach: eigenfaces — Principal Component Analysis tech-
nique

Agadir, 05-19-2009



» See real-life examples — [international man-hunt]
» Poor images or deliberately altered images [‘occlusion’]
» See recent paper by John Wright et al.
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— Consider each picture as a one-dimensional colum of all pixels
— Put together into an array A of size # _pixels X #_1mages.

HEEE B -

— Do an SVD of A and perform comparison with any in low-dim.
space
— Similar to LSI in spirit — but data is not sparse.

Idea: replace SVD by Lanczos vectors (same as for IR)
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Tests: Face Recognition

Tests with 2 well-known data sets:
ORL 40 subjects, 10 sample images each — example:

# of pixels : 112 x 92 TOT. # images : 400

AR set 126 subjects — 4 facial expressions selected for each [natural,
smiling, angry, screaming] — example:

WY

# of pixels : 112 x 92 # TOT. # images : 504
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Tests: Face Recognition

Recognition accuracy of Lanczos approximation vs SVD

average error rate

ORL dataset
ORL
‘ ;Iaﬁczos
- =-tsvd
0 s e 70 s 0

iterations

100

average error rate

o
)

o
o

AR dataset
AR
‘ ;Iaﬁczos
- - -tsvd
?:0 4;0 go 85 S;O 1JOO

iterations

Vertical axis shows average error rate. Horizontal = Subspace dimension
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Laplacean Eigenmaps (Belkin-Niyogi-02)

» Not a linear (projection) method but a Nonlinear method

» Starts with k-nearest-neighbors graph:

kK-NN graph = graph of k£ nearest neighbors

» Then define a graph Laplacean:
L=D-W
» Simplest:

1 if 3 € IN;
W;; = J < ’ D = diag
0 else

with INV; = neighborhood of ¢ (excl. 2)

ji

di; = Z w;j
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A few properties of graph Laplacean matrices

» Let L =any matrixs.t. L = D — W, with D = diag(d;) and

w;; > 0, d;, = sz’j
JF#i
Property 1: forany @ € R":

Property 2: (generalization) for any Y € R*™ :

1
TIYLY '] = Ezwij”yi — yI®
i
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Property 3: For the particular L = T — 1117

n

XLX'" = XX == n x Covariance matrix

[Proof: 1) L is a projector: L'L = L? = L,and 2) XL = X]

» Consequence-1: PCA equivalent to maximizing 3, |ly; — v;l|?

» (Consequence-2: what about replacing trivial L with something else?
[viewpoint in Koren-Carmel’ 04]

Property 4: (Graph partitioning) If x is a vector of signs (1) then
x' Lz = 4 x (‘'number of edge cuts’)

edge-cut = pair (¢, 7) with x; # x;
» (Consequence: Can be used for partitioning graphs, or ‘clustering’ [take
p = sign(usz), where us = 2nd smallest eigenvector..]
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Return to Laplacean eigenmaps approach

Laplacean Eigenmaps *minimizes”®

Fem(Y) = Zwiﬂlyz y;||* subjectto YDY' =1T.

Notes:
1. Motivation: if ||x; — x;|| is small (orig.
data), we want ||y; — y;|| to be also small
(low-D data)
2. Note: Min instead of Max as in PCA
[counter-intuitive]
3. Above problem uses original data indirectly
through its graph
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» Problem translates to:

min T [Y(D-W)Y'] .
Y € Ran
YDY' =1

» Solution (sort eigenvalues increasingly):
(D—W)u; =X\Du;; yi=u'; i=1,---,d

» Ann X n sparse eigenvalue problem [In ‘sample’ space]
» Note: can assume D = 1. Amounts to rescaling data. Problem
becomes

(I — W)u; = Au; ; yz:u;rv 1 =1,---,d
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Why smallest eigenvalues vs largest for PCA?

Intuition:
Graph Laplacean and ‘unit’ Laplacean are very different: one involves a

sparse graph (More like a discr. differential operator). The other involves a
dense graph. (More like a discr. integral operator). They should be treated

as the inverses of each other.
» Viewpoint confirmed by what we learn from Kernel approach
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» Most techniques lead to one of two types of problems

First :
> Y obtained from solving min  Tr [YMY']
an eigenvalue problem { Y € R¥>»
» LLE, Eigenmaps (normal- YY' =1

1zed), ..

Second:
» Low-Dimensional data: min Tr [V'XMX'V] .
Y =VTX V € Rmxd
> G is either the identity {VT GV =1
matrixor XDX T or XX T.

Important observation: 2nd is just a projected version of the 1st.
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Graph-based methods in a supervised setting

» Subjects of training set are known (labeled). Q: given a test image (say)
find its label.

