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Introduction: What is data mining?

ä Common goal of data mining methods: to extract meaningful
information or patterns from data. Very broad area – includes: data
analysis, machine learning, pattern recognition, information retrieval, ...

ä Main tools used: linear algebra; graph theory; approximation theory;
optimization; ...
ä In this talk: emphasis on dimension reduction techniques, interrelations
between techniques, and graph theory tools.
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Major tool of Data Mining: Dimension reduction

ä Goal is not just to reduce computational cost but to:

• Reduce noise and redundancy in data

• Discover ’features’ or ’patterns’ (e.g., supervised learning)

ä Techniques depend on application: Preserve angles? Preserve dis-
tances? Maximize variance? ..
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The problem of Dimension Reduction

ä Given d � m find a mapping

Φ : x ∈ Rm −→ y ∈ Rd

ä Mapping may be explicit [typically linear], e.g.:

y = V Tx

ä Or implicit (nonlinear)

Practically: Given X ∈ Rm×n,

we want to find a low-dimensional
representation Y ∈ Rd×n of X

Agadir, 05-19-2009 p. 4



Linear Dimensionality Reduction

Given: a data set X = [x1, x2, . . . , xn], and d the dimension of the
desired reduced space Y = [y1, y2, . . . , yn].
Want: a linear transformation from X to Y
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X ∈ Rm×n

V ∈ Rm×d

Y = V >X

→ Y ∈ Rd×n

ä m-dimens. objects (xi) ‘flattened’ to d-dimens. space (yi)
Constraint: The yi’s must satisfy certain properties

ä Optimization problem

Agadir, 05-19-2009 p. 5



Example 1: The ‘Swill-Roll’ (2000 points in 3-D)
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2-D ‘reductions’:
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Example 2: Digit images (a random sample of 30)
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2-D ’reductions’:
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Basic linear dimensionality reduction method: PCA

ä We are given points in Rn

and we want to project them
in Rd. Best way to do this?
ä i.e.: find the best axes for
projecting the data
ä Q: “best in what sense”?
ä A: maximize variance of
new data

ä Principal Component Analysis [PCA]
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ä Recall yi = V Txi, where V is m × d orthogonal
ä We need to maximize over all orthogonal m × d matrices V :

∑
i ‖yi − 1

n

∑
j yj‖2

2 = · · · = Tr
[
V >X̄X̄>V

]
Where: X̄ = X(I − 1

n
11T ) == origin-recentered version of X

ä Solution V = { dominant eigenvectors } of the covariance matrix ==
Set of left singular vectors of X̄

ä Solution V also minimizes ‘reconstruction error’ ..

∑
i

‖xi − V V Txi‖2 =
∑

i

‖xi − V yi‖2

ä .. and it also maximizes [Korel and Carmel 04]
∑

i,j ‖yi − yj‖2
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Unsupervised learning: Clustering

Problem: partition a given set into subsets such that items of the same
subset are most similar and those of two different subsets most dissimilar.

Superhard
Photovoltaic

Superconductors

Catalytic

Ferromagnetic

Thermo−electricMulti−ferroics

ä Basic technique: K-means algorithm [slow but effective.]
ä Example of application : cluster bloggers by ‘social groups’ (anarchists,
ecologists, sports-fans, liberals-conservative, ... )
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Sparse Matrices viewpoint

ä Communities modeled by an ‘affinity’ graph [e.g., ’user A sends frequent
e-mails to user B’]

ä Adjacency Graph represented
by a sparse matrix

ä Goal: find reordering such that
blocks are as dense as possible:

ä Advantage of this viewpoint: no need to know number of clusters.
ä Use ‘blocking’ techniques for sparse matrices [O’Neil Szyld ’90, YS 03,
...]
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Example of application in knowledge discovery. Data set from :

http://www-personal.umich.edu/∼mejn/netdata/

ä Network connecting bloggers of different political orientations [2004 US
presidentual election]
ä ’Communities’: liberal vs. conservative
ä Graph: 1, 490 vertices (blogs) : first 758: liberal, rest: conservative.
ä Edge: i → j means there is a citation between blogs i and j

ä Blocking algorithm (Density theshold=0.4) found 2 subgraphs
ä Note: density = |E|/|V |2.
ä Smaller subgraph: conservative blogs, larger one: liberals
ä One observation: smaller subgraph is denser than that of the larger
one. Concl. agrees with [L. A. Adamic and N. Glance 05] :
‘right-leaning (conservative) blogs have a denser structure of strong con-
nections than the left (liberal)”
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Supervised learning: classification

Problem: Given labels (say “A” and “B”) for each item of a given set, find
a way to classify an unlabelled item into either the “A” or the “B” class.