) N ) )

S S & >
>

Q

h '\ \
| //.‘ AR &Y ¥
AR S
W8 AN W R Y

Question: Find label (best match) for test image.
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Methods can be adapted to supervised mode by building the graph to
take into account class labels. Idea is simple: Build G so that nodes
In the same class are neighbors. If ¢ = # classes, G will consist of c

cliques.
» Matrix W will be block-diagonal

» Easy to see that rank(W) = n — c.
» (Can be used for LPP, ONPP, etc..
» Recent improvement: add repulsion Laplacean [Kokiopoulou, YS 09]
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ORL —- TrainPer—Class=5

Class1 Class 2
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Supervised learning experiments: digit recognition

» Set of 390 images of digits (39 of QZEQZQZEQZQZQEE

5 10 15 5 10 15 5 10 15 5 10 15

o~
10 10 10 10
20 20 20 = 20

5 10 15 5 10 15 5 10 15 5 10 15

5 10 15
5 10 15
j 102 105 105 lOE
0 20 20 20 20
5 10 15 5 10 15 5 10 15 5 10 15 5 10 15
5 10 15

each digit)
» Each picture has 20 X 16 = 320 EZEQZ

pixels. 0 10
» Select any one of the digits and *
try to recognize it among the 389 zij’Ifzz ]

remaining images . N

=
» Methods: PCA, LPP, ONPP 20l o (e jf{ﬂ

5 10 15 5 10 15 5 10 15 5 10 15

N AN
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Multilevel techniques

» Divide and conquer paradigms as well as multilevel methods in the

sense of ‘domain decomposition’
Graph

»  Main principle:
very costly to do an
SVD [or Lanczos] on
the whole set. Why

not find a smaller A
set on which to do
the analysis — with-
out too much loss?
Last Level > | Yo |}d
Project 4?
L

» Main tool used: graph coarsening
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Hypergraphs and Hypergraph coarsening

A hypergraph H = (V, E) is a generalizaition of a graph

V = set of vertices V

E = set of hyperedges. Each e € FE is a nonempty subset of V
Standard undirected graphs: each e consists of two vertices.
degree of e = |€|

degree of a vertex v = number of hyperedges e s.t. « € e.

Two vertices are neighbors if there is a hyperedge connecting them

YYYVYYVYY
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Example of a hypergraph
3 5 Boolean matrix representation

1>/D\t,f 1234567809
2

4 \ 111 1
/ ! 8 1 111
c. ] A = 1 111
d
11

®©® O o T 9

» (Canonical hypergraph representation for sparse data (e.g. text)
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Hypergraph Coarsening

» Coarsening a hypergraph H = (V, E) means finding a ‘coarse’ ap-
proximation H = (V, E) to H with |[V| < |V, which tries to retain as
much as possible of the structure of the original hypergraph

» |dea: repeat coarsening recursively.

» Result: succession of smaller hypergraphs which approximate the orig-
inal graph.

»  Several methods exist. We use ‘matching’, which successively merges
pairs of vertices

» Used in most graph partitioning methods: hMETIS, Patoh, zoltan, ..

» Algorithm successively selects pairs of vertices to merge — based on
measure of similarity of the vertices.
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Application: Multilevel Dimension Reduction

Main Idea: | coarsen to
a certain level. Then use
the resulting data set X to
find projector from R™ to
R9. This projector can be
used to project the original
data or any new data.

Project
B Ty

» Main gain: Dimension reduction is done with a much smaller set. Hope:
not much loss compared to using whole data
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Application to text mining

» Recall common approach:

1. Scale data [e.g. TF-IDF scaling: ]

2. Perform a (partial) SVD on resulting matrix X =~ UgX4V}

3. Process query by same scaling (e.g. TF-IDF)

4. Compute similarities in d-dimensional space: s; = (4, &;)/||q||||®:]|
where [£1, &9,...,%,] = VI € R>"; ¢=3'"UTqg € R?

» Multilevel approach: replace SVD (or any other dim. reduction) by
dimension reduction on coarse set. Only difference: TF-IDF done on the
coarse set not original set.
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Three public data sets used for experiments: Medline, Cran and NPL
(cs.cornell.edu)
» (Coarsening to a max. of 4 levels.

Data set Medline Cran NPL
# documents 1033 1398 11429
# terms 7014 3763 7491
sparsity (%) 0.74% 1.41% 0.27%
# queries 30 225 93
avg. # rel./query 23.2 8.2 224
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Results with NPL
Statistics I

Level

coarsen. #  optimal optimal avg.
time doc. #dim. precision
#1 N/A 11429 736 23.5%
#2 3.68 5717 592 23.8%
#3 219 2861 516 23.9%
L 1.50 1434 533 23.3%
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precision

Precision-Recall curves I
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CPU times |for preprocessing (Dim. reduction part)

NPL
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Conclusion

» Eigenvalue problems of data-mining are not cheap to solve..

» .. and cost issue does not seem to bother practitioners too much for
NOw..

» Ingredients that will become mandatory:

1 Avoid the SVD

2 Fast algorithms that do not sacrifice quality.
3 In particullar: Multilevel approaches

4 Multilinear algebra [tensors]
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