?

?
ä Many applications.
ä Example: distinguish between SPAM and non-SPAM messages
ä Can be extended to more than 2 classes.
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Linear

classifier

Linear classifiers: Find a hyperplane which best separates the data in
classes A and B.
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A harder case:

−2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4
Spectral Bisection (PDDP)

ä Use kernels to transorm

Agadir, 05-19-2009 p. 17



Linear classifiers

ä Let X = [x1, · · · , xn] be the data matrix.
ä and L = [l1, · · · , ln] the labels either +1 or -1.

ä First Solution: Find a vector v

such that vTxi close to li for all i.
ä More common solution: Use SVD
to reduce dimension of data [e.g. 2-
D] then do comparison in this space.
e.g. A: vTxi ≥ 0 , B: vTxi < 0

[Note: for clarity v principal axis
drawn below where it should be]

v
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Better solution: Linear Discriminant Analysis (LDA)

Define “between scatter”: a measure of how well separated two distinct
classes are.
Define “within scatter”: a measure of how well clustered items of the same
class are.
ä Goal: to make “between scatter” measure large, while making “within
scatter” small.

Idea: Project the data in low-dimensional space so as to maximize the
ratio of the “between scatter” measure over “within scatter” measure of
the classes.
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ä Let µ = mean of X,
ä and µ(k) = mean of the k-th class (of size nk).

H
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CLUSTER CENTROIDS

H
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Define

SB =
c∑

k=1

nk(µ
(k) − µ)(µ(k) − µ)T ,

SW =
c∑

k=1

∑
xi ∈Xk

(xi − µ(k))(xi − µ(k))T .

ä Project set on a one-dimensional space spanned by a vector a. Then:

aTSBa =
c∑

i=1

nk|aT (µ(k) − µ)|2, aTSWa =
c∑

k=1

∑
xi ∈ Xk

|aT (xi − µ(k))|2

ä LDA projects the data so as to maxi-
mize the ratio of these two numbers:

max
a

aTSBa

aTSWa

ä Optimal a = eigenvector associated with the largest eigenvalue of:

SBui = λiSWui .
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LDA – Extension to arbitrary dimension

ä Would like to project in d dimensions –
ä Normally we wish to maximize the ratio of two traces

Tr [UT SBU ]

Tr [UT SW U ]

ä U subject to being unitary UTU = I (orthogonal projector).
ä Reduced dimension data: Y = UTX.
Difficulty: Hard to maximize. See Bellalij & YS (in progress).

ä Common alternative: Solve instead the (easier) problem:

max
UT SW U=I

Tr [UTSBU ]

ä Solution: largest eigenvectors of

SBui = λiSWui .
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Motivating example: Collaborative filtering, Netflix Prize

ä Important application in commerce ..
ä .. but potential for other areas too
ä When you order a book in Amazon you will get recommendationsä

’Recommender system’

ä A very hot topic at the height of the dot-com era ...
ä Some of the tools used: statistics, clustering, kNN graphs, LSI (a form
of PCA), ...
ä Visit the page GoupLens page http://www.grouplens.org/
ä Netflix: “qui veut gagner un million?” [who wants to win a $ million?]
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Face Recognition – background

Problem: We are given a database of images: [arrays of pixel values].
And a test (new) image.

ÿ ÿ ÿ ÿ ÿ ÿ

↖ ↑ ↗

Question: Does this new image correspond to one of those in the database?
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Difficulty

ä Different positions, expressions, lighting, ..., situations :

Common approach: eigenfaces – Principal Component Analysis tech-
nique
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ä See real-life examples – [international man-hunt]
ä Poor images or deliberately altered images [‘occlusion’]
ä See recent paper by John Wright et al.
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Eigenfaces

– Consider each picture as a one-dimensional colum of all pixels
– Put together into an array A of size # pixels × # images.

. . . =⇒ . . .

︸ ︷︷ ︸
A

– Do an SVD of A and perform comparison with any test image in low-dim.
space
– Similar to LSI in spirit – but data is not sparse.
Idea: replace SVD by Lanczos vectors (same as for IR)
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Tests: Face Recognition

Tests with 2 well-known data sets:
ORL 40 subjects, 10 sample images each – example:

# of pixels : 112 × 92 TOT. # images : 400

AR set 126 subjects – 4 facial expressions selected for each [natural,
smiling, angry, screaming] – example:

# of pixels : 112 × 92 # TOT. # images : 504
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Tests: Face Recognition

Recognition accuracy of Lanczos approximation vs SVD

ORL dataset
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GRAPH-BASED TECHNIQUES



Laplacean Eigenmaps (Belkin-Niyogi-02)

ä Not a linear (projection) method but a Nonlinear method
ä Starts with k-nearest-neighbors graph:

k-NN graph = graph of k nearest neighbors

ä Then define a graph Laplacean:

L = D − W

ä Simplest:

x

x
j

i

wij =

{
1 if j ∈ Ni

0 else
D = diag

dii =
∑
j 6=i

wij


with Ni = neighborhood of i (excl. i)
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A few properties of graph Laplacean matrices

ä Let L = any matrix s.t. L = D − W , with D = diag(di) and

wij ≥ 0, di =
∑
j 6=i

wij

Property 1: for any x ∈ Rn :

x>Lx =
1

2

∑
i,j

wij|xi − xj|2

Property 2: (generalization) for any Y ∈ Rd×n :

Tr [Y LY >] =
1

2

∑
i,j

wij‖yi − yj‖2
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Property 3: For the particular L = I − 1
n

11>

XLX> = X̄X̄> == n × Covariance matrix

[Proof: 1) L is a projector: L>L = L2 = L, and 2) XL = X̄]
ä Consequence-1: PCA equivalent to maximizing

∑
ij ‖yi − yj‖2

ä Consequence-2: what about replacing trivial L with something else?
[viewpoint in Koren-Carmel’04]

Property 4: (Graph partitioning) If x is a vector of signs (±1) then

x>Lx = 4 × (’number of edge cuts’)

edge-cut = pair (i, j) with xi 6= xj

ä Consequence: Can be used for partitioning graphs, or ‘clustering’ [take
p = sign(u2), where u2 = 2nd smallest eigenvector..]
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Return to Laplacean eigenmaps approach

Laplacean Eigenmaps *minimizes*

FEM(Y ) =
n∑

i,j=1

wij‖yi − yj‖2 subject to Y DY > = I .

Notes:
1. Motivation: if ‖xi − xj‖ is small (orig.
data), we want ‖yi − yj‖ to be also small
(low-D data)
2. Note: Min instead of Max as in PCA
[counter-intuitive]
3. Above problem uses original data indirectly
through its graph

x

x
j

i

y
i

y
j
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ä Problem translates to:

min Y ∈ Rd×n

Y D Y > = I

Tr
[
Y (D − W )Y >]

.

ä Solution (sort eigenvalues increasingly):

(D − W )ui = λiDui ; yi = u>
i ; i = 1, · · · , d

ä An n × n sparse eigenvalue problem [In ‘sample’ space]
ä Note: can assume D = I. Amounts to rescaling data. Problem
becomes

(I − W )ui = λiui ; yi = u>
i ; i = 1, · · · , d
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Why smallest eigenvalues vs largest for PCA?

Intuition:
Graph Laplacean and ‘unit’ Laplacean are very different: one involves a
sparse graph (More like a discr. differential operator). The other involves a
dense graph. (More like a discr. integral operator). They should be treated
as the inverses of each other.
ä Viewpoint confirmed by what we learn from Kernel approach
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A unified view

ä Most techniques lead to one of two types of problems

First :
ä Y obtained from solving
an eigenvalue problem
ä LLE, Eigenmaps (normal-
ized), ..

min Y ∈ Rd×n

Y Y > = I

Tr
[
Y MY >]

Second:
ä Low-Dimensional data:
Y = V >X

ä G is either the identity
matrix or XDX> or XX>.

min V ∈ Rm×d

V > G V = I

Tr
[
V >XMX>V

]
.

Important observation: 2nd is just a projected version of the 1st.
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Graph-based methods in a supervised setting

ä Subjects of training set are known (labeled). Q: given a test image (say)
find its label.
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Question: Find label (best match) for test image.
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Methods can be adapted to supervised mode by building the graph to
take into account class labels. Idea is simple: Build G so that nodes
in the same class are neighbors. If c = # classes, G will consist of c

cliques.

ä Matrix W will be block-diagonal

W =


W1

W2

W3

W4

W5


ä Easy to see that rank(W ) = n − c.
ä Can be used for LPP, ONPP, etc..
ä Recent improvement: add repulsion Laplacean [Kokiopoulou, YS 09]

Agadir, 05-19-2009 p. 40



Class 1 Class 2
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TIME FOR A MATLAB DEMO



Supervised learning experiments: digit recognition

ä Set of 390 images of digits (39 of
each digit)
ä Each picture has 20 × 16 = 320

pixels.
ä Select any one of the digits and
try to recognize it among the 389
remaining images
ä Methods: PCA, LPP, ONPP

5 10 15

10

20
5 10 15

10

20
5 10 15

10

20
5 10 15

10

20
5 10 15

10

20
5 10 15

10

20

5 10 15

10

20
5 10 15

10

20
5 10 15

10

20
5 10 15

10

20
5 10 15

10

20
5 10 15

10

20

5 10 15

10

20
5 10 15

10

20
5 10 15

10

20
5 10 15

10

20
5 10 15

10

20
5 10 15

10

20

5 10 15

10

20
5 10 15

10

20
5 10 15

10

20
5 10 15

10

20
5 10 15

10

20
5 10 15

10

20

5 10 15

10

20
5 10 15

10

20
5 10 15

10

20
5 10 15

10

20
5 10 15

10

20
5 10 15

10

20

Agadir, 05-19-2009 p. 43



MULTILEVEL METHODS



Multilevel techniques

ä Divide and conquer paradigms as well as multilevel methods in the
sense of ‘domain decomposition’

ä Main principle:
very costly to do an
SVD [or Lanczos] on
the whole set. Why
not find a smaller
set on which to do
the analysis – with-
out too much loss?
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ä Main tool used: graph coarsening
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Hypergraphs and Hypergraph coarsening

A hypergraph H = (V, E) is a generalizaition of a graph
ä V = set of vertices V

ä E = set of hyperedges. Each e ∈ E is a nonempty subset of V

ä Standard undirected graphs: each e consists of two vertices.
ä degree of e = |e|
ä degree of a vertex v = number of hyperedges e s.t. x ∈ e.
ä Two vertices are neighbors if there is a hyperedge connecting them
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Example of a hypergraph
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Boolean matrix representation
1 2 3 4 5 6 7 8 9
1 1 1 1 a

1 1 1 1 b
A = 1 1 1 1 c

1 1 1 d
1 1 e

ä Canonical hypergraph representation for sparse data (e.g. text)
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Hypergraph Coarsening

ä Coarsening a hypergraph H = (V, E) means finding a ‘coarse’ ap-
proximation Ĥ = (V̂ , Ê) to H with |V̂ | < |V |, which tries to retain as
much as possible of the structure of the original hypergraph
ä Idea: repeat coarsening recursively.
ä Result: succession of smaller hypergraphs which approximate the orig-
inal graph.
ä Several methods exist. We use ‘matching’, which successively merges
pairs of vertices
ä Used in most graph partitioning methods: hMETIS, Patoh, zoltan, ..
ä Algorithm successively selects pairs of vertices to merge – based on
measure of similarity of the vertices.
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Application: Multilevel Dimension Reduction

Main Idea: coarsen to
a certain level. Then use
the resulting data set X̂ to
find projector from Rm to
Rd. This projector can be
used to project the original
data or any new data.
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ä Main gain: Dimension reduction is done with a much smaller set. Hope:
not much loss compared to using whole data
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Application to text mining

ä Recall common approach:
1. Scale data [e.g. TF-IDF scaling: ]
2. Perform a (partial) SVD on resulting matrix X ≈ UdΣdV

T
d

3. Process query by same scaling (e.g. TF-IDF)
4. Compute similarities in d-dimensional space: si = 〈q̂, x̂i〉/‖q̂‖‖x̂i‖
where [x̂1, x̂2, . . . , x̂n] = V T

d ∈ Rd×n ; q̂ = Σ−1
d UT

d q̄ ∈ Rd

ä Multilevel approach: replace SVD (or any other dim. reduction) by
dimension reduction on coarse set. Only difference: TF-IDF done on the
coarse set not original set.
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Tests

Three public data sets used for experiments: Medline, Cran and NPL

(cs.cornell.edu)
ä Coarsening to a max. of 4 levels.

Data set Medline Cran NPL

# documents 1033 1398 11429
# terms 7014 3763 7491
sparsity (%) 0.74% 1.41% 0.27%
# queries 30 225 93
avg. # rel./query 23.2 8.2 22.4
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Results with NPL

Statistics

Level
coarsen. # optimal optimal avg.

time doc. # dim. precision
#1 N/A 11429 736 23.5%
#2 3.68 5717 592 23.8%
#3 2.19 2861 516 23.9%
#4 1.50 1434 533 23.3%
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Precision-Recall curves
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CPU times for preprocessing (Dim. reduction part)
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Conclusion

ä Eigenvalue problems of data-mining are not cheap to solve..
ä .. and cost issue does not seem to bother practitioners too much for
now..
ä Ingredients that will become mandatory:

1 Avoid the SVD
2 Fast algorithms that do not sacrifice quality.
3 In particullar: Multilevel approaches
4 Multilinear algebra [tensors]
